
Use of Complete Analog Stream on Microcontroller

Targeted competences: Use of Digital to Analog converter, of Analog to Digital
Converter and use of timer for sampling rate.

Hardware: STM32F7 Nucleo board

Framework: Keil µvision and CubeMX from STMircoelectronics

The aim of this document is to show how to use the DAC and ADC components in
order to realize a complete analog acquisition stream. The Figure 1 presents the stream
that we want to obtain. This is a classical way to get an analog input and to provide an
analog output. Of course, in this document, we do not present all the ways whose the ADC
and DAC components can be used but this is a first approach in order to be able to use this
kind of component.

Figure 1: Acquisition Stream

To be able to get an analog input we can use an ADC; this ADC needs to have a
sampling frequency in order to transform the continuous value (analog) into a discrete
digital one. So, to obtain this sampling frequency we need to add a timer into this scheme.
Furthermore, we need to provide the output signal regularly so this frequency will be also
used for the output value. It is possible to use one timer for each component (ADC and
DAC) but in several cases the output value will be provide at the same speed than the
input one will be sampled even if a mathematical treatment will be realized between the
two.

Figure 2: Global Scheme

Analog
Signal

Analog
Input

µcontroller

Digital
value

A
D
C

Digital
value

D
A
C

Analog
Output

A
D
C

D
A
C

Timer

Analog
Signal

µcontroller

Algorithm

1. Microcontroller configuration

The first step is to configure the microcontroller. In our case, we use the NUCLEO-
F767ZI platform based on a STM32F7 architecture. In order to configure this board we
will use the CubeMx software. After the right board was chosen on CubeMx, you can obtain
this:

Figure 3: CubeMx configuration for ADC and DAC

Here, I have already chosen the ADC and DAC component that I would like to use.
I decided that the output of the DAC will be the output of DAC1 so I configure the Pin PA4
as DAC_OUT1 by doing a left click on the Pin PA4. I have also configure the Pin PA3 as the
input for the ADC1 by doing a left click on the Pin PA3 (ADC1_IN3).
The next step is to configure one timer to generate the sampling frequency. In this
example, I chose to use the Timer Tim2 and I realized the configuration shown below
(Figure 4).

You can see that I use the timer in its simplest mode because I would like only that
this timer generate an interruption at the frequency Fe. So, we have only to choose the
clock source for the timer; here we chose the internal clock.

Output will be
DAC1 output

Input will be
ADC1_IN3

Figure 4: CubeMx configuration for Timer

Now we have to configure the clock for the whole board; to do this click on clock
configuration item. With this configuration panel, we can choose the frequency of
different µcontroller components as CPU frequency, AHB, APB1 buses and so on. I decide
to use the maximum frequency of the SYSCLK that is 216MHz. In this case, the frequency
of the APB1 and APB2 timer clocks are respectively 108MHz and 216MHz (see Figure 5).
These frequencies will be very important in the next step when we will have to configure
the sampling frequency.

Now we are going to configure the timer so that generates the sampling frequency.
First click and configuration panel then on TIM2 now, we are going to determine the
values for the prescaler and the counter period. The prescaler value divides the clock
timer frequency in order to obtain a small one; it is useful if you want to have a small
sampling frequency. Indeed, as the frequency in our case is 216 MHz and as the maximum
count value is 4294967295 (32 bits timer) the minimum of the frequency scaling can be
0.05Hz. The prescaler parameter has more importance when you use a 16 bits timer.

Clock source
choice

Figure 5: Clock configuration for the board

For this example, I would like a sampling frequency of 2.1Hz so I chose the

following values: prescaler value 30000 (in this case, the clock frequency of the timer will
be 7.2 KHz instead of 216 MHz), the counter period value 3323 (3323 ticks at 7.2 KHz
represents a sampling period of 0.46s).

Figure 6: Timer configuration

The last thing to do here is to enable the interruption for the timer. To do this, click
on the NVIC Settings panel and enables the TIM2 global interruption by checking Enabled.
Then click on Ok.

Configuration
panel

Clock
configuration
item

NVIC Settings

Now, we are going to configure the ADC component for that click on ADC1 panel;
the figure below appears.

Figure 7: ADC configuration

Here we are going to use the ADC in its simplest mode so we choose the
configuration presented in figure 7 (for more details see the ADC document that I wrote).

The last component to configure is the DAC. For that, we click on the DAC
configuration panel and we choose the settings presented in the Figure below.

Figure 8: DAC configuration panel

Now, we configured all the necessary components to realize the application. As,
most of them used interruption capability we have to define the priority of these
interruptions in order to obtain the desired behavior.

To do this, choose the NVIC configuration panel and change the preemption
priority so that the TIMER 2 had the higher priority level (more the priority is high most
the number is near 0).

Figure 9: NVIC configuration panel

After this last step, all the configurations for this application have been realized so
we can generate the code for our application. To do this, click on the code generation icon
as shown in Figure 10. Then give the name for your project and the path for its location
finally choose the toolchain/ide; in this example, I chose to use the MDK-ARM
environment.

Figure 10: Project configuration panel

After clicking on ok, CubeMx generates the application code and create the MDK-ARM
project as shown in the figure below.

Figure 11: MDK-ARM code generation

At the code level, few things are to do indeed, we only want that the sample
provided from the ADC to be transferred to the DAC at each sampling period. Therefore,
the first thing to do is to start the timer in interruption mode. In the main.c file it is the
only thing to write.

The second step is to write the code for the interrupt functions. When the timer
interrupt occurs, we have to start the ADC conversion and in function of the etat value (0
or 1) either we transfer the ADC value to the DAC output or we transfer a ‘0’ value to the
DAC output. This is just an example; the behavior can be another one.

The code to realize this behavior is shown in figure 12 and 13.

Start the
timer

Figure 12: Interruption variable statement

Figure 13: interruption code function

At the end we have to compile the code in order to obtain the executable file for
the STM32F7. When the compilation is done without error, we can transfer the code into
the board. A demo video can be found here: https://youtu.be/_u9r6jeGoiE

Here I define the variable to store the ADC
value conversion and the state variable etat.
Be careful: write your own code between the
two beacons “USER CODE BEGIN” and “USER
CODE END” otherwise your code will be
deleted if you regenerate a configuration from
CubeMx

Allow to get back the ADC conversion value

In function of the etat value
the DAC output provides the
ADC value or ‘0’. The state of
etat changes at each
sampling period

https://youtu.be/_u9r6jeGoiE

