
BUS DECRYPTION OVERHEAD MINIMIZATION WITH CODE COMPRESSION

Eduardo Wanderley * Guy Gogniat, Jean-Philippe Diguet

Dept. of Informatics LESTER Laboratory
CEFET-RN University of South Britany

1559 Salgado Filho, Natal 59015 RN Brazil rue Saint-Maude, 56100, Lorient, France
email: wanderley@cefetrn.br email: [gogniat, diguet] @univ-ubs.fr

ABSTRACT poses a penalty in execution time due to decompression. On

Code Compression has been shown to be efficient in min- the other hand less accesses to the main memory is expected,
imizing memory sizes for embedded systems as well as in which, in turn, alleviates the performance problem.
power consumption reduction and performance improvement. Recent trends in code compression [2, 3, 4] points to

In this paper we claim that code compression is also able to placing the decompression engine between the cache and the
minimize the performance penalty of bus encryptionschemes, processor (PDC, Processor-Decompression-Cache architec-

minimie tciphereperfograman palostyrof bs dencryptionsc ture). In this scheme, the cache holds compressed code and

and reaches the processing unit. The result on performance less accesses to the main memory is required. Nevertheless,
andoreahtheLeonProcessor,usingun. Thetf res n performace the decompressor is placed in the processor critical path.for the Leon Processor, using a set of benchmarks from Me- Thsipestedcmrsotobvryft,adoe
diaBench and MiBench suites reveals that the ABS decipher- of the outstanding compression algorithms (normally with
ing unit can be used more rarely (50% less) and performance ow de compressionasid ris Therbenefits

is~~~~~ ~nee.erddcmaigt h rgnlscr ytm
slow decompression associated) are discarded. The benefits
of better cache hit ratio use to outperform the decompres-
sion overhead and, in some occasions, the decompressor can

1. INTRODUCTION be attached to the original processor pipeline thus providing
no decompression penalty [5]. This scheme leads to perfor-

Ubiquitous computing is coming into a reality thus making mances improvement as well as power consumption reduc-
security a serious issue for mobile information transactions. tion.
Embedded systems have been used in a large myriad of ap- In this paper we present a scheme where the embedded
plications including security systems. software is compressed and then encrypted. During run-time

In this scenario, we found the processor-memory infor- a decipher hardware unit retrieves the compressed code that
mation (data+program) traffic as a weakness in security. Ob- will be stored in the cache. Then, the decompression engine
serving memory contents flows, to and from the processor, delivers to the processor the required instruction.
reversing engineering of the software and/or access to pri- The assumption is that the global decipher overhead will
vate or sensitive data can be accomplished. be overcome by the higher cache hit ratio (less accesses to

The choice for guarantying secure bus transfers is using the main memory and thus to the deciphering unit).
a ciphering algorithm to encode the memory footprint of the This paper is organized as follows: Section 2 addresses
embedded software. Then, a deciphering scheme must take the compression and ciphering schemes; Section 3 outlines
place to permit the software usage. This model does not the system overview; in section 4 we provide some results;
come true without a cost, especially in execution time. The following, in Section 5, we address some comments and dis-
penalty of the deciphering unit, in hardware or in software, cussions. We finalize with our conclusions in Section 6.
imposes a performance loss often non-negligible.

Code compression (CC) was first idealized to respond to
the memory constraints of embedded systems. When first
introduced [1], a decompressor engine was located between

t1lo-'Ao Ani1l Mlinmlm"rx tf cuto (T'-N CAoi, The ComPacket iS a code compression method that fits in athe cache and the main memory of a system (CDM, Cache-
Decompression-Memory architecture), thus the decompres- clsofmtdsrerdasitony-sd,wreo-
sion overhead could be hidden by the cache (a block decom- peso sahee yrpaigisrcin ntecd

for indexes into a dictionary. The compressed unit iS calledpresion ccuronl on achemisss). his chem im- CornPacket (Compressed Packet), a 32-bit word with a set of
*Post-doc at LESTER lab, University of South Britany indexes to a 256 entries incomplete dictionary. The method

1-4244-0606-4/07/$20.OO ©C2007 IEEE. 235

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on July 28, 2009 at 08:32 from IEEE Xplore. Restrictions apply.

8 bits 6 bits 6 bits 6 bits 6 bits

Format 4 ESC Index 1 Index 2 Index 3 Index 4 CODE

Format 3B ESC Index I Index 2 Index 3 b_offser CDMPRSCOMPRESSOR CDE

Format 3 ESC Index 1 Index 2 Index 3

Format 2B ESC Index 1 Index 2 b offset

invalid op-code T T S B

Fig. 1. ComPacket Formats

} I ~~~~DECOMPRESSOR

supports four ComPacket formats, as delineated in Figure 1. IL1EEfr P
Format 4 has 4 indexes of 6 bits such that they can only ac- le
cess the first 64 instructions of a dictionary. Format 3 has
3 indexes of 8 bits, allowing full access to the dictionary. MAIN

Format 3B has 3 indexes of 6 bits and a branch slot of 6 MEMORY CAH
~DECIPHER000000ii00000t00 000000000000000000000

bits such that the ComPacket admits one branch instruction
(only branches with offsets that can be represented with 6 Fig. 2. Proposed Architecture
bits are eligible). The Format 2B has 2 indexes of 8 bits and
a branch slot of 8 bits, also allowing one branch instruction
(in this case, branch offsets that can be represented with 8 3. SYSTEM OVERVIEW
bits are eligible).

The proposed implementation will deal with problem ofmem-
An invalid opcode is used to identify a ComPacket (in ory encryption, in which a decryption unit is positioned in

the SPARC ISA, op=OO2 and op2=00X2). S=O denotes athe SPARC ISA, OP=0 and o2=OOX2) S=O denotes a a secure area of the processor, between the cache and the
ComPacket with 8-bit indexes, while SB and TT are used to main memory, so that, by observing the bus activity an at-
identify the type and contents of each compressed packet. tacker will find encrypted information. This approach will

After building the dictionary, the next step is to compress impose an overhead in the processing time due to the deci-
the code by assigning the ComPackets, according to the ex- phering unit.
plained encoding and looking for the best compression as Using code compression the number of transfers between
possible for the method. A greed algorithm is used to assign the cache and the main memory will decrease, which means
the ComPackets and rebuild the code. A complete reference that the global decryption overhead will be minimized, and
of the ComPacket can be found in [4]; if using a scheme that naturally improves performance the

For the ciphering, we used the Advanced Encryption overhead can be completely avoided.
The general idea is presented in Figure 2. After the com-

Sithmandrd ve[which Natisnalsym trickey encryption a.go pression phase, the AES algorithm is used to Encrypt therithm approved by the Natonal Insttute of Standards and blocks of 4 x 32bits (the same size of a cache line). The
Technology (NIST). The AES uses blocks of l28bits and cmrse n nrpe oei hnlae notemi
keys of 128bits, 192bits or 256bits. A set of transforma-
tions, necessary to a round of the algorithm, can be effi- memory. When the processor asks for an instruction, the de-
ciently implemented with lookup tables. 10 to 16 rounds are compressor asks the cache if it is available. In such case,

no deciphering is necessary. If the instruction in the cachenecessary to encipher a block. A parallel key expansion al- isacdwrthdeopsorcsdlvrngheor-
gorithm is used to produce an arborescence of the key which ispod instructions. If the nstr uctis notp res

is ued i chcks f 18bit ineachroud. Dciperin is sponding instructions. If the instruction iS not present in

basucallysed ingchu ofv8is inseacround ciphe is the cache, the deciphering unit is used, retrieving the block
bicallyenteusingtheoinver tranlsformations.and can be also from the main memory and converting it into a compressed

code that is delivered to the cache. This method relies on
The choice for these two methods is based on the avail- the efficacy of the compression to avoid some cache misses

ability of the compression method for the platform, and the and, consequently, accesses to the main memory. Moreover,
wide use of the ciphering algorithm, although the general the density of the code that is transferred through the bus is
idea can be used and proved with other combinations of higher, so that, less deciphering is used for the whole execu-
methods. tion of the code.

236

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on July 28, 2009 at 08:32 from IEEE Xplore. Restrictions apply.

15,0% -Application Compression Ratio Clock Cycles in AES

125% LX 01 0 X ven cjpeg 92% 32.80%
Djpeg 98% 70.30%

100% - - - t - 1 - 1X--- Cn o Dijkstra 96% 20.55%

75% _ _ - _ _ | - | - _ _ | - t X Pegwit 86% 80.20%
| _ | |>Search 88% 56.42%

Susan 86% 45.25%
25% * Execution w/AES -

LUa'Ex(ecution wI AES+CC < Table 1. Compression Ratio and AES Clock Cycles amount
CbS bS rC sb 3: due to Compression

Cv
Normally, the best is the compression, the best is the

Fig. 3. Cycle Count Relative to Uncompressed, Plain Text performance result, but in some cases this does not happen.
Code Execution Dijkstra, for example, have a poor compression ratio, but a

very effective performance using compression. This comes
from the fact that most of the ComPackets formed in the

4. RESULT code belongs to the main execution code traces, and as a fa-
mous rule of the thumb establishes, 90% of the execution

In order to validate the proposed scheme we simulated a time is located in 10% of the code. On the other hand, Peg-
set of benchmarks from Mediabench [7] and MiBench [8] wit is clearly the contrary, which means that the majority of
suites comprising Search, a string search algorithm; Susan, the ComPackets are outside the critical execution path.
used to smooth image corners; Dijkstra, an algorithm used
to find paths in a graph; cjpeg and djpeg, image conversion 5. DISCUSSION
algorithms; and Pegwit, an encryption program;

All the codes were compiled with a GCC cross compiler The proposed model brings to the problem of the overhead
for the Leon (Sparc V8) processor [9]. The main memory caused by a deciphering unit, a solution that benefits not
was chosen to be unlimited in terms of size, and the access only the performance but also permits to save memory area
time will cause the processor to wait 80 clock cycles to re- in all cases and even to get some performance improve-
ceive the corresponding required cache block (miss penalty), ment. In fact, when using a secured code, some performance
like in [10]. The cache sizes were chosen by simulating the penalty is expected, but the code compression copes with the
original application and finding the sizes in which a dou- problem and produces a speedup of 1.2 on average.
ble increase in size will not produce a significant hit ratio This is a desired triad in the embedded system field. In
improvement (<5%). The decompressor unit was designed addition, the four axes, energy aspects, can be also foreseen
so as to be coupled with the cache controller and does not as positive, as less external memory accesses are required
implies any overhead to decompress an instruction [5].The and thus less AES computation.
AES deciphering unit was estimated like in [10] in which a The decompressor area is absolutely small. It was imple-
block requires 40 clock cycles to be deciphered. mented in a FPGA and added only 6,473 equivalent gates to

Figure 3 shows the cycle count relative to the original the original 1,923,763 Leon processor implementation. The
execution of the code with the same simulation framework. AES deciphering unit implementation will remain the same
For the execution with a simple AES encryption, consid- independent of the code compression usage, so that the area
ering the deciphering unit overhead, on average we obtain overhead depends on the implementation design.
39% of performance decrease, while using code compres- In the security point of view, compression imposes a
sion and AES together the performance will increase in 20%. noise in the expected results from an attacker. Execution
In all cases the AES+CC outperforms AES. time as well as power consumption is now different from

The compression ratios of the used applications are shown original code and depends on how the compression utility
in Table 1. The compression ratio is defined as the memory works. Architectural side-effect attacks will be also private
footprint size (this includes the dictionary size) relative to from direct interpretation of the results. This, of course, will
the original uncompressed code. The clock cycles in the bring a little extra effort (probably time), although the secu-
ABS deciphering computation is also depicted, relative to rity expected is guaranteed by the ABS algorithm.
the original number, which means that Dijkstra, for exam- In this work we have omitted some challenges in cryp-
ple, will need only 20.55% of the cycles used originally in tography implementation. The first one is the key manage-
the deciphering unit. ment. We simply assumed a model in which an asymmet-

237

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on July 28, 2009 at 08:32 from IEEE Xplore. Restrictions apply.

ric algorithm is used to establish a secure channel in order [4] E. W. Netto, R. Azevedo, P. Centoducatte, and G. Araujo,
to exchange the public key used in AES. The second one "Multi-profile based code compression," in Proc. ACM/IEEE
is integrity verification. We don't deal with the problem in Design Automation Conference, June 2004, pp. 244-249.
this paper, although we believe that compression can help in [5] E. Billo, R. Azevedo, G. Araujo, P. Centoducatte, and E. W.
hashing as well. Netto, "Design of a decompressor engine on a sparc proces-

Many works have proposed using bus encryption. Best sor," in 18th Symposium on Integrated Circuits and Systems
was the first to propose the idea and holds some patents [1]. Design (SBCCI'2005), september 2005.
Gilmont et al [12] use prediction of fetches on a triple-DES [6] N. I. of Science and Tecnology, "FIPS PUB 197: Advanced
and assumes the deciphering cost in about 2.5%. XOM [13] Encryption Standard," in FIPS. Natiional Institute of Sci-
and AEGIS [14] are example of security platforms but the ence and Tecnology, 2001.
authors don't cope with deciphering overhead. [7] C. Lee, M. Potkonjak, and W. Mangione-Smith, "Media-

A recent paper from the AEGIS team faces the problem bench: a tool for evaluating and synthesizing multimedia
[10]. They decouple the AES computation from the fetch communication systems," in Proc. Int'l Symp. on Microar-

mechanism and do both in parallel. In such a case an OPT chitecture, Dec. 1997, pp. 330-337.
encryption, based on timestamps and AES is carried out. [8] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, and
The retrieval of the original information is obtained, in the T. Mudge, "Mibench: a free, commercially representative

best cewhn aX oet b. embedded benchmark suite," in Proc. of the IEEE 4th Annualbest case, with only a XOR operation in a block of 512 bits. Wrso nWrla hrceiain e.20,p.3
The limitation in this approach is that an increase in main 14.
memory area is necessary, as the timestamps occupies space [9] G. Gaisler, "Leon," [OnLine], Oct. 2003, available:
and should be kept along with the encrypted code. This is, http://www.gaisler.com.
probably, a problem for memory constrained embedded sys- [10] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. De-
tem. On the other hand, our solution is orthogonal to their

vadas, "Efficient memory integrity and verification and en-
approach, meaning that it can be used along. cryption for secure processor," in Proceedings of the 36th

Compression was already explored in [15] to minimize Annual IEEE/ACM International Symposium on Microarchi-
the self-reconfiguration of FPGAs, but in that approach a tecture. MICRO-36., 2003, pp. 339-350.
data compression algorithm can be used, as the bitstream is [11] R. M. Best, "Crypto microprocessor that executes enciphered
supposed to be completely decompressed before use. In [16] programs," in United State Patent 4,465,901, 1984.
an overview of the bus encryption approaches is depicted, [12] J. J. Q. Tanguy Gilmont, Jean-Didier Legat, "Enhancing se-
and a mention to the solution of using the CodePack [17] curity in the memory management unit," in Proceedings of
for the overhead problem is raised without any results. the 25th EUROMICRO Conference, vol. 1, 1999, pp. 449-

456.

6. CONCLUSIONS [13] D. L. C. Thekkath, M. Mitchell, P. Lincoln, D. B. end
John Mitchell, and M. Horowitz, "Architectural support for

This paper presents the study of using Code Compression programming languages and operating systems archive," in
to alleviate the bus encryption overhead problem in embed- Proceedings of the ninth international conference on Archi-
ded systems. Our results show that by using a PDC code tectural support for programming languages and operating
compression scheme we reduce the deciphering overhead in systems table ofcontents - ASPLOS IX, 2000, pp. 168-177.
about 50% in average, for a set of Benchmarks from Me- [14] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. De-
diaBench and MiBench suites. Moreover the global perfor- vadas, "Aegis: architecture for tamper-evident and tamper-
mance of the system presents a speedup of 1.2 over the orig- resistant processing," in Proceedings ofthe 17th annual inter-
inal code execution. national conference on Supercomputing, 2003, pp. 160-171.

[15] M. Huebner, M. Ullmann, F. Weissel, and J. Becker,
7. REFERENCES "Real-time configuration code decompression for dynamic

fpga self-reconfiguration," in Proceedings of the 18th In-
[1] A. Wolfe and A. Chanin, "Executing compressed programs ternational Parallel and Distributed Processing Symposium

on an embedded RISC architecture," in Proc. Int'l Symp. on (IPDPS'04), 2004, p. 138b.
Microarchitecture, Nov. 1992, pp. 81-91. [16] R. Elbaz, L. Torres, G. Sassatelli, P. Guillemin, C. Anguille,

[2] H. Lekatsas, J. Henkel, and W. Wolf, "Code compression for M. Bardouillet, C. Buatois, and J. B. Rigaud, "Hardware en-
low power embedded system design," in Proc. ACM/IEEE gines for bus encryption: A survey of existing techniques,"
Design Automation Conference, 2000, pp. 294-299. in Proceedings of the conference on Design, Automation and

Test in Europe, vol. 3, 2005, pp. 40-5.
[3] L. Benini, A. Macu, and A. Nannarelli, "Code compression [7 .Gm n .Boe,CdPc:Cd opeso

for cacheenergy mnimizatin in embdded sysems," lE for PowerPC Processors. International Business Machines
Proceedings on Computers and Digital Techniques, vol. 149, (IBM) Corporation, 1998.
no. 4, pp. 157-163, July 2002.

238

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on July 28, 2009 at 08:32 from IEEE Xplore. Restrictions apply.

