Multiple Mobile Target Tracking in Wireless Sensor Networks

Charly Lersteau Marc Sevaux André Rossi

February 17, 2014
1 Introduction

2 Discretization

3 Scheduling and routing

4 Examples

5 Conclusion
1 Introduction

2 Discretization

3 Scheduling and routing

4 Examples

5 Conclusion
Initial data

- A set of *m static sensors* $I = \{1, \ldots, m\}$.
- Position of sensors: $(x_i, y_i) \in \mathbb{R}^2$, $i \in I$.
Initial data

- A set of m static sensors $I = \{1, \ldots, m\}$.
- Position of sensors: $(x_i, y_i) \in \mathbb{R}^2$, $i \in I$.
- A set of n moving targets $J = \{1, \ldots, n\}$.
- Trajectory of targets: $T_j(t) \in \mathbb{R}^2$, $j \in J$.
Initial data

- Sensing radius of sensors: \(R_i^S \).
- Energy consumption for sensing: \(e_i^S \).
Initial data

- Sensing radius of sensors: R_i^S.
- Energy consumption for sensing: e_i^S.
- Communication radius of sensors: R_i^C.
- Energy consumption for communication: e_i^T and e_i^R.
Initial data

- A base station receiving data.
Initial data

- A base station receiving data.
- A communication graph (to build).
Problem

Missions

- **Monitoring** the targets.
- **Reporting** the sensing data.

Method

- **Schedule** active and sleep states of sensors.
- **Route** the sensing data to a base station.

Objectives

- Minimize total energy consumption.
- Maximize network lifetime.

Constraints

- Every sensor has a limited battery lifetime E_i.
- Every target must be covered by at least one sensor.
Problem

Missions

- **Monitoring** the targets.
- **Reporting** the sensing data.

Method

- **Schedule** *active* and *sleep* states of sensors.
- **Route** the sensing data to a *base station*.
Problem

Missions

- **Monitoring** the targets.
- **Reporting** the sensing data.

Method

- **Schedule** active and *sleep* states of sensors.
- **Route** the sensing data to a *base station*.

Objectives

- Minimize total energy consumption.
- Maximize network lifetime.
Problem

Missions

- **Monitoring** the targets.
- **Reporting** the sensing data.

Method

- **Schedule** *active* and *sleep* states of sensors.
- **Route** the sensing data to a *base station*.

Objectives

- Minimize total energy consumption.
- Maximize network lifetime.

Constraints

- Every sensor has a limited battery lifetime E_i.
- Every target must be covered by at least one sensor.
Two-step method

Two steps

- Discretization.
- Scheduling and routing.
Two-step method

Two steps
- Discretization.
- Scheduling and routing.

Discretization
- Goal: Transform the problem to make it solvable as a LP.
- Split the time into a set of time windows using geometric intersections.
Two-step method

Two steps
- Discretization.
- Scheduling and routing.

Discretization
- Goal: Transform the problem to make it solvable as a LP.
- Split the time into a set of time windows using geometric intersections.

Scheduling and routing
- Solve the LP
- Then, in each time window:
 - Decide which sensors are in active state to cover the targets.
 - Decide which sensors send their data to which sensors.
<table>
<thead>
<tr>
<th></th>
<th>Introduction</th>
<th>Discretization</th>
<th>Scheduling and routing</th>
<th>Examples</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Discretization</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Scheduling and routing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Examples</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Conclusion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Computing time windows

The monitored area can be seen as a planar graph [BCSZ04, SP01].

Figure: An example with $n = 3$ sensors.
Computing time windows

To each face is associated a set of covering sensors. Example: face 2 is covered by \(\{s_1, s_2\} \).

Figure: A planar graph example with \(n = 3 \) sensors, resulting in 6 faces.
Computing time windows

For each target, compute the geometric intersections between sensing area of sensors and its trajectory.

Figure: Temporal discretization of target 1
Computing time windows

For each target, compute the geometric intersections between sensing area of sensors and its trajectory.

Figure: Temporal discretization of target 2
Computing time windows

Finally, merge all computed times in the same set T.

Figure: Temporal discretization of all targets
Computing time windows

- Compute intersections for each target.
- Suppose sensing area of a sensor is a circle of radius R and center γ, then we solve:
 \[(T_j x(t) - \gamma_x)^2 + (T_k y(t) - \gamma_y)^2 = R^2.\]
 \[\implies \text{Result is a sequence of time values ("ticks").}\]
- Finally, merge all ticks in a set T.
 \[\implies \text{Result is a set of } p \text{ time windows.}\]
Computing sets

Computing $S^k(j)$

For each time window $k \in \{1, \ldots, p\}$ and each target $j \in \{1, \ldots, n\}$:

Compute $S^k(j)$: set of candidate sensors covering the target j during the time window k.
Computing sets

Computing $S^k(j)$

For each time window $k \in \{1, \ldots, p\}$ and each target $j \in \{1, \ldots, n\}$:
Compute $S^k(j)$: set of candidate sensors covering the target j during the time window k.

Computing $T^k(i)$

For each time window $k \in \{1, \ldots, p\}$ and each sensor $i \in \{1, \ldots, m\}$:
Compute $T^k(i)$: set of targets that can be covered by the sensor i during the time window k.
Computing sets

Computing $N^T(i)$

For each sensor $i \in \{1, \ldots, n\}$:
Compute $N^T(i)$: set of sensors in the communication radius of sensor i.
Computing sets

Computing $N^T(i)$

For each sensor $i \in \{1, \ldots, n\}$:
Compute $N^T(i)$: set of sensors in the communication radius of sensor i.

Computing $N^R(i)$

For each sensor $i \in \{1, \ldots, n\}$:
Compute $N^R(i)$: set of sensors that have the sensor i in their communication radius.
1 Introduction

2 Discretization

3 Scheduling and routing

4 Examples

5 Conclusion
Problem data

- I : Set of sensors $\{1, \ldots, m\}$.
- J : Set of targets $\{1, \ldots, n\}$.
- K : Set of time windows $\{1, \ldots, p\}$.
Problem data

- I: Set of sensors $\{1, \ldots, m\}$.
- J: Set of targets $\{1, \ldots, n\}$.
- K: Set of time windows $\{1, \ldots, p\}$.
- $S^k(j)$: Set of sensors covering target j during time window k.
- $T^k(i)$: Set of targets covered by sensor i during time window k.
Problem data

- I: Set of sensors $\{1, \ldots, m\}$.
- J: Set of targets $\{1, \ldots, n\}$.
- K: Set of time windows $\{1, \ldots, p\}$.
- $S^k(j)$: Set of sensors covering target j during time window k.
- $T^k(i)$: Set of targets covered by sensor i during time window k.
- $N^T(i)$: set of sensors in the communication radius of sensor i.
- $N^R(i)$: set of sensors that have the sensor i in their communication radius.
Problem data

- I: Set of sensors $\{1, \ldots, m\}$.
- J: Set of targets $\{1, \ldots, n\}$.
- K: Set of time windows $\{1, \ldots, p\}$.
- $S^k(j)$: Set of sensors covering target j during time window k.
- $T^k(i)$: Set of targets covered by sensor i during time window k.
- $N^T(i)$: set of sensors in the communication radius of sensor i.
- $N^R(i)$: set of sensors that have the sensor i in their communication radius.
- e_i^S: Energy consumption for sensing.
- e_i^T and e_i^R: Energy consumption for transmission/reception.
- E_i: Battery lifetime of sensor i.
- Δ^k: Duration of time window k ($\Delta^k = T_{k+1} - T_k$).
Problem data

Decision

- $d_{ij}^k \geq 0$: duration of active state for sensor i during the time window k to watch target j.
- $f_{ij}^k \geq 0$: amount of data transmitted from sensor i to j during the time window k.

Remark

LP model inspired from a model involving static targets [LCL+09].
Problem data

Decision
- \(d_{ij}^k \geq 0 \): duration of active state for sensor \(i \) during the time window \(k \) to watch target \(j \).
- \(f_{ij}^k \geq 0 \): amount of data transmitted from sensor \(i \) to \(j \) during the time window \(k \).

Additional variables (for max-lifetime)
- \(y^k \in \{0, 1\} \)
- \(\delta^k \geq 0 \)

Remark
- LP model inspired from a model involving static targets \([LCL+09]\).
Minimize energy consumption

\[
\min E = \sum_{i \in I} \sum_{k \in K} \left(\sum_{j \in T^k(i)} e^S_{ij} d^k_{ij} + \sum_{j \in N^T(i)} e^T_{ij} f^k_{ij} + \sum_{j \in N^R(i)} e^R_{ij} f^k_{ji} \right)
\]

(1)

(6)
Minimize energy consumption

\[
\min E = \sum_{i \in I} \sum_{k \in K} \left(\sum_{j \in T^k(i)} e^S_{ij} d^k_{ij} + \sum_{j \in N^T(i)} e^T_{ij} f^k_{ij} + \sum_{j \in N^R(i)} e^R_{ij} f^k_{ji} \right) \quad (1)
\]

s.t. \[
\sum_{k \in K} \left(\sum_{j \in T^k(i)} e^S_{ij} d^k_{ij} + \sum_{j \in N^T(i)} e^T_{ij} f^k_{ij} + \sum_{j \in N^R(i)} e^R_{ij} f^k_{ji} \right) \leq E_i, \forall i \in I \quad (2)
\]

\[
\sum_{j \in T^k(i)} d^k_{ij} + \sum_{j \in N^R(i)} f^k_{ji} = \sum_{j \in N^T(i)} f^k_{ij}, \quad \forall k \in K, i \in I \quad (3)
\]
Minimize energy consumption

\[
\min E = \sum_{i \in I} \sum_{k \in K} \left(\sum_{j \in T^k(i)} e_i^S d_{ij}^k + \sum_{j \in N_T(i)} e_i^T f_{ij}^k + \sum_{j \in N_R(i)} e_i^R f_{ji}^k \right)
\]

s.t. \[
\sum_{k \in K} \left(\sum_{j \in T^k(i)} e_i^S d_{ij}^k + \sum_{j \in N_T(i)} e_i^T f_{ij}^k + \sum_{j \in N_R(i)} e_i^R f_{ji}^k \right) \leq E_i , \forall i \in I
\]

\[
\sum_{j \in T^k(i)} d_{ij}^k + \sum_{j \in N_R(i)} f_{ji}^k = \sum_{j \in N_T(i)} f_{ij}^k , \quad \forall k \in K, i \in I
\]

\[
\sum_{i \in S^k(j)} d_{ij}^k = \Delta^k , \quad \forall k \in K, j \in J
\]
Minimize energy consumption

\[
\begin{align*}
\text{min } E &= \sum_{i \in I} \sum_{k \in K} \left(\sum_{j \in T_k(i)} e_i^S d_{ij}^k + \sum_{j \in N^T(i)} e_i^T f_{ij}^k + \sum_{j \in N^R(i)} e_i^R f_{ji}^k \right) \\
\text{s.t. } &\sum_{k \in K} \left(\sum_{j \in T_k(i)} e_i^S d_{ij}^k + \sum_{j \in N^T(i)} e_i^T f_{ij}^k + \sum_{j \in N^R(i)} e_i^R f_{ji}^k \right) \leq E_i, \forall i \in I \\
\sum_{j \in T_k(i)} d_{ij}^k + \sum_{j \in N^R(i)} f_{ji}^k &= \sum_{j \in N^T(i)} f_{ij}^k, \quad \forall k \in K, i \in I \\
\sum_{i \in S_k(j)} d_{ij}^k &= \Delta^k, \quad \forall k \in K, j \in J \\
d_{ij}^k &\geq 0, \quad \forall k \in K, i \in I, j \in T_k(i) \\
f_{ij}^k &\geq 0, \quad \forall k \in K, i \in I, j \in N^T(i)
\end{align*}
\]
Maximize lifetime

\[
\max L = \sum_{k \in K} \Delta^k y^k + \sum_{k \in K} \delta^k
\]

(7)
Maximize lifetime

\[
\max L = \sum_{k \in K} \Delta^k y^k + \sum_{k \in K} \delta^k
\]

\[
\text{s.t. } \sum_{k \in K} \left(\sum_{j \in T^k(i)} e_i^S d_{ij}^k + \sum_{j \in N^T(i)} e_i^T f_{ij}^k + \sum_{j \in N^R(i)} e_i^R f_{ji}^k \right) \leq E_i, \forall i \in I
\]

\[
\sum_{j \in T^k(i)} d_{ij}^k + \sum_{j \in N^R(i)} f_{ji}^k = \sum_{j \in N^T(i)} f_{ij}^k, \quad \forall k \in K, i \in I
\]
Maximize lifetime

\[
\text{max } L = \sum_{k \in K} \Delta^k y^k + \sum_{k \in K} \delta^k \quad (7)
\]

\[
\text{s.t. } \sum_{k \in K} \left(\sum_{j \in T^k(i)} e^S_i d^k_{ij} + \sum_{j \in N^T(i)} e^T_i f^k_{ij} + \sum_{j \in N^R(i)} e^R_i f^k_{ji} \right) \leq E_i, \forall i \in I \quad (8)
\]

\[
\sum_{j \in T^k(i)} d^k_{ij} + \sum_{j \in N^R(i)} f^k_{ji} = \sum_{j \in N^T(i)} f^k_{ij}, \quad \forall k \in K, i \in I \quad (9)
\]

\[
\sum_{i \in s^k(j)} d^k_{ij} = \Delta^k y^k + \delta^k, \quad \forall k \in K, j \in J \quad (10)
\]
Maximize lifetime

\[\text{max } L = \sum_{k \in K} \Delta^k y^k + \sum_{k \in K} \delta^k \] (7)

s.t. \[\sum_{k \in K} \left(\sum_{j \in T^k(i)} e_i^S d_{ij}^k + \sum_{j \in N^T(i)} e_i^T f_{ij}^k + \sum_{j \in N^R(i)} e_i^R f_{ij}^k \right) \leq E_i, \forall i \in I \] (8)

\[\sum_{j \in T^k(i)} d_{ij}^k + \sum_{j \in N^R(i)} f_{ji}^k = \sum_{j \in N^T(i)} f_{ij}^k, \forall k \in K, i \in I \] (9)

\[\sum_{i \in S^k(j)} d_{ij}^k = \Delta^k y^k + \delta^k, \forall k \in K, j \in J \] (10)

\[\delta^k \leq \Delta^k \left(y^{k-1} - y^k \right), \forall k \in K \ (y^0 = 1) \] (11)

\[y^{k-1} \geq y^k, \forall k \in K \ \setminus \ \{1\} \] (12)
Maximize lifetime

\[
\max L = \sum_{k \in K} \Delta^k y^k + \sum_{k \in K} \delta^k
\]

\[
\text{s.t. } \sum_{k \in K} \left(\sum_{j \in T^k(i)} e_i^S d^k_{ij} + \sum_{j \in N^T(i)} e_i^T f^k_{ij} + \sum_{j \in N^R(i)} e_i^R f^k_{ji} \right) \leq E_i, \forall i \in I
\]

\[
\sum_{j \in T^k(i)} d^k_{ij} + \sum_{j \in N^R(i)} f^k_{ji} = \sum_{j \in N^T(i)} f^k_{ij}, \quad \forall k \in K, i \in I
\]

\[
\sum_{i \in S^k(j)} d^k_{ij} = \Delta^k y^k + \delta^k, \quad \forall k \in K, j \in J
\]

\[
\delta^k \leq \Delta^k (y^{k-1} - y^k), \quad \forall k \in K (y^0 = 1)
\]

\[
y^{k-1} \geq y^k, \quad \forall k \in K \setminus \{1\}
\]

\[
y^k \in \{0, 1\}, \quad \delta^k \geq 0, \quad \forall k \in K
\]

\[
d^k_{ij} \geq 0, \quad \forall k \in K, i \in I, j \in T^k(i)
\]

\[
f^k_{ij} \geq 0, \quad \forall k \in K, i \in I, j \in N^T(i)
\]
Result of LP

Result of LPs

- Durations: \(D^k = \begin{pmatrix} d_{1,1}^k & d_{1,2}^k & \cdots & d_{1,n}^k \\ d_{2,1}^k & d_{2,2}^k & \cdots & d_{2,n}^k \\ \vdots & \vdots & \ddots & \vdots \\ d_{m,1}^k & d_{m,2}^k & \cdots & d_{m,n}^k \end{pmatrix} \)

- Data flows: \(F^k = \begin{pmatrix} f_{1,1}^k & f_{1,2}^k & \cdots & f_{1,m}^k \\ f_{2,1}^k & f_{2,2}^k & \cdots & f_{2,m}^k \\ \vdots & \vdots & \ddots & \vdots \\ f_{m,1}^k & f_{m,2}^k & \cdots & f_{m,m}^k \end{pmatrix} \)
Bipartite graph and matching problems

- Each matrix D^k can be expressed as a bipartite graph [LCL+09], connecting sensors to targets, where each $d_{i,j}^k$ corresponds to an edge.

- Solve successive perfect matching problems to decompose D^k as a sum of cover matrices [LCL+09].

\[
D^k = c_1 \begin{pmatrix} 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & \cdots & 0 \end{pmatrix} + c_2 \begin{pmatrix} 0 & 1 & \cdots & 0 \\ 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} + \cdots + c_N \begin{pmatrix} 0 & 0 & \cdots & 1 \\ 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 1 & \cdots & 0 \end{pmatrix}.
\]
Routing

Iterative flow filling

- Successively fill the edges as the data comes.
- When an edge is saturated, use others.
Remarks

Advantages
- *Linear* models (continuous for energy minimization).
- Easily extensible to adjustable sensing ranges, flow limitations, Q-coverage \([LCL^{+}11]\)...

Drawbacks
- Many variables.
- A sensor *i* watching several targets consumes several times \(e_i^S\) units of energy (not suitable in some situations).
1 Introduction

2 Discretization

3 Scheduling and routing

4 Examples

5 Conclusion
Example (min energy)

- $m = 3$ sensors.
- $n = 2$ targets moving during 10 units of time.
- $E_i = 40$, $\forall i \in I$
- $e_i^S = e_i^T = e_i^R = 1$, $\forall i \in I$
- Optimal objective value: 70.5542 units of energy
Example (min energy)

\[t_1 \quad s_1 \quad t_2 \quad s_2 \quad t_3 \quad s_3 \]
Example (max lifetime)

- \(m = 3 \) sensors.
- \(n = 2 \) targets moving during 10 units of time.
- \(E_i = 32 \), \(\forall i \in I \)
- \(e_i^S = e_i^T = e_i^R = 1 \), \(\forall i \in I \)
- Optimal objective value : 8 units of time
Example (max lifetime)

\[t_1 \quad s_1 \]

\[t_2 \quad s_2 \]

\[t_3 \quad s_3 \]
Example (max lifetime)
Example (max lifetime)
Example (max lifetime)
Example (max lifetime)
1 Introduction

2 Discretization

3 Scheduling and routing

4 Examples

5 Conclusion
Conclusion

- Exact optimal solution for basic multi-target tracking.
- Linear models proposed.
- Two objectives handled:
 - Minimize energy consumption.
 - Maximize network lifetime.
- Base problem for multiple variants.

Further research

- Coping with large problems (exponential number of variables).
- Handle uncertainty (speed or trajectory not known).
- Evaluation of performance of target tracking protocols in WSN.
