
Use of ADC with DMA on Microcontroller

Targeted competences: Use of ADC in standard mode with DMA.

Hardware: STM32F7 Nucleo board

Framework: STM32CubeIDE 1.19

The aim of this example is to study how use an ADC in standard with the DMA. In a first time,

we use a sampling period in order to just convert an analog value comes from a GPIO configured in

analog mode. In order to transfer the converted value into a variable, we use the DMA (Direct Memory

Access) instead of using the ADC_Get_Value function of the HAL driver.

Instead of realizing a pooling on the ADC to know if it is busy or not, we will use a timer to

generate a sampling period. At each sampling period, we will convert the analog input and store the

value into a variable.

The first step is to use the CubeMx program in order to configure the micro controller. Here

we use the NUCLEO STM32F767ZI board. We choose to use the PA3 pin in ADC1_IN3 (See Figure 1)

that means that the pin PA3 is linked to the input channel 3 of the ADC1.

FIGURE 1: CONFIGURATION OF THE GPIO PIN

Then the second step is to select a timer in order to realize the sampling period. I chose to use

the timer 1 and I configure it as shown in Figure 2 (just select the clock source).

FIGURE 2: TIMER CONFIGURATION ON CUBEMX

Now, we have to configure the clock tree for the board, in this example I chose to use the

maximum frequency of the CPU (216MHz); the configuration can be found in Figure 3.

FIGURE 3: CONFIGURATION OF THE CLOCK TREE OF THE BOARD

The last step of the configuration is to configure the timer 1; to do that click on the timer1

panel. Now we want to scan the input pin every 10 millisecond so, we have to configure the right value

in the Prescaler and in the Counter Period. The base time of the timer is compute with the frequency

of the bus timer and the value of the prescaler. The timer 1 is connected to the APB2 bus so here the

frequency of the bus is 216Mhz. So the counter period will be calculated by the following equation:

 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑝𝑒𝑟𝑖𝑜𝑑 =
1

𝐹𝑡𝑖𝑚𝑒𝑟
𝑃𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑟_𝑣𝑎𝑙𝑢𝑒

∗ 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 𝑝𝑒𝑟𝑖𝑜𝑑

As Ftimer is equal to 216Mhz and as the prescaler value is chosen to be equal to 216 then the

counter period will be equal to (10000-1) in order to obtain a sampling period of 10 milliseconds. The

configuration of the timer is shown in Figure 4.

FIGURE 4: TIMER CONFIGURATION IN CUBEMX

Now we are going to configure the timer in order to obtain an interruption when the timer

reaches a period of 10 milliseconds. To do that we have only to enable the TIM1 update interrupt as

shown in Figure 5.

FIGURE 5: TIMER INTERRUPT CONFIGURATION

The next step is to configure the ADC. To do that, click on the ADC1 in the system view of

CubeMX .

FIGURE 6: ADC CONFIGURATION PANEL

Here we use the ADC in independent mode (other modes more complex are possible see the

datasheet of the component). Also, we must choose the resolution of the ADC. Indeed, the ADC can

use 12, 10, 8 or 6 bits for the resolution. More the resolution is high and more the precision of the

conversion is high but the necessary time to realize the conversion increases. For this example, I use

12 bits for the resolution. We must choose the data alignment for the converted value since the

maximum resolution is 12 bits and the data register is 16 bits wide. I choose the right alignment so the

value of the conversion uses the 12 LSB. As in this example, I do not want to scan more than one input

I disabled the scan mode and the continuous conversion mode; the conversion will be done only if the

timer interruption is generated. The ADC will generate an interruption as soon as the conversion will

be ended so in the End of Conversion Selection, the EOC flag is selected. Now we have to enable the

interruption of the ADC; to do that click on the NVIC Settings and enables the interruption. The

interrupt level can be the same as that of the timer, but in practice it is preferable for the timer to have

higher priority, since it is the timer that generates the sampling frequency.

As in this example, we want to use the DMA to store the converted value in memory without

using the ADC driver function (Get_ADC_Value), so we need to configure the DMA. We therefore need

to add a DMA channel to connect the ADC to the memory. To do this, simply go to the DMA settings

tab. The use of the DMA will generate an interruption every ADC conversion as soon as the transfer

between the ADC and the memory will be finish.

FIGURE 7: DMA CONFIGURATION FOR THE ADC

Now we have three interruptions in our code so we must change their priorities in order to have no

conflict between them. So we choose, in the system view, the NVIC.

FIGURE 8: NVIC PANEL

In the NVIC panel, we can see all the interruption of our system and in particular, the interruption of

the Timer 1, of the ADC and of the DMA. Here, we will configure the preemption priority of the TIM1

to level 0, to level 1 for the ADC and to level 3 for the DMA. More the value is high and less is the

priority so in this case the timer will have an interruption more priority than the ADC or the DMA.

Now that all our devices are configured, we need to generate the project code. To do this,

simply click on the Device Configuration Tool Code Generation icon.

FIGURE 9: STM32CUBEIDE FRAMEWORK

The second part of the development is to program the start of the timer to generate a sampling

period in order to launch the ADC conversion to acquire the value of the analog sensor.

The first step is to start the timer 1 in order to obtain a sampling period of 10 milliseconds; this

step is realized by starting the timer 1 in interrupt mode as shown in Figure 10. All the Timer functions

API can be found in the HAL_tim.c file.

FIGURE 10: LAUNCHING OF THE TIMER

Now, the timer will generate an interruption every 10 milliseconds so we have to write the

code in order to start the ADC conversion. This function must be coded in the Timer_1 interruption

routine. I also define a global variable named ADC_Value (uint32_t in the main.c file) to store via the

DMA the converted value of the ADC.

FIGURE 11:CODE TO START THE ADC CONVERSION AND THE STORAGE OF THE CONVERTED VALUE VIA THE DMA

In the Callback function of the timer, I test first if it’s the Timer1 that has generated the

interruption. If the condition is true thus I start the ADC conversion and the storage of the converted

value via the DMA; I test whether the function is working properly, and if not, then we call the error

function. You may not code this error function because it is not necessary for the application. As soon

as the ADC conversion is finished, the ADC generates an interruption so in the Callback function of the

ADC, I compare the converted value to a threshold and if this value is higher than the threshold I switch

on the LD1 and switch off the LD2 or the reversal otherwise.

FIGURE 12: ADC CALLBACK FUNCTION WHERE THE CONVERTED VALUE IS COMPARED WITH A THRESHOLD

It should be noted that the ADC conversion must be stopped in the callback function otherwise

you will be a problem since the ADC is not configurated in continuous mode.

