Configuration server for self-adaptive architectures

Linfeng Ye, Jean-Philippe Diguet, Guy Gogniat
Lab-STICC, CNRS - European University of Brittany/UBS, Lorient, France
linfeng.ye @univ-ubs.fr

Abstract

This paper presents a network-based solution to effi-
ciently manage configurations of reconfigurable Multipro-
cessor system on chip. We first define our R-MPSoC archi-
tecture and the concept of on-the-fly reconfiguration man-
agement. Then two issues are discussed and some solutions
are presented: (1) formalization of configuration protocol
and (2) synchronization of configuration. The second point
mainly addresses the issue of on-the-fly reconfiguration flow
and the way a process accepts a new configuration. Finally,
we present the global method and give several implementa-
tion results from a MP3 player case study.

1. Introduction

The key argument for reconfigurable architectures is
probably the capacity of specialization that enables to im-
prove both energy efficiency and performances. An infin-
ity of architectural solutions is then possible to dynami-
cally adapt architectures to applications, the main issue is
the storage of configurations that remains voluminous in the
case of current FPGAs.

If we consider such architectures in the context of em-
bedded systems, which are now usually connected some-
how to a network, then a new kind of solution appears.
Actually networks can be used in order to feed on-demand
reconfigurable embedded systems with relevant configura-
tions. It means that a configuration stream can now be con-
sidered as the third kind of stream, besides data and instruc-
tions, in the context of reconfigurable architectures. Con-
sequently it may be also speed up with a cache hierarchy
considering voluminous files but moderate update frequen-
cies.

On the application side of embedded systems, we can
observe the same evolution in terms of complexity. Multi-
ple and heterogeneous applications can share resources and
stress hardware in different ways such as typical network-
ing, signal/image processing, cryptography functions. In
case of personal devices, 3D graphics, display and GUI can

be added. An OS can then become a necessity for hardware
abstraction and resources allocation.

Both architecture and application evolutions lead to
highly dynamic and data or context dependent behaviors
of embedded systems. In these changing conditions, the
problem of optimization, regarding for instance energy ef-
ficiency, can hardly be handled without any configuration
considerations.

Finally, any design methodology targeting embedded
systems is strongly constrained by development cost. The
use of IPs and standard API are tracks to reduce the effort
cost, this option must also be considered in the domain of
reconfigurable architectures. This approach makes sense in
the domain of mass market products and ambient intelli-
gence, based on standard set of applications and basic func-
tions.

In this context, self-adaptivity applied on well-defined
architecture models, is a promising way to solve the ques-
tion of optimization at run-time. The first condition is
the availability of dynamically reconfigurable architectures.
We can reasonably make the assumption that such architec-
tures, which already exist, will be more efficient in a near
future in terms of power and reconfiguration time. The sec-
ond condition is on-line decision capability.

Given this situation and the assumption that a majority
of embedded systems will be somehow connected to a net-
work, we propose in this paper an overview of a global
approach for the design of self-adaptive systems targeting
effective architectures according to applications demands.
The methodology is first locally based on a combination of
static and dynamic configuration decisions for both hard-
ware and software aspects, the objective is to get a trade-
off between decision complexity and configuration storage
cost. Secondly, the idea is to increase the local configuration
space by means of a shared and distributed hierarchy of con-
figuration caches. This approach is based on two assump-
tions. First some generic architecture models have been pre-
viously defined and secondly applications are based on an
intensive use of an evolutionary library of API and standard
coprocessors or IPs.

The remainder of the paper is organized as follows. Sec-

tion[2]presents related work and background of adaptive em-
bedded systems. In Section[3] we present the concept of on-
the-fly reconfigurable MPSoC. Section [discusses about
the network-based configuration protocol. We describe our
MP3 case study and its implementation on XPSoC-V2 in
section@ Finally, we conclude.

2. Related Work

A lot of successful researches have been done in the do-
main of adaptive embedded systems, most of them are fo-
cused on architecture design. In [6]], the association be-
tween algorithmic and architectural views is relevant for
H-264 implementation, however the hardware controller re-
mains specific and local. In [8] is presented an embedded
Linux as a platform for the management of dynamic recon-
figuration of system-on-chip, authors show how partial re-
configuration is achieved with a single line of Linux shell
script. Angermeier et al. [2]] use dynamic partial recon-
figuration to implement the Erlangen Slot Machine (ESM)
architecture, which accelerates the application development
flow as well as the research in the area of partially recon-
figurable hardware. The advantage of the ESM platform
is its unique slot based architecture, which allows the slots
to be used and reconfigured independently of each other.
Manet et al. [[7]] present a custom OPB-ICAP working at 2.8
Gbit/s (Maximum theoretical bandwidth: 2.98 Gbits/s) on
the Virtex-4. Eustache et al. [4] present a safe and efficient
solution to manage asynchronous configurations of dynam-
ically reconfigurable system-on-chip. Bomel et al. present
a networked lightweight and partially reconfigurable plat-
form assisted by a remote bitstreams server and in [9]] is
detailed a partial bitstream ultra-fast downloading process
through a standard Ethernet network, with a sustained rate
of 80 Mbits/s over Ethernet 100 Mbit/s.

In [3] is described a model of reconfigurable architec-
ture based on SystemC and Python script for the evaluation
of different scheduling policies regarding reconfiguration.
The main component is the configuration manager that can
have access to a list of configurable functions to be placed
on eFPGA independent modules. This work is interesting
but not directly connected to implementation, more over it
doesn’t fit with our architecture model based on reconfig-
urable processors and the necessity to have configuration
ID. The current state of the art shows that dynamically re-
configurable coarse-grain architectures have been already
proposed, but there is a lack of contributions dealing with
configuration server. However this points is essential to al-
low an efficient deployment of reconfigurable architectures.

3 On-the-fly reconfigurable MPSoC
3.1 R-MPSoC architecture

The R-MPSoC, defined in this paper, is a Multi-
Processor System-on-Chip composed of a master processor
and not less than one slave processor and one reconfigurable
component. The R-MPSoC is composed of three types of
binary data and processing: Data, Instruction and Config-
uration streams and associated processing. The configura-
tion stream is a sequence of hardware configuration data
(e.g. FPGA bitstream). We consider there are two types of
reconfiguration stream in our R-MPSoC model: Static re-
configuration stream and Dynamic reconfiguration stream.
As shown in Fig[I] we present a Master / Slave R-MPSoC
architecture. In this system, the dynamic reconfiguration
stream can be performed “on-the-fly”, and the static stream
can be performed only by a global reconfiguration.

XModule-1
:
3

. =
5,9, | Rct / ul
% o
Gy, / [
%, J
>/ Reconfiguration
Interconnection

i i XModule-1 | /

(RC1)
Meta-Model 01 (Xilinx ML410)

]
]

XModule-2
(RC1)

o}
ection

|

-
-

Interconn
)

Meta-Model 02 (Xilinx ML410

Figure 1. MPSoC Reconfiguration

We consider an architecture meta-model, which fits with
a large set of embedded systems. The R-MPSoC model has
two kinds of subsystems: XManager and XWorkers, the
first one is a GPP configuring and controlling the second
ones, which can be configurable soft cores (e.g. MicroB-
laze) or dedicated accelerators. The life of an R-MPSoC
begins with the choice of an architecture model composed
of a XManager subsystem (XManager) controlling a given
number of configurable XWorkers. For instance the Xilinx-
ML410-MMO2 (Fig[I)) model includes three XWorkers sub-
systems: one XWorker processor with two reconfigurable
co-processors (XWorker-1) and two independent reconfig-
urable components (XModule-1 and XModule-2), and var-
ious other components such as shared memories, IP and pe-
ripherals. At system boot, the boot loader loads the first
hardware configuration (Xilinx-ML410-MMO2 full config-
uration bitstream) and loads the software binary (e.g. Petal-
inux operating system) for XManager subsystem and for

XWorker subsystems (e.g. a lightweight operating sys-
tem kernel). The XManager implements an operating sys-
tem managing a set of processes. Processes communicate
through message passing for synchronization and shared
memories for data, and they can have various possible im-
plementations in Hardware and / or in Software, which cor-
respond to different cost / performance trade-offs.

3.2 On-the-fly reconfiguration and syn-
chronization

On-the-fly reconfiguration is a style of reconfiguration
in which the manager modifies the program and / or the
hardware configuration while the application is running,
without stopping or restarting. Our approach is based on
the assumption that application bottlenecks have been first
identified after a profiling step at design time. Thus, an
application is specified with a list of functions that may
be efficiently implemented with hardware coprocessors if
speed up is required. The configuration of such an applica-
tion running on a XWorker, is controlled by the XManager
through a shared memory where global variables indicate
to the XWorker the implementation of key functions. The
XWorker regularly checks if a new configuration is avail-
able. If a hardware implementation is indicated then a mem-
ory or a FIFO address is given, in this case the XWorker
won’t use a software call but will use a standard HW/SW
interface to send data to the coprocessor.

Thus two main steps may be considered for self-adaptive
systems, the first one is the decision and the second one the
reconfiguration process. Both are based on the availability
of a given set of hardware configurations, this paper focuses
on this specific point. An example of decision implementa-
tion can be found in [5]] for an architecture model based on
a GPP with specific hardware modules. The reconfiguration
process is based on a set of APIs to communicate transpar-
ently with hardware or software tasks through an Unified
Configuration and Communication Interface (UCCI).

Our proposition is based on the idea that configuration
servers may deliver, through a hierarchy of caches, archi-
tectures configuration and application binaries for different
kinds of architecture models. Thus, given architecture mod-
els and a set of standard applications, some configuration
servers can deliver IPs and coprocessors to be implemented
dynamically according to a list of standard functions.

Finally, the engineer in charge of system integration, can
generate the solution file as follows:

o full_*.bit : R-MPSoC global hardware configuration,
including an architecture model and all reconfigurable
components.

e pr_*.bit : partial hardware configuration

e XManager.bin : Software binary for XManager

e XWorker-N.bin : Software binary for XWorker-N
e application.bin : Application binary

e application.prl : Application hardware partial recon-
figuration list

In our approach, the granularity of a XWorker job can be
a XManager Linux process or thread pending for XWorker
results when such a configuration has been decided. Typ-
ically XWorker jobs can be speech, audio, image process-
ing, video coding, network processing or security applica-
tions such as encryption. The R-MPSoC system automat-
ically loads first hardware configuration (full_*.bit) from
non-volatile memory (e.g. CompactFlash, hard disk) after
the power-up, and then loads XManager.bin for XManager
and loads XWorker-*.bin for XWorker. XManager launches
the main process, which is responsible for managing all the
tasks and dynamic reconfiguration of modules. If no spe-
cific configuration is obtained or required, XManager per-
forms a regular instruction processing. If XManager deter-
mines a new configuration: it computes the allocated re-
sources and XWorker positions according to the status of
the system and the configuration.

XManager downloads the next configuration stream to
memory and updates the cache (global server, local server,
hard disk, etc) according to the cache strategy. XMan-
ager can perform on-the-fly reconfiguration. In this case it
first deactivates the target reconfigurable component (RC),
then XManager updates the table of reconfigurable com-
ponent and informs XWorker that a hardware implemen-
tation is available for a given standard function. Finally
XWorker executes program and tests its configuration with
a given rate 1/N; before each critical section of the appli-
cation (usually a loop nest), by accessing to a shared mem-
ory where the XManager updates variables indicating if the
associated reconfigurable component is or not configured.
The master can also fix the configuration test rate (N) ac-
cording to the estimated downloading delay.

For each XWorker, a configuration table is defined in a
memory space shared with the Xmanager as shown partially
in Fig2] The first record provides global parameters such
as architecture model (XMID), Xworker status and input
and output addresses and sizes. Then a new record is added
for each reconfigurable place (for instance a co-processor).
From a synchronization point of view, the main information
are firstly the FUID (FUnction ID), which is a unique iden-
tifier of a standard function that also depends on I/O data
formats. Then, there are two synchronization bits. The EN-
able bit is written by Xmanager, it indicates to the XWorker
that a hardwired function is ready and can be used for next
task execution. The Done bit is written by the Xworker, it
indicates to the Xmanager that the coprocessor is no more
used by the current task. In the case of a R-MPSoC com-
posed of one Xmanager and a Xworker with configurable

DDR Memory

5
NS T S T

H1C XWorker-1 data (1/O, Model...)

He | RC1| EN FUID | DONE
XManager XWorker-1 [RC

2 RC2| EN | FUID | DONE

Local Memory Local Memory

Xilinx-ML410-MM01-MP3 Shared Memory

Figure 2. On-the-fly Reconfiguration

co-processors, we obtain a on-the-fly configuration flow de-
scribed hereafter.

1. XManager determines, through a decision daemon
process, if a new configuration is required for
XWorker-N; for instance if a new function must or
not be implemented in coprocessor-M. Such a deci-
sion depends also on the availability and the access
delay to configuration files in local memories or on re-
mote servers. If a reconfiguration is required, then the
on-the-fly reconfiguration flow starts, it is described in
steps 2 to 7.

2. First XManager indicates to XWorker-N, by setting
“EN” bit to “0”, that current function implemented
on coprocessor-M won’t be available as a hardware
version when the coprocessor will be released by the
current task. If the bit “Done” of the XWorker-N
coprocessor-M is set to 1, then co-processor is unused
and the flow jumps to step 5; Otherwise the Xworker
switches to a software version as soon as it can, regard-
ing constraints related to task granularity. If necessary,
the Xmanager loads configuration files in a local mem-
ory (e.g. DDR) from flash memory or remote configu-
ration servers.

3. XWorker executes the program, and tests its configu-
ration with a given update rate compliant with the task
granularity by reading the bit "EN” of coprocessor-M.
If coprocessor-M is disabled (EN="0"), the Xworker
cannot used the hardware function anymore. It informs
XManager by setting “"Done” bit to ’1” that the copro-
cessor is free for reconfiguration.

4. XManager tests the bit "Done” of the XWorker-N
coprocessor-M, if it is set to*“1”, then the configuration
starts in step 5.

5. Xmanagers copies the configuration from DDR Mem-
ory to HW-ICAP and finally performs dynamic partial
reconfiguration. Depending on the size of the configu-
ration file, different iterations might be necessary.

6. XManager updates the "FUID” bits of coprocessor-M
to indicate the new function available as a hardware
version and then enables the XWorker-N coprocessor-
M by setting “enable” bit to 1.

7. XWorker tests its configuration by reading the bit
“"EN” of the coprocessor-M, if it is set to 1", func-
tion calls corresponding to the FUID will run with the
coprocessor-M and Done is set to ”0”.

In this scenario, we assume that XManager manages a
list of used standard functions, which is provided by the ap-
plication designer (application.prl). In practice, this list of
all available hardware accelerator modules or coprocessors
for an application binary, is the result of the program pro-
filing analysis based on the official standard function lists
which is maintained by configuration suppliers.

4 Network-based configuration protocol

A lot of future applications, based on distributed embed-
ded systems, are expected in the domain of intelligent en-
vironment or transportation and in the context of nomadic
devices. It means that wired and wireless local area net-
works can be considered as an available solution for de-
livering configurations. Given this assumption, we have
implemented different architectures providing a networked-
reconfiguration service for Xilinx FPGA. In our previous
work [9]], the objective was to implement partial and dy-
namic reconfiguration directly from a remote and local
server. In other words, we can bypass the DDR level and the
hard disk level of the cache hierarchy when the requested
configuration is not available on board. We propose now
a general and formalized approach based on the idea that
an embedded reconfigurable system can efficiently down-
load a set of configurations from global servers according to
application requirements (e.g. Video Encode IPs supplier,
Multimedia IPs suppliers). In the domain of open-source
projects, it means that current available programs could be
extended to hardware components in order to provide de-
signers with infinite possibilities of (re)configurations and
upgrades, it also opens very exciting perspectives in terms
of collaborative researches. However, hardware compo-
nents must be classified and organized to make this ~on-
demand computing” service reliable in the domain of re-
configurable computing. Meta-modeling can provide the
adapted framework to such a standardization effort. Thus,
depending on technologies, devices families and architec-
ture Meta-Models, different solutions can be proposed. If

we consider for instance R-MPSoC based on Xilinx FPGA
and Microblaze cores, we can propose a meta-model from
which can be derived various architecture models.

We propose in this paper an overview (Fig[3) of a global
approach for the Network-based self-adaptive systems tar-
geting effective architectures according to application de-
mands. This approach is based on two assumptions. First
some generic architecture models have been previously de-
fined and secondly applications are based on an intensive
use of an evolutionary library of API and standard copro-
cessors or IPs. The main idea is to reduce the design space
to be explored at run-time in order to introduce short and
low cost decision overheads. Thus, the approach consists
first in loading a reduced pre-defined set of configurations
used for fast local adaptations according to context and data
variations. Then, this set can be updated at run-time through
a network connection if better configurations are necessary
or if new applications, requiring new configurations, are
started.

Internet

FULL-Xilinx-ML4
PR-Xilinx-ML:

XManager
Configuration
Cache

XManager
Configuration
Cache

Figure 3. Network-based self-adaptive sys-
tems

As shown in Fig[3] we propose a global configuration
framework based on local and global servers. The update
of configurable systems is based on a client/server protocol
over an existing network protocol such as TCP/IP, where a
request is formalized with the following information:

e CSID: Configuration Supplier ID, (Xilinx, IBM, 3rd
party, University, ..);

e HSID: Hardware Supplier ID, (Xilinx, Altera, ST, At-
mel, ..), the reconfigurable device provided;

e HRID: Hardware Reference ID, (ML410, ML505, ..),
the board identifier ;

e MMID: generic Architecture Meta-Model ID (MMO1,
MMOS, ..), to be implemented on various targets;

e XMID: XModule or XWorker ID (XWO01, XW02, ..),
according to MMID parameters;

o IFIP: Reconfigurable IP Interface Protocol (FSL, OPB,
PLB, AHB, ..), according to MMID parameters;

e IFID: Reconfigurable IP Place (FSL-i, OPB-j, ..), ac-
cording to MMID parameters;

o FAMI: Algorithm family (Video, Audio, Security, Net-
work, Digital communications, ..);

e FUID: reconfigurable IP Function ID (IMDCT, ME,
Turbo-C, ..);

o VERS: Reconfigurable IP Function version;

e FREQ: Reconfigurable IP clock Frequency.

Note that these data should be first registered within a
common database, our approach is based on this kind of dis-
tribution model. Thus a reconfigurable and networked em-
bedded system can send a request for reconfiguration files
according to application needs. When received, configura-
tion files are stored locally within DDR or Flash memories
and available for on-the-fly reconfiguration.

5 MP3 case study
5.1 Architecture model

XPSoC-V2 is the name of the second instance of our R-
MPSoC model developed within the framework discussed
above. It targets audio processing applications such as MP3
encoder / Decoder, OGG encoder / decoder and VoIP soft-
phone. It is based on a bi-processor architecture model in-
cluding one XManager and one XWorker with two recon-
figurable coprocessors. It also implements an Ethernet con-
troller, an UART, a DDR SDRAM controller, a Compact
Flash controller, a Hardware Mutex component and a HW-
ICAP controller.

The XManager is implemented as a Microblaze softcore
from Xilinx and acts as a GPP, the XWorker uses the Mi-
croblaze softcore with two reconfigurable coprocessors and
acts as a Single-Task reconfigurable DSP (Digital Signal
Processor). The design of coprocessors is strongly depen-
dent on the application and the available resources on the
reconfigurable part. The Mutex component is used as a pe-
ripheral to coordinate CPUs (XManager, XWorkers) safe
accesses to shared peripherals or memories. Coprocessors

are connected to the XWorker by FSL (Fast Simplex Link),
the Xilinx BusMacros are used to realize a direct commu-
nication between XWorker and coprocessor modules, pro-
viding fixed communication channels that help to keep the
signal integrity during hardware reconfiguration.

{Reconfigurable part

|
S
|

UART
|
Coprocessor-1] |

P — 1l

I

Ethernet

I

SDRAM

I

HWICAP

Figure 4. XPSoC-V2 hardware architecture

5.2 Implementation results

On a Xilinx ML410 (Virtex4 FX60) FPGA, the imple-
mentation of XPSoC-V2 leads to an area occupation of 32%
for logic block slices, 23% for RAM blocks and 13% for
DSP. The XManager runs a petalinux [1]] operating system,
and the granularity of task is the process level. In other
words, the XWorker can run an application (e.g. MP3 de-
code) as a standalone program. Three types of coproces-
sors have been generated for this test: a DCT32 coproces-
sor, a IMDCT coprocessor and a MUL16 coprocessor. The
DCT coprocessor consumes 32 words at the input and pro-
vides 16 words of 64 bits at the output. The IMDCT co-
processor implements a 18x36 IMDCT (Inverse Modified
Discrete Cosine Transform), and the MUL16 coprocessor
implements a long long multiply and shift by 16.

The result of this demonstrator is shown below:

SW | HW-MUL16 | HW-IMDCT | HW-DCT32
Slice utilization | 0 161/25280 482/25280 569/25280
DSP utilization | 0 4/128 4/128 8/128
LUT utilization 0 86/50560 521/50560 526/50560
Time execution 45 5 g9 4 711 61.6

(seconds)

Figure 5. Mp3 decoding on XPSoC-V2

In the first column the whole application is implemented
in software so no additional hardware is required. In that
case the execution time is 105 s. The second column details
the architecture containing a MUL16 coprocessor which
provides an improvement of 13% compared to the software
only version. For this architecture the additional hardware

e

cost for the coprocessor is only 161 (out of 25280) slices,
4 DSP blocks and 86 LUT. The last two columns describes
two architectures containing a DCT as a coprocessor. It can
be noticed that both solutions provide an improvement (re-
spectively 32% and 41%) of the execution time.

5.3 Applied Networked Reconfiguration

We have tested our networked reconfiguration scheme on
XPSoC-V2 with a MP3 decoder application. In this exam-
ple we set the granularity of reconfiguration to the level of
the whole application, it means that a new hardware con-
figuration is checked when the application is launched for a
given mp3 file to be decoded. The demonstration scenario
is described hereafter:

1. Startup of XPSoC-V2 with the first architecture
(Xilinx-ML410-MMO01-MP3-full.bit).

2. XManager boots on Petalinux.

3. XManager downloads the first section of MP3 data
(a.mp3) from the network to the DDR memory.

4. XManager initializes XWorker without accelerator
(coprocessor is empty) and downloads a standalone ap-
plication binary for MP3 decoding.

5. XManager launches a mp3 decoder task by sending the
size and the address of a.mp3 to XWorker.

6. XWorker runs mp3, decodes and saves output as for-
mat WAV (a.wav) to DDR memory.

7. XManager sends back a.wav and waits for a new task
from XServer.

8. XManager downloads the second section of MP3
(b.mp3) and decides to reconfigure XWorker to
achieve better performances.

9. XManager sends a request to XServer, by giv-
ing some information of the new configuration for
the XWorker coprocessors (Xilinx-ML410-MMO1-
MP3DEC-IMDCT.bit), as shown in Figld|

10. XManager performs dynamic partial reconfiguration.

11. Xmanager updates the XWorker configuration data in
the shared memory, coprocessor-0 “EN” bit is set to 1,
and the "FUNC” field is updated (e.g. IMDCT).

12. XManager launches a mp3 decoder task by sending the

size and the address of b.mp3 to XWorker.

13. XWorker runs mp3 with the new configuration based
on the initialization step, functions implemented in
hardware (e.g. IMDCT) are executed through FSL
communication instead of software calls, after decod-
ing output data are saved in a WAV format (b.wav) in
DDR memory.

14. XManager sends back b.wav and waits for a new task
to execute.

[Xilinx-ML410-MMO01-AUDIO-IMDCT-100MHz-v1.00.bit

Xilinx-ML410-MMO1-VENC

CsID IHSID [HRID[MM\D[XMID[IFIP I IFID IFAMI I FUID [VERS [FREQ

l UBS |><|L|Nx|ML41o[MM01[XWO1 [FSL [Copro1 l Audio [IMDCTI v1.00 [100MHz]

Figure 6. Networked Reconfiguration

This scenario is a demonstration of our approach for the
control of hardware reconfiguration of networked embed-
ded systems connected to a server delivering hardware par-
tial configuration files of standard functions according to
available architecture models. The different steps have been
implemented to demonstrate the whole approach despite
current FPGAs limitations. These limitations are related
to partial reconfiguration issues and difficulties for imple-
menting peripheral drivers for instance. But the evolution
of FPGA tools show that these problems and instability is-
sues will be solved in the future opening very interesting
opportunities for our approach.

6 Conclusion

In this paper we have presented a network-based solution
to manage configurations of reconfigurable Multiprocessors
system-on-chip and we have introduced the concept of on-
the-fly reconfiguration based on R-MPSoC model architec-
tures. Then we have described the formalization of con-
figuration protocol, the synchronization of configuration.
Finally, we have presented a MP3 case study with a dual-
processor reconfigurable architecture model running Petal.-
inux on Xilinx Virtex-4. This is the first step in demonstrat-
ing the efficiency of our global method for future distributed
reconfigurable embedded systems. Our approach represents
a solution for distributing reconfigurable architectures mod-
els to be used in industry domains or to be shared within
an open-source framework. Current research tasks are fo-
cusing on the cache strategy and the configuration decision

policy to be combined with this approach for networked-
reconfiguration based on architecture models.

References

[1] Petalinux http://developer.petalogix.com/.

[2] J. Angermeier and et al. Spp1148 booth: Fine grain recon-
figurable architectures. In Proc. International Conference
on Field Programmable Logic and Applications FPL 2008,
pages 348-348, 8—10 Sept. 2008.

[3] G. Beltrame, L. Fossati, and D. Sciuto. High-level mod-
eling and exploration of reconfigurable mpsocs. In Proc.
NASA/ESA Conference on Adaptive Hardware and Systems
AHS ’08, pages 330-337, 22-25 June 2008.

[4] Y. Eustache and J.-P. Diguet. = Reconguration manage-
ment in the context of rtos-based hw/sw embedded systems.
EURASIP Journal on Embedded Systems, 2008, 2008.

[5] Y. Eustache and J.-P. Diguet. Specification and os-based
implementation of self-adaptive, hardware/software embed-
ded systems. In CODES/ISSS '08: Proceedings of the
6th IEEE/ACM/IFIP international conference on Hard-
ware/Software codesign and system synthesis, pages 67-72,
New York, NY, USA, 2008. ACM.

[6] J. Liang, A. Laffely, S. Srinivasan, and R. Tessier. An ar-
chitecture and compiler for scalable on-chip communication.
IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 12(7):711-726, 2004.

[7] P. Manet, D. Maufroid, L. Tosi, G. Gailliard, O. Mulertt,
M. Di Ciano, J. Legat, D. Aulagnier, C. Gamrat, R. Liberati,
et al. An evaluation of dynamic partial reconfiguration for
signal and image processing in professional electronics appli-
cations. EURASIP Journal on Embedded Systems, 2008.

[8] J. A. N. W. Williams. Embedded linux as a platform for
dynamically self-reconfiguring systems-on-chip. In The Int.
Conf. on Engineering of Reconfigurable Systems and Algo-
rithms (ERSA), Las Vegas, USA, 2004.

[9] P.Bomel, J.Crenne, L.Ye, G.Gogniat, and J-Ph.Diguet. Ultra-
fast downloading of partial bitstreams through ethernet. In
Proc of ARCS 2009, Delft, The Netherlands, March 2009.

	. Introduction
	. Related Work
	On-the-fly reconfigurable MPSoC
	R-MPSoC architecture
	On-the-fly reconfiguration and synchronization

	Network-based configuration protocol
	MP3 case study
	Architecture model
	Implementation results
	Applied Networked Reconfiguration

	Conclusion

