A Mathematical Formulation for a School Bus Routing Problem

Patrick Schittekat Marc Sevaux Kenneth Sørensen

ORTEC / University of Antwerp, Belgium
patrick.schittekat@ortec.be

University of Antwerp, Belgium
kenneth.sorensen@ua.ac.be

University of South-Brittany, Lorient, France
marc.sevaux@univ-ubs.fr

International Conference on Service Systems and Service Management
Troyes, France – October 25-27, 2006
Motivations

Request of the Flemish region (Belgium)
- Being transported to school is a right
- Public transportation is organised by the Flemish transportation society
- Routes of buses are annually revised

Interesting features
- Students can walk to a nearby bus stop
- Potential bus stop locations are known

⇒ School Bus Routing problem
The School Bus Routing problem

- a school
The School Bus Routing problem

- a school
- a set of students
The School Bus Routing problem

- a school
- a set of students
- a set of potential bus stops
The School Bus Routing problem

- a school
- a set of students
- a set of potential bus stops
- a maximum walking distance (students → stops)
A possible solution
A possible solution

- students are assigned to bus stops
A possible solution

- students are assigned to bus stops
- two potential bus stops are not visited
A possible solution

- students are assigned to bus stops
- two potential bus stops are not visited
- two bus tours are created
A Mathematical Formulation for a School Bus Routing Problem

Schittekat et al.

Introduction

State of the art

Aims

Mathematical formulation

First results

Conclusion

Literature

L. Bodin and L. Berman.
Routing and scheduling of school buses by computer.
Transportation Science, 13:113-129, 1979

L. Bodin and B. Golden and A. Assad and M. Ball.
Routing and scheduling of vehicles and crews. The state of the art.

Scheduling school buses.
Management Science, 30(7):844-853, 1984

A. Corberán, E. Fernández, M. Laguna and R. Martí
Heuristic Solutions to the Problem of Routing School Buses with Multiple Objectives.

M. Spada, M. Bierlaire and Th.M. Liebling.
Decision-Aiding Methodology for the School Bus Routing and Scheduling Problem.
Subproblems

- **Covering Tour Problem**
 - M. Gendreau, G. Laporte and F. Semet.
 - The Covering Tour Problem.

- **Traveling Purshaser Problem**
 - A Branch-and-cut Algorithm for the Undirected Traveling Purchaser Problem.

- **Vehicle Routing Problem**
 - P. Toth and D. Vigo (Eds.)
 - The Vehicle Routing Problem.
Aims of the study

Company related requests
- help the Flemish region in this decision problem
- reducing their costs / keep a high service level

Research related aims
- solve this two-level problem at once
- implement dedicated heuristics and metaheuristics
- take advantages from *similar* problems
 (Location Routing problem - PhD Prodhon Oct. 2006)

Aim of this presentation
- solve small instances to optimality
- provide bounds for large problems
A Mathematical Formulation for SBR

Notations:
- \(c_{ij} \): Cost of traversing arc \((i, j)\)
- \(K \): Number of buses
- \(C \): Capacity of the buses
- \(V \): Set of all potential stops (0 is the depot)
- \(E \): Set of all arcs between stops
- \(S \): Set of all students
- \(s_{li} \): Binary indicator that tells whether student \(l\) can walk to stop \(i\) or not

Variables:
- \(x_{ijk} \): Number of times vehicle \(k\) traverses arc from \(i\) to \(j\)
- \(y_{ik} \): 1 if vehicle \(k\) visits stop \(i\), 0 otherwise
- \(z_{ilk} \): 1 if student \(l\) is picked up by vehicle \(k\) at stop \(i\), 0 otherwise
Constraints

All vehicles start at the depot

\[
\sum_{k=1}^{K} y_{0k} \leq K, \quad k = 1, \ldots, K \quad (2)
\]

If stop \(i \) is visited by vehicle \(k \), then one arc should be traversed by \(k \) entering and leaving \(i \)

\[
\sum_{j \in V} x_{ijk} = \sum_{j \in V} x_{jik} = y_{ik}, \quad \forall i \in V, k = 1, \ldots, K \quad (3)
\]

All stops are not visited more than once

\[
\sum_{k=1}^{K} y_{ik} \leq 1, \quad \forall i \in V \setminus \{0\} \quad (4)
\]
A Mathematical Formulation for a School Bus Routing Problem

Schittekat et al.

Introduction

State of the art

Aims

Mathematical formulation

First results

Conclusion

Constraints

All students walk to an allowed single stop

$$\sum_{k=1}^{K} z_{ilk} \leq s_{li}, \quad \forall l \in S, \forall i \in V$$ \hspace{1cm} (5)

Capacity of buses is not exceeded

$$\sum_{i \in V} \sum_{l \in S} z_{ilk} \leq C, \quad \forall k = 1, \ldots, K$$ \hspace{1cm} (6)

A student is picked up if a vehicle visits this stop

$$z_{ilk} \leq y_{ik}, \quad \forall i, l, k$$ \hspace{1cm} (7)

All students are picked up once

$$\sum_{i \in V} \sum_{k=1}^{K} z_{ilk} = 1, \quad \forall l \in S$$ \hspace{1cm} (8)
Constraints and Objective

Subtour elimination constraints

\[\sum_{i \in S} \sum_{j \notin S} x_{ijk} \geq y_{hk}, \quad \forall S \subseteq V \setminus \{0\}, \ h \in S, k = 1, \ldots, K (9) \]

Objective

\[\min \sum_{i \in V} \sum_{j \in V} c_{ij} \sum_{k=1}^{K} x_{ijk} \quad (1) \]

Other possible objectives are:

- min total walking distance of students
- min combination of walking distance and route length
- min [max] trip duration for students
- \ldots
Practical solving method

Implementation with XPress-MP © Dash Associates
(Mosel modeling language)

Algorithm:
1. Implement formulation without constraints (9)
2. Solve the formulation
3. Detect violated constraints
 if no violated constraints GOTO 6
4. Add specific capacity cut constraints
5. GOTO 2
6. END: the solution is optimal

Example with 50 students, 10 potential bus stops
provided by a real-life style instance generator
Example
Example
Example
A Mathematical Formulation for a School Bus Routing Problem

Schittekat et al.

Introduction

State of the art

Aims

Mathematical formulation

First results

Conclusion

Example
Example
Advantages and drawbacks

At each iteration

- Detecting non-valid subtours can be done efficiently
- Several cuts can be added simultaneously (symmetry, vehicle ID ignorance, . . .)
- The cost of a subformulation is a valid lower bound

But

- The subproblem is still a 0-1 ILP formulation
- Optimal solutions are not always obtained → no lower bounds
- Search can be stopped before optimality
- Cuts can be added anyway
- Optimal solutions can still be found
Conclusion and Future Work

Concluding remarks

- Efficient for small size instances
- Sub-formulation still difficult
- Linear relaxation need to be solved differently
- Lower bounds not always efficient

Future work

- New formulation with two-index variables
- Different types of cuts
- Improved lower bounds
A Mathematical Formulation for a School Bus Routing Problem

Patrick Schittekat Marc Sevaux Kenneth Sörensen

ORTEC / University of Antwerp, Belgium
patrick.schittekat@ortec.be

University of Antwerp, Belgium
kenneth.sorensen@ua.ac.be

University of South-Brittany, Lorient, France
marc.sevaux@univ-ubs.fr

International Conference on Service Systems and Service Management
Troyes, France – October 25-27, 2006