Use of ADC with DMA on Microcontroller

Targeted competences: Use of ADC in standard mode with DMA.
Hardware: STM32F7 Nucleo board
Framework: STM32CubelDE 1.19

The aim of this example is to study how use an ADC in standard with the DMA. In a first time,
we use a sampling period in order to just convert an analog value comes from a GPIO configured in
analog mode. In order to transfer the converted value into a variable, we use the DMA (Direct Memory
Access) instead of using the ADC_Get_Value function of the HAL driver.

Instead of realizing a pooling on the ADC to know if it is busy or not, we will use a timer to
generate a sampling period. At each sampling period, we will convert the analog input and store the
value into a variable.

The first step is to use the CubeMx program in order to configure the micro controller. Here
we use the NUCLEO STM32F767Zl board. We choose to use the PA3 pin in ADC1_IN3 (See Figure 1)
that means that the pin PA3 is linked to the input channel 3 of the ADC1.

FIGURE 1: CONFIGURATION OF THE GPIO PIN

Then the second step is to select a timer in order to realize the sampling period. | chose to use
the timer 1 and | configure it as shown in Figure 2 (just select the clock source).

Pinout & Configuration Clock Configuration Project Manager

~ Software Packs
|

3 = @ T Mods and Configuration

An
LT
ko

alog

DaC

RTC
VA

eload Registar - 16 bits ... 1
(CKD)

s (RCR - 16 bits value)
10 suto-reioad prsload
g1 “Trgger Ouput (TRGO) Parameters

IR o Q Unused GPIOs:

FIGURE 2: TIMER CONFIGURATION ON CUBEIMX

Now, we have to configure the clock tree for the board, in this example | chose to use the
maximum frequency of the CPU (216MHz); the configuration can be found in Figure 3.

Clock Configuration Project Manager

iy o[oo et et
¥l o[T8 Ji i
2 v —
- i
s T«] -
s N PP g
. N
- i L] fUQ \ N S
L L2 | »® ’—' > ;
o L
rusar | [« F . T
W F > ® / >
H H T —0
— > [nusARn Mriz)
: -
pusay L et " —»® Lse 5
B J 9 >0/
LB .
J
~ ® ® > >
| __
> > » g
2= R

FIGURE 3: CONFIGURATION OF THE CLOCK TREE OF THE BOARD

The last step of the configuration is to configure the timer 1; to do that click on the timerl
panel. Now we want to scan the input pin every 10 millisecond so, we have to configure the right value
in the Prescaler and in the Counter Period. The base time of the timer is compute with the frequency
of the bus timer and the value of the prescaler. The timer 1 is connected to the APB2 bus so here the
frequency of the bus is 216Mhz. So the counter period will be calculated by the following equation:

1

F timer
Prescaler_value

sampling period =

* Counter period

As Fimer is equal to 216Mhz and as the prescaler value is chosen to be equal to 216 then the

counter period will be equal to (10000-1) in order to obtain a sampling period of 10 milliseconds. The
configuration of the timer is shown in Figure 4.

Pinout & Configuration

Q_ @ TIM1 Mode and Configuration ‘

A
v NVIL
RCC Slave Mode ’Dlsable v ‘
SYS Trigger Source lDisabIe ¥ l
WWDG
Clock Source ‘lnternal Clock v]
Channel1 [Disable v]
finalog Y Channel2 [Disable v]
s Channel3 [Disable v]
ADC1 m
ADC2 Channel4 IDlsabIe v]
ADC3 Channels lDisabIe M. ‘
DAC ;
Channel6 [Disable v]
. Cofguaton |
Timers v
. Reset Configuration

© Parameter Settings

TIM3 v Counter Settings

T4 Prescaler (PSC - 16 bits value) 216

TIMS Counter Mode Up

ks Counter Period (AutoReload Register - 16 bits . 10000-1| ®
TiMs Internal Clock Division (CKD) No Division

TIM9 Repetition Counter (RCR - 16 bits value) 0

TIM10 auto-reload preload Disable

TIM11 v Trigger Output (TRGO) Parameters

TIM12 Master/Slave Mode (MSM bit) Disable (Trigger input effect not delayed)
TIM13 Trigger Event Selection TRGO Reset (UG bit from TIMx_EGR)

TiM14 Trigger Event Selection TRGO2 Reset (UG bit from TIMx_EGR)

FIGURE 4: TIMER CONFIGURATION IN CUBEMIX

Now we are going to configure the timer in order to obtain an interruption when the timer
reaches a period of 10 milliseconds. To do that we have only to enable the TIM1 update interrupt as
shown in Figure 5.

Pinout & Configuration \ Clock Configurd

TIM1 Mode and Configuration

m—“‘

Slave Mode |Disable ~]
Trigger Source ‘stable v ‘
WWDG
Clock Source [Internal Clock v]
Channel1 [Disable v]
Analog ¥ Channel2 [Disable v]
¢ Channel3 [Disable v]
ADC1
Frad; Channel4 Disable]
ADC3 Channel5 ‘DISBNS v ‘
DAC
Channel6 [Disable v]
Configuration
Timers R
" Reset Configuration
LPTIM1 " o s
WG iarop Tabe
T TIM1 break interrupt and TIM9 global interrupt
™3 TIM1 update interrupt and TIM10 global interrupt 0
™4 TIM1 trigger and commutation interrupts and TIM11 global interrupt O o 0
M5 TIM1 capture compare interrupt o o 0
MG
™7
M8
™Y
M10
™11
™12
™3
TM14

FIGURE 5: TIMER INTERRUPT CONFIGURATION

The next step is to configure the ADC. To do that, click on the ADC1 in the system view of
CubeMX .

Pinout & Configuration Clock Configuration
v Softwarg
Q| v|) ADC1 Mode and Configuration :
[RcaiEganes ~>: |
e
O INo

W IN2

IN3

WWDG

Analog e 0N
& [INs

ADC2 O IN6
ADC3 W INT

DAC

W N8
Ccmﬁguranun

Timers v

. Reset Configuration
LPTIM1 © Parameter Settings
» ?T? kgﬁgure the below parameters
TIM2 Qs (i]
TIM3 ~ ADCs_Common_Settings
TiM4 Mode Independent mode
mg ADC_Settings
M7 Clock Prescaler PCLK2 divided by 4
L Resolution 12 bits (15 ADC Clock cycles)
TIM9 Data Alignment Right alignment
TIM10 Scan Conversion Mode Disabled
TIM11 Continuous Conversion Mode Disabled
TIM12 Discontinuous Conversion Mode Disabled
TIM13 DMA Continuous Requests Disabled

TIM14 End Of Conversion Selection EOC flag at the end of single channel conversion

~ ADC_Regular_ConversionMode

FIGURE 6: ADC CONFIGURATION PANEL

Here we use the ADC in independent mode (other modes more complex are possible see the
datasheet of the component). Also, we must choose the resolution of the ADC. Indeed, the ADC can
use 12, 10, 8 or 6 bits for the resolution. More the resolution is high and more the precision of the
conversion is high but the necessary time to realize the conversion increases. For this example, | use
12 bits for the resolution. We must choose the data alignment for the converted value since the
maximum resolution is 12 bits and the data register is 16 bits wide. | choose the right alignment so the
value of the conversion uses the 12 LSB. As in this example, | do not want to scan more than one input
| disabled the scan mode and the continuous conversion mode; the conversion will be done only if the
timer interruption is generated. The ADC will generate an interruption as soon as the conversion will
be ended so in the End of Conversion Selection, the EOC flag is selected. Now we have to enable the
interruption of the ADC; to do that click on the NVIC Settings and enables the interruption. The
interrupt level can be the same as that of the timer, but in practice it is preferable for the timer to have
higher priority, since it is the timer that generates the sampling frequency.

As in this example, we want to use the DMA to store the converted value in memory without
using the ADC driver function (Get_ADC_Value), so we need to configure the DMA. We therefore need
to add a DMA channel to connect the ADC to the memory. To do this, simply go to the DMA settings
tab. The use of the DMA will generate an interruption every ADC conversion as soon as the transfer
between the ADC and the memory will be finish.

Pinout & Configuration Clock Configuration

Vv Soff
a V] & ADC1 Mode and Configuration ‘
=
v ONVIC
RCC O N0
WWDG
IN3
Analog W O iNg
> OINs
A ADC1
ADC2 O IN6
DAC
Timers g
. Reset Configuration
LPTIM1 L gs | @ s | @ NVI s | © DMA Settings
RTC
v Tut DIA Request
TIM2
TIM3 ADC1 DMA2 Stream 0 Peripheral To Memory Low
TIM4
TIM5
TIMB
TIM7
TIM8
TIM9
TIM10
TIM11
TIM12
TIM13
TIM14

FIGURE 7: DMA CONFIGURATION FOR THE ADC

Now we have three interruptions in our code so we must change their priorities in order to have no
conflict between them. So we choose, in the system view, the NVIC.

Pinout & Configuration

Q _ & NVIC Mode and Configuration ‘
[\Categeriss| ~-> |

v DMA
v GPIO
IWDG
RCC
SYS
WWDG
Analog B
ADCA
ADC2
ADC3
DAC 2
System senvice call via SWI instruction 0 0
Debug monitor 0 0
Times v Pendable request for system semwvice 0 0
$ Time base: System tick timer 0 0
LPTIM1 PVD interrupt through EXTI line 16 O o 0
RTC Flash global interrupt O o 0
v TIM1 RCC global interrupt o o 0
Emg ADC1, ADC2 and ADC3 global interrupts i 0
Tivi4 TIM1 break interrupt and TIM9 global interrupt O o 0
TIMS TIM1 update interrupt and TIM10 global interrupt 0 0
TIM6 TIM1 trigger and commutation interrupts and TIM11 global interrupt O o 0
TIM7 TIM1 capture compare interrupt O o 0
TIM8 USARTS3 global interrupt O o 0
TIM9 EXT1 line[15:10] interrupts O o 0
TIM10 DMA2 stream0 global interrupt 3 0
Tt Ethemet global interrupt O o 0
I_:m:i Ethernet wake-up interrupt through EXTI line 19 O o 0

FIGURE 8: NVIC PANEL

In the NVIC panel, we can see all the interruption of our system and in particular, the interruption of
the Timer 1, of the ADC and of the DMA. Here, we will configure the preemption priority of the TIM1
to level 0, to level 1 for the ADC and to level 3 for the DMA. More the value is high and less is the
priority so in this case the timer will have an interruption more priority than the ADC or the DMA.

Now that all our devices are configured, we need to generate the project code. To do this,
simply click on the Device Configuration Tool Code Generation icon.

[workspace_1.8.0 - ADC_DMA/Core/Src/main.c - STM32CubelDE

File Edit Source Refactor Navigate Search Project Run Window Help
i RS- R -BiY PN ENIRR|E LS H O E-C O Q@Y ARE TG G R AR w4 i)
[C/C++ Projects X | B % 8 = O 4sDebug [8 mainc X [I]*ADC_DMAioc [g stm32fTxcitc

> 7 7_Segments 1 /* USER CODE BEGIN Header

> 4%, Binaries
> @l Includes
v (£ Core

> = Inc

> @& Src

> (= Startup
v (2 Drivers

> @ CMSIS 13

> (& STM32FToc_HAL Driver 14
> (= Debug

[Z1 ADC_DMAiiod|

= ADC_DMA Debug.launch

w STM32F767ZITX_FLASH.Id

T STM32FT67ZITX_RAM.Id #include "main.h"
#include “"string.h”

> 1] AZUR_RTOS_G4
> 1] Bras_Robot * Private includes =-----=m-====m=mmmsmmmmmeeesemmesemmmmeeemeSeeeeeeaaee
» 1] Capacimetre USER CODE BEGIN Includes *
I[5 Cde_axe
> T demo-freertos
> [pHT22
> 1] essai_capture
> [Essai_F412
> T FFT_Ex
> [FreeRTOS
71 Gps
> [HC-SR04
> T3 HP22_28
T3 HP300
> ES 1A
> [IR_SENSOR
> T3 Lco
> 1 LIS3DH
> T LoRa
> [LSM6DSD33
> T M1_FreeRTOS

* private 1@ === e e
#if defined (__ICCARM__) /*!< IAR Compiler */
45 #pragma location=0x2007c000

T3 M1_RTOS
> E; Madgwick LIS3DH {1 Problems) Tasks B Console X [T Properties
> §id Mailbox ADC_DMA Debug [STM32 C/C++ Application] [pid: 7]

[I3 MPUB050

Download in Progress:

> T MPU 6050
> T2 Ohmetre
3 T2 Ohmetre_globale File download complete
» T One.Wire Time elapsed during download operation: ©0:00:00.613

> T Projet L3
> B Robot_L3
» 7T Rohot 13 V2 Verifving

FIGURE 9: STM32CuBEIDE FRAMEWORK

The second part of the development is to program the start of the timer to generate a sampling
period in order to launch the ADC conversion to acquire the value of the analog sensor.

The first step is to start the timer 1 in order to obtain a sampling period of 10 milliseconds; this
step is realized by starting the timer 1 in interrupt mode as shown in Figure 10. All the Timer functions
API can be found in the HAL tim.c file.

[C/C++ Projects X ¢| B9 § = B 45Debyg

> T3 7_Segments
>] adc_ads1256
v [ADC_DMA
> 4 Binaries
> @) Includes
v (B Core
> & Inc
> & Src
> (= Startup
v (3 Drivers
> = CMsls
> (= STM32FTxx_HAL Driver
> (= Debug
[Aoc owAied
[£ ADC_DMA Debug.launch
[STM32FT67ZITX_FLASH.Id
i STM32F767ZITX_RAM.Id
> T AZUR_RTOS_G4
> 71X Bras_Robot
> T Capacimetre
> T3 Cde_axe
> 1 demo-freertos
> [pHT22
> T essai_capture
> [Essai_F412
> T FFT_Ex
> [FreeRTOS
> T3 6ps
> [HC-SRo4
> T8 HP22.28
> T3 HP300
>T A
> [IR_SENSOR

> T2 M1_FreeRTOS

FIGURE 10: LAUNCHING OF THE TIMER

[¢ main.c X [["ADC_DMA.ioc
100 int main(void)

[€] stm32f7oc it.c

* USER CODE BEGIN 1 *
/* USER CODE END 1 *
/* MCU Configuration------==-========-==ommmmmmmooo.

/* Reset of all peripherals, Initializes the Flash interface :
HAL_Init();

/* USER CODE BEGIN Init */
/* USER CODE END Init */

/* Configure the system clock */
systemClock_Config();

/* USER CODE BEGIN SysInit */

/* USER CODE END SysInit */

* Initialize all configured peripherals */
MX_GPIO_Init();

MX_DMA_Tnit();

MX_ETH_Init();

MX_USART3_UART_Init();

MX_USB_OTG_FS_PCD_Init();

(_TIM1_Init();
* USER CODE BEGIN 2 */
HAL_TIM_ Base_Start_IT(&htiml);
* USER CODE END 2 */

/* InTinte 7
/* USER CODE BEGIN WHILE */
while (1)

* USER CODE END WHILE */

/* USER COD!

* USER CODE END 3 */

Now, the timer will generate an interruption every 10 milliseconds so we have to write the
code in order to start the ADC conversion. This function must be coded in the Timer_1 interruption
routine. | also define a global variable named ADC_Value (uint32_t in the main.c file) to store via the

DMA the converted value of the ADC.

T adc_ads1256

GPIO_InitStruct.Pull = GPIO_NOPULL;

. 4 GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
] ‘:DE-DM‘ 481 HAL_GPIO_Init(USB_PowerSwitchOn_GPIO_Port, 8GPIO_InitStruct);
42, Binaries A
) Includes re GPIO pin : USB_OverCurrent_Pin
v (@ Core] Struct.Pin = USB_OverCurrent_Pin;
& Inc 4 GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
< 436 GPIO_InitStruct.Pull = GPTO_NOPULL;
- e 4 HAL_GPIO_Init(USB_OverCurrent_GPIO_Port, &GPIO_InitStruct);
(& Startup
v (3 Drivers
& Cmsis
(& STM32F7x HAL Driver 491
(& Debug % }
[E3 Apc_bMAdioc s *
ADC_DMA Debugdlaunch 4 th s executed
W STM32FT67ZITX_FLASH.Id 495= void Error_ADC()
W STM32F767ZITX_RAM.Id 4 _ <
T} AZUR RTOS G4 mg;sa:le_;rq(); e disable the irg in ord y always in this fu
T Bras_Robot A=)
I Capacimetre 501 HAL_GPIO_WritePin(GPIOB, LD1_Pin,GPTO_PIN_SET); //switch on the LED 1
T Cde_axe
7] demo-freertos 563}
[oHT22 '
[Essai_Fa12 = void HAL_TIM_PeriodElapsedCallback(TIM _HandleTypeDef *htim)
I FFT_Ex
E FreeRTOS if(htim->Instance==TIM1)
I 6ps
E e if (HAL_ADC_Start_DMA(8hadcl, 8ADC_Value, 1)!=HAL_OK)
T3 HP22 28 Error_ADC();
7 HP300
o 7N
[IR_SENSOR
i Lo back function
ED us3oH _ConvCpltCallback(ADC_HandleTypeDef* hadc)
T LoRa

[Lsm6DsD33 if (hadc->Instance==ADC1)

] M1_FreeRTOS

FIGURE 11:CODE TO START THE ADC CONVERSION AND THE STORAGE OF THE CONVERTED VALUE VIA THE DMA

In the Callback function of the timer, | test first if it’s the Timerl that has generated the
interruption. If the condition is true thus | start the ADC conversion and the storage of the converted
value via the DMA; | test whether the function is working properly, and if not, then we call the error
function. You may not code this error function because it is not necessary for the application. As soon
as the ADC conversion is finished, the ADC generates an interruption so in the Callback function of the

ADC, | compare the converted value to a threshold and if this value is higher than the threshold | switch
on the LD1 and switch off the LD2 or the reversal otherwise.

}

ADC callback fi

unction
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc)

if (hadc->Instance==ADC1)

HAL_ADC_Stop_DMA(8hadcl); //You need to stop the ADC/DMA otherwise there will be a conversion problem since we do not use the continuous conversion mode
if (ADC_Value>2048)

HAL_GPIO_WritePin(GPIOB, LD1_Pin,GPIO_PIN SET);
HAL_GPIO_WritePin(GPIOB, LD2_Pin,GPIO_PIN RESET);
3
else
{
HAL_GPIO_WritePin(GPIOB, LD1_Pin,GPIO_PIN RESET);
HAL_GPIO_WritePin(GPIOB, LD2_Pin,GPIO_PIN SET);

FIGURE 12: ADC CALLBACK FUNCTION WHERE THE CONVERTED VALUE IS COMPARED WITH A THRESHOLD

It should be noted that the ADC conversion must be stopped in the callback function otherwise
you will be a problem since the ADC is not configurated in continuous mode.

