Solution Representations and Local Search for the bi-objective Inventory Routing Problem

Thibaut Barthelemy1 Martin J. Geiger2 Marc Sevaux3

\texttt{barthelt@hsu-hh.de}
\texttt{m.j.geiger@hsu-hh.de}
\texttt{marc.sevaux@univ-ubs.fr}

1University of Nantes
2Helmut Schmidt University
3University of South-Brittany

\textit{ORO Master}
\textit{Logistic Management Dept.}
\textit{Lab-STICC, CNRS}

\textit{Nantes, France}
\textit{Hamburg, Germany}
\textit{Lorient, France}

EU/ME 2012 – Copenhagen
May 10–11, 2012
The Inventory Routing Problem (IRP)

- One depot
- A set of customers

Barthelemy, Geiger, Sevaux
The Inventory Routing Problem (IRP)

- One depot
- A set of customers
- A time horizon
The Inventory Routing Problem (IRP)

- One depot
- A set of customers
- A time horizon
- A known demand for each customer and each date
The Inventory Routing Problem (IRP)

- One depot
- A set of customers
- A time horizon
- A known demand for each customer and each date
- Minimize **Inventory** cost
The Inventory Routing Problem (IRP)

- One depot
- A set of customers
- A time horizon
- A known demand for each customer and each date
- Minimize *Inventory* cost
- Minimize *Routing* cost, time, distance, CO_2 emissions, ...
The Inventory Routing Problem (IRP)

- One depot
- A set of customers
- A time horizon
- A known demand for each customer and each date
- Minimize **Inventory** cost
- Minimize **Routing** cost, time, distance, CO₂ emissions, ...

IRP is a **real bi-objective** optimization problem
Important decisions

For solving the IRP, we must make the following decisions:

Decisions

1. When deliver customers?
2. How much deliver?
3. With which routes?

All these decisions are linked together:

- increase delivery quantities \rightarrow change routes or periods
- change periods \rightarrow adapt delivery quantities
- ...
Important references

First papers

[Bell et al., 1983]
Improving the distribution of industrial gases with and on-line computerized routing and scheduling optimizer

[Federgruen and Zipkin, 1984]
A combined vehicle routing and inventory allocation problem

Recent surveys

[Bertazzi et al., 2008]
Inventory routing

[Cordeau et al., 2011]
Short-haul routing
Some guidelines/targets of our work

- Main goal: helping companies where IRP is important
- Propose a simple output
- Use simple rules (that can be understood)
- Use simple implementation that can be reproduced
- Give different alternatives

We want to help the decision maker
A major assumption in our work

To follow a common strategy in companies dealing with IRP, we have separated the decisions

1. Determine quantities for each period
2. Compute best routing for each period
Simplifications

On visiting dates

- Visits are periodic.
- Each customer i has a delivery period p_i.
- The periodic sequence starts at s_i.

One delivery before the starting date is made if required to cover first demands of some customers.

Purpose

Reduction of the number of searched variables.
Simplifications

On delivered amounts
Any customer is replenished just enough to satisfy its consumptions until next visit.

Purpose
Served quantities are not part of the searched variable set.

Standard replenishment rules
- **DD** Day-to-day delivery policy
 - If not enough in stock, deliver the missing demand
- **OU** Order-up-to level policy
 - When you ship, ship the maximum (customer capacity)
- **ML** Maximum level policy (misleading)
 - Any quantity less than the maximum level
Evaluation of solutions

Each solution is measured with two criteria

Inventory cost
Sum of all inventory levels at customers’ at the end of each date. This can be computed in $\mathcal{O}(nH)$

Routing cost
Sum of all distances run by the trucks at every date: VRP solutions.
As it is a \mathcal{NP}-hard problem, we use:
- Clarke & Wright heuristic in $\mathcal{O}(n'^2 \log n)$,
- Two-optimization in $\mathcal{O}(n'^2)$ on average.
We have implemented several initial solutions
We have implemented several initial solutions

- **Identical period**: p_i is the same for each customer
Initial solutions

We have implemented several initial solutions

- **Identical period**: p_i is the same for each customer
- ** Totally random**: p_i is chosen at random for each customer
We have implemented several initial solutions

- **Identical period:** p_i is the same for each customer
- ** Totally random:** p_i is chosen at random for each customer
- **Controlled random:** p_i is chosen at random between two bounds
Initial solutions

Initial solution set of a real instance
<table>
<thead>
<tr>
<th></th>
<th>(s_i - 1)</th>
<th>(s_i + 1)</th>
<th>(p_i - 1)</th>
<th>(p_i + 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>((7, 4, 1, 6, 5))</td>
<td>((9, 4, 1, 6, 5)) & ((8, 5, 1, 6, 5)) & ((8, 4, 2, 6, 5))</td>
<td>((8, 4, 1, 6, 5)) & ((8, 4, 1, 6, 5)) & ((8, 4, 1, 6, 5))</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>((3, 2, 2, 2, 3))</td>
<td>((3, 2, 2, 2, 3)) & ((3, 2, 2, 2, 3)) & ((3, 2, 2, 2, 3))</td>
<td>((3, 2, 1, 2, 3)) & ((3, 2, 1, 2, 3)) & ((3, 2, 1, 2, 3))</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>((8, 4, 1, 6, 5))</td>
<td>((8, 4, 1, 6, 5)) & ((8, 4, 1, 6, 5)) & ((8, 4, 1, 6, 5))</td>
<td>((8, 4, 1, 6, 5)) & ((8, 4, 1, 6, 5)) & ((8, 4, 1, 6, 5))</td>
<td></td>
</tr>
</tbody>
</table>

\(s = (8, 4, 1, 6, 5) \)
\(p = (3, 2, 2, 2, 3) \)
General algorithm

Algorithm 1: Improvement

Initialization: create an initial population
 → Identical period + controlled random

Cleanup: remove dominated solutions

repeat
 Select R solutions
 Generate $4n$ neighbors for each solution
 → add ± 1 to each starting date and each period
 Rebuild archive with non-dominated solutions only
until no more improvements

- At each iteration, $4nR$ neighbors are evaluated.
- So it iterations imply $ev = it4nR$ evaluations.
- Data of 1 customer is modified in each neighbor.
- So $\frac{ev}{4n^2R}$ modifications per customer are done on average.
Selection strategies

Output for an instance with 50 customers (2485 alternatives)
Selection strategies
Selection strategy 1 - by reference points

Thousands of non-dominated solutions. How to handle them?

First solution: the **reference set** strategy
Selection strategy 1 - by reference points

- Thousands of non dominated solutions. How to handle them?

First solution: the **reference set** strategy
(here with \(R=7 \) reference points)
Selection strategy 1 - by reference points

- Thousands of non dominated solutions. How to handle them?

First solution: the **reference set** strategy (here with \(R=7 \) reference points)
Selection strategy 2 - by crowding distances

Random selection

- Inspired from NSGA-II
- Likelihood depends on crowding distances
A new set of instances

Derived from VRP instances of Nicos Christofides et al.\(^1\)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Possible values</th>
</tr>
</thead>
<tbody>
<tr>
<td># customers, (n)</td>
<td>{50, 75, 100, 150, 199}</td>
</tr>
<tr>
<td>Horizon, (H)</td>
<td>{30}</td>
</tr>
<tr>
<td>Truck capacity, (\hat{Q})</td>
<td>{480, 500, 600}</td>
</tr>
<tr>
<td>Average demand</td>
<td>{Constant, Increasing, Sinus}</td>
</tr>
</tbody>
</table>

This forms a new set of 45 instances available at http://logistik.hsu-hh.de/IRP

\(^1\) *The vehicle routing problem* in Combinatorial Optimization, John Wiley and Sons, 1979
Period only / Starting date + Period

Pareto front obtained for GS-05-30a
Period only / Starting date + Period

Hyper-volume evolution obtained for GS-05-30a
Changing the number of reference points

Even if we change R, the method is still robust

![Graph showing inventory-routing alternatives for different reference point values.](graph.png)
Solution selection rule

Pareto front obtained for GS-01-30b
Solution selection rule

Hyper-volume evolution obtained for GS-02-30a
Removal of identical solutions

Pareto front obtained for GS-01-30c
Removal of identical solutions

Hyper-volume evolution obtained for GS-01-30c
Progression of our algorithm

n=50, sinusoidal consumptions
Progression of our algorithm

\[n=100, \text{ linear increasing consumptions} \]
Progression of our algorithm

n=200, constant consumptions
Progression of our algorithm

Comparison of progression rates for different instances
Archetti’s instances

Provided by Claudia Archetti et al.2

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Possible values</th>
</tr>
</thead>
<tbody>
<tr>
<td># customers, n</td>
<td>${5, 10, \ldots, 45, 50}$</td>
</tr>
<tr>
<td>Horizon, H</td>
<td>${3, 6}$</td>
</tr>
<tr>
<td>Demand</td>
<td>${\text{Constant}}$</td>
</tr>
</tbody>
</table>

At provider: Inventory cost & Production rate.

2A branch-and-cut algorithm for a vendor-managed inventory-routing problem in Transportation Science vol 41, 2007
Progression of our algorithm
Separation of costs

Pareto front we obtain vs. position of the optimum of Archetti
Performances

<table>
<thead>
<tr>
<th>size</th>
<th>type</th>
<th>ML/OU (%)</th>
<th>GSB/OU (%)</th>
<th>OU (s)</th>
<th>GSB (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>low-C H3</td>
<td>-13.23</td>
<td>-4.47</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>low-C H3</td>
<td>-15.94</td>
<td>-8.39</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>low-C H3</td>
<td>-13.68</td>
<td>-3.48</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>high-C H6</td>
<td>-12.53</td>
<td>-10.81</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>high-C H6</td>
<td>-10.66</td>
<td>-6.15</td>
<td>530</td>
<td>2</td>
</tr>
<tr>
<td>30</td>
<td>high-C H6</td>
<td>-9.03</td>
<td>-7.18</td>
<td>4100</td>
<td>20</td>
</tr>
</tbody>
</table>

ML/OU gain arising from the ML replenishment rule with regard to the OU rule, for optimal results.

GSB/OU gain arising from our heuristic with regard to exact results for the OU replenishment rule.
Conclusion

What we learnt

- Movable starting dates improve only solutions with high inventory costs.
- Random selection provides more homogeneous fronts but worse solutions than reference point selection.
- Solutions with identical objective values must be removed, without view of decision variables.
- Relevant stopping criteria: ratio modifications / customer.
- For large instances, we are not so far from optimum and we are considerably faster.

In progress

- Customer clustering (acts like a pre-solving)
- Ideal representation for crossover: solving by NSGA-II
Our web pages

Project page
http://logistik.hsu-hh.de/IRP
OR-group of Lab-STICC
http://www.univ-ubs.fr/or/

Contact
m.j.geiger@hsu-hh.de
marc.sevaux@univ-ubs.fr