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Abstract 
     Code Compression has been shown to be efficient in 
minimizing the memory requirements for embedded 
systems as well as in power consumption reduction and 
performance improvement. In this paper we devise a 
code compression method, the IBC-EI (Instruction 
Based Compression with Encryption and Integrity 
checking), tailored to provide integrity checking and 
encryption to secure processor-memory transaction. 
The principle is to keep the ciphered code compressed 
in the memory, thus reducing the memory footprint and 
providing more information per memory access. The 
results for the Leon Processor and a set of Mediabench 
and MiBench benchmarks show that the overhead 
introduced by the code encryption and integrity 
checking scheme is almost completely eliminated by 
the compression mechanism. 
 
Keywords: Code Compression; Compression; 
Encryption; Integrity Checking, Security;  
 

1   Introduction 

Embedded systems have been used in a large myriad of 
applications and nowadays the crescent demand for 
services from remote and/or mobile terminal are 
coming more and more important. Many of these 
services involve private information, like bank account 
numbers, thus making security an important issue 
today. 
 In this scenario, we found the processor-memory 
information traffic as a weakness in security. 
Observing memory contents flow, to and from the 
processor, reverse engineering of the software and/or 
access to private or sensitive data can be accomplished 
[1,2]. Those board level attacks challenge data 
confidentiality as well as data integrity.  
 In order to ensure confidentiality of processor-
memory transactions, encryption of the memory 
footprint of the embedded software is implemented. On 
the other hand, data integrity is ensured by using meta-
data, called TAG. Those TAG are computed with 
MAC – Message Authentication Code – functions [16] 

or are nonce (redundancy) added to plaintext block 
before block encryption [6]. The main shortcoming of 
integrity checking techniques is the off-chip memory 
consumption for tag storage [3, 4, 5, 6]. 
 Code Compression (CC) was first idealized to 
respond to the memory constraints of embedded 
systems. When first introduced [7], a decompressor 
engine was located between the cache and the main 
memory of a system, thus the decompression overhead 
could be hidden by the cache (a block decompression 
occurs only on cache misses). This scheme imposes a 
penalty in execution time due to decompression. On 
the other hand less accesses to the main memory is 
expected, which, in turn, overcomes the performance 
problem. 
 In this paper we propose the Instruction Based 
Compression with Encryption and Integrity checking – 
IBC-EI. IBC-EI is the combination of a decompression 
core with the Parallelized Encryption and Integrity 
Checking Engine (PE-ICE [5, 6]) which is based on a 
single block encryption to provide data confidentiality 
and integrity. The objective of this combination is to 
decrease the off-chip memory overhead and the 
performance hit produced by the decryption and 
integrity checking processes of PE-ICE. In this work 
we focus on the protection of code (i.e. Read Only 
data), thus the encryption and the compression of 
application code can be done off-line. However 
decryption and decompression take place during 
software execution thus for performance reason, those 
process are performed in hardware. This paper 
describes how works this hardware component at run-
time. 
 This paper is organized as follows: in Section 2 the 
threat model of the system is described and the existing 
techniques ensuring code confidentiality and integrity 
are described. Section 3 presents the proposed code 
compression method. Section 4 shows the results for 
the Leon Processor [8] and a set of benchmarks from 
MiBench [9] and Mediabench [10] suites; in the 
Section 5 a discussion is presented, inclusive with 
other state of the art possibilities; finally, we present 
our conclusions and future work in Section 6. 



2   Threat Model and Existing 
Countermeasures 

2.1.Threat Model 

 The threat model used in this work considers the 
SoC as trusted. The attacks to be avoided are aimed at 
the bus activity and the off chip memory. They are 
called board level attacks and consist of an adversary 
that probes the bus between the external memory and 
the SoC. The goals are to retrieve (and possibly 
understand) the information transmitted (passive 
attacks challenging data confidentiality) and/or being 
able to interfere in the execution trace (active attacks 
challenging data integrity) with or without the 
knowledge of the consequences the change will 
produce.  
 We are particularly interested in spoofing attacks in 
which an adversary changes aleatoric bits in the 
memory or on the bus and disturbs the program 
behavior randomly. Splicing attacks are also addressed. 
They consist in moving a block of memory to another 
address. This block of memory, having a known 
behavior, can help the attacker on finding its contents 
and its relation with the remaining of the code. Such an 
attack can be seen as a spatial permutation of memory 
block in memory. Note that previous works also 
dealing with board level attacks considers replay 
attacks (temporal permutation of memory block); 
however this attack do not apply to our threat model 
since we only consider code (Read Only data are not 
sensitive to replay since they are written in memory 
once and are not modified at run-time). 

2.2.Existing Techniques for Encryption 
and Integrity Checking 

In order to prevent the attacks previously listed we 
must provide data integrity and confidentiality.  
 To ensure data integrity, Message Authentication 
Code – MAC – algorithms can be used [11]. The 
purpose of such algorithms is to give a compact 
representative image – called in the following TAG or 
fingerprint – of the message at their input and of its 
source. To do so the MAC function is applied on the 
original plaintext by enrolling a secret key. 
 For the confidentiality aspect an encryption 
algorithm is used. There are two main families of such 
algorithms: stream cipher and block cipher. In the first 
one the encryption is done bit per bit while in the 
second the message is split into blocks and then each 
block is encrypted separately.   
 The conventional way to provide both integrity 
checking and confidentiality is to use one of three 
different schemes: Encrypt-then-MAC, MAC-then-
Encrypt and MAC-and-Encrypt. Figure 1 shows these 
three possibilities, from top to bottom respectively. 
Encrypt-then-MAC is the most implemented scheme 
since proved secure [12]. However, in all cases during 
the ciphering, or during the deciphering, or both, the 

MAC and Encryption/Decryption units are not 
parallelizable; it ensures an impact on performance 
and/or on silicon area to implement any of these 
schemes.  
 Thus, in this paper, we will use the concept of 
block-level AREA (Added Redundancy Explicit 
Authentication) introduced in [5, 6]. This principle 
leverages the diffusion property of block encryption to 
add the integrity checking capability to this type of 
encryption algorithm. This is achieved by applying the 
AREA technique at the block level [13]: redundant 
data (e.g. a nonce – a Number used ONCE) is added to 
each plaintext block before encryption and checked in 
the decrypted ciphertext block. Upon a memory write, 
the SoC appends an n-bit nonce to the data to be 
written to memory, encrypts the resulting plaintext 
block and then writes the ciphertext to memory.  
 The encryption is performed using a key securely 
stored on the SoC. The SoC decrypts the block it 
fetches from memory on a read transaction and verifies 
that the last n bits of the resulting plaintext block are 
equal to the nonce that was inserted by the SoC upon 
encryption.  Since a single block encryption invocation 
is required to provide both data confidentiality and 
integrity, the concept of block-level AREA is 
parallelizable on read and write operations and is 
efficient in term of silicon area required (one block 
encryption algorithm implementation instead of a 
encryption and a MAC algorithms in conventional 
approaches).  
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Fig.  1.  Confidentiality and integrity integration 
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 As mentioned above, we focus on RO data which 
are not modified during software execution Therefore 
we use the address of each plaintext block as 
redundancy since it is a nonce: the data and its address 
are concatenated, encrypted and stored in the memory. 
Whenever the processor accesses the block, using its 
address, the ciphertext block is decrypted and the 
address that comes up will be checked against the 
address of the block provided by the processor.  If they 
match the block is considered valid. The first 
implementation of the block-level AREA concept, 
called PE-ICE was proposed in [5] and is shown in 
Figure 2. The overhead of PE-ICE when compared to 
the AES (Advanced Encryption Standard [14]) 
encryption is negligible in term of hardware area and 
low in term of run-time performance [6]. 
. Nevertheless, this approach will still incur 
performance penalties and, more inconvenient, a 
considerable off-chip memory overhead (between 25 
and 50%). The off-chip memory area used to keep the 
same program will be increased by the TAG of the 
block (its address). 
 In this work we propose to compress the code to 
compensate the memory overhead generated by the 
TAG required by the integrity checking process. 
Moreover, code compression means that more 
information is brought on-chip with a single memory 
access and thus improving run-time performance. 

3   IBC-EI: the Instruction Based 
Compression with Encryption 
and Integrity Checking 

 Code compression is aimed at minimizing the 
constrained memory area requirement for embedded 
systems. As a side-effect, the code compressed in 
memory is transferred to the SoC using less memory 
accesses (or more information is transferred per 
memory access), thus improving performance and 
reducing energy consumption. Unfortunately, the 
decompressor used to restore the original information 
will introduce some penalty in performance. However, 

this penalty can be, and it is usually the case, hidden by 
the expensive memory operations reduction.  
 The idea to add code compression to the 
(en|de)cryption and integrity checking scheme is based 
on the fact that the main degradation (performance hit 
and memory overhead) introduced by the underlying 
cryptographic functions can be solved by compression. 
 The framework for the proposed integration 
method can be seen in Figure 3. First the original code 
is compressed and then encrypted. This phase is 
executed offline, so that the compression algorithm 
performance is not critical, as well as the encryption 
process. Then, the ciphered code is stored in the main 
memory. During the code execution, a block of 
memory is retrieved and delivered to the processor. 
The Decryption Unit deciphers, checks the block and 
transfers it to the Decompression Unit, which, in turn, 
decompresses the block and delivers the instructions to 
the Cache/Processor. 
 The Decryptor and the Decompressor are allocated 
into the trusted zone (i.e. SoC). The Decompressor will 
be utilized only on cache misses, thus reducing the 
possible negative impact on performance.  
 To provide integrity checking, instead of using an 
expensive hash algorithm, the block-level AREA 
technique and PE-ICE model (AES based) are used. 
 

3.1.Advanced Encryption Standard 

 The Advanced Encryption Standard is a symmetric-
key encryption algorithm adopted by the National 
Institute of Standards and Technology [14]. 
 AES uses a block of 128 bits of data to be 
encrypted with key lengths of 128, 192 or 256 bits. The 
AES implementation consists of 10 to 14 rounds of 
four transformations, depending on the key length 
chosen. Thus, the encryption (and the decryption 
associated) will impose an important overhead in the 
system performance. 
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Fig.  2.  Parallelized confidentiality and integrity 
checking scheme. 
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3.2.Tailoring the Compression Method 

 The compression method described here is based 
on a dictionary approach in which the instructions in 
the original code are substituted by an index into the 
dictionary [15]. The index size, IDXsize, is a function of 
the number of dictionary entries, DICTentries , as shown 
in Equation 1. 
 
                   IDXsize = log2DICTentries (1) 
 
 The more instructions are in the dictionary, the 
greatest are the indexes. The compressed code will be a 
sequence of indexes and its size will be determined by 
the number of original instructions in the code 
multiplied by the index size and possibly some final 
padding bits to fulfill a memory word (Equation 2). 
Moreover, the dictionary size, in bits, will be the 
instruction word size multiplied by the number of 
dictionary entries (Equation 3). 
 
 COMPsize= #InstOrignalCode x IDXsize  + Padding (2) 
 
            DICTsize= DICTentries x InstructionWordsize (3) 
 
 The metric used to evaluate a code compression 
method will be the Compression Ratio, which 
represents the size of the compressed code (and the 
dictionary associated) over the original code size, as 
defined in Equation 4. This metric, sometimes 
presented in percentage, has the lowest value as the 
best one. 
 

COMPsize  + DICTsize Compression Ratio =  ORIGINALsize 
     (4) 

 This simple approach is still insufficient because 
the code flow can be break by a branch instruction. In 
this case the processor is supposed to begin 
decompressing the next instruction from an address 
and offset different of the following. Possible solutions 
are aligning every code target and patching the branch 
instructions offsets or using an Address Translation 
Table, ATT, mapping original addresses to compressed 
code addresses and offsets. The ATT size, which is 
impractical, can be reduced if not every address is 
mapped, but only a block of addresses. This is intuitive 
for the case of decompression between the cache and 
the main memory, as far as the cache line will be the 
block of information to be fulfilled by the 
decompressor. Thus, the ATT will keep just the 
compressed addresses corresponding to the original 
cache line addresses (and the offset associated). The 
ATT can also be implemented as a linear function 
since the indexes have fixed sizes.  
 Some stronger compressions can be obtained by 
using multiples dictionaries of varying sizes [15]. In 
this approach the smaller dictionary, which will have 
the smaller indexes associated, will keep the 
instructions that appear the most in the original code. 

 On the other hand, to identify the dictionary, to 
which the index in the compressed code belongs, a 
prefix is necessary. A typical curve for the compressed 
code size as a function of the number of dictionaries 
used can be seen in Figure 4. Normally, using 4 
dictionaries with 2 bits prefix will lead to better 
compression of the code. Then, we will use a set of 
four dictionaries for our experiments. 

3.3.Integrating Confidentiality and 
Integrity Checking 

 In our description we use the term chunk to indicate 
the atomic block loaded from memory for decryption 
and integrity checking. A chunk is composed of the 
block address (the TAG used to check data integrity) 
and one or more compressed cache line – also called 
the payload of a chunk. A compressed cache line is the 
representation of every original cache line with 
prefixes (p) and indexes (i) into the dictionaries. This 
chunk is encrypted with the AES and stored in the 
main memory. To match the AES pattern a chunk will 
be, necessarily, 128bit long. If a compressed cache line 
extrapolates the chunk threshold – or more accurately 
the payload threshold – it will be delocalized and 
inserted in the next chunk. This will avoid the use of 
two AES decryptions to fulfill a cache line whenever 
necessary, although the compression results will be 
negatively affected. 
 The ATT will map the address of every original 
cache line to the address of the chunk in which the 
compressed line is present plus the offset, in bits, of 
where the corresponding line starts.  
 Figure 5 shows a conceptual view of a typical 
chunk in memory before encryption. Such a chunk 
contains two compressed cache lines. In this case, the 
original cache line size is 16 bytes or 4 instructions. 
Supposing that the next compressed cache line does 
not fit the remaining bits of the chunk it will be 
assembled in the next one and padding is inserted at 
end of the current chunk. 

Fig.  4.  Compressed Code size for multiples 
dictionaries usage relative to the original  
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 In the figure we can also observe the creation of the 
ATT. For every cache line in the original code an 
address mapping is present. Actually, only the original 
addresses bits used to indicate the cache line serve as 
indexes into the ATT. Moreover, some bits of the 
addresses are constant (and program size dependents), 
so that, only the varying bits are used and stored, 
reducing considerably the ATT size. The offset is 
always 7 bits long to be able to represent any of the 
128 bits possible starting offsets in the chunk. The first 
cache line (40000000h) is mapped into the position of 

the corresponding compressed chunk, for example, 
40000000h. The offset of this first line is 32. The 
second cache line (40000010h) is mapped into the same 
chunk address but the offset is now 74. The next cache 
line (40000020h) will be mapped into the next chunk 
(40000010h), as only two compressed cache lines are 
present in the first chunk. 
 
 The main components of the decompressor engine, 
shown in Figure 6, are the ATT, the set of Dictionaries, 
and the AES deciphering unit.  Whenever a cache miss 
occurs, the cache line address is presented to the 
decompressor engine. The first address goes through 
the ATT and the converted chunk address is found. A 
copy of this address is kept in one of the inputs of the 
Comparator (Comp). Then, the encrypted chunk is 
transferred to the Decompressor Engine. The AES 
deciphering unit (AES-1) is used to retrieve the original 
compressed block that is kept in a buffer. Once the 
decryption is done, the portion of the information used 
to hold the TAG is compared with the first address of 
the block to check for integrity. If they match, the 
block is valid and the decompression begins. A series 
of shifts obtains the prefixes and indexes into the 
dictionary. Finally, the instructions can be delivered to 
the processor. If a second line is requested by the CPU 
the ATT converts the address and the comparator is 
used to check if the cache line is already buffered in 
the Engine. If so, no memory access is required, 
neither the AES-1 unit usage. To provide the correct 
sequence of addresses to the main memory, an adder is 
used to increment the initial position supplied by the 
ATT.  
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Fig.  5.  Typical chunk pattern before encryption 
used in the IBC-EI composed by two compressed 

cache lines and the correspondig ATT. 
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 A FPGA implementation of the compression 
method without the cryptographic functions 
implemented, revels that it imposes a four-cycle 
penalty for the decompression itself [15].  The present 
version of the decompression core will be not very 
different in term of hardware requirement as the logic 
is the same, with just the comparator in addition but 
with easier fetch-from-memory control logic. Note 
that the expensive deciphering operation required by 
PE-ICE will be used over compressed data, which 
means that more information will be brought on-chip 
on each memory access (and thus saving block 
decryption invocation). This means that decryption is 
only required upon decompressor necessity, not 
necessarily on every cache miss. 
 
 

4   Results 

The processor targeted is Leon (SPARC V8) 
open source processor [8]. The benchmarks are 
extracted from MiBench [9] and Mediabench [10]. 
They are a string search algorithm, Search, commonly 
used in office suites; Dijkstra, an algorithm used in 
network routers; Djpeg and Cjpeg, used for 
compressing and decompressing images from and to 
JPEG formats; and Adpcm that encodes or decodes 
audio. 
 We used LECCS, a GCC based compiler for the 
Leon processor, with –O2 option in all the 
benchmarks, so that we avoid typical optimizations 
that increase object code size, like function in-lining 
and loop unrolling. 
 The general setup for the simulator is shown in 
Table 1. Moreover, to highlight the advantage of IBC-
EI we evaluate PE-ICE and AES encryption in the 
same simulation framework.  
 We begin by showing the compression ratio 
obtained in comparison to the original code, including 
each component of the new compressed code: the 
ATT; the Dictionaries; and the Compressed Code 
itself with the associated TAGs. Figure 7 shows the 
Compression Ratio obtained for each benchmark. On 
average, an overhead of only 1% in relation to the 
original code size is obtained. A maximum of 19% is 
obtained for the djpeg. When PE-ICE is implemented 
in addition to code compression, the increase of 50% 
in the code memory area, caused by the TAG usage 
for each cache line, is completely overcome by 
compression. This result comes from the fact that the 
compression reduces the size of the code, thus 
requiring less TAGs to ensure the integrity of the 
whole memory footprint and on the other hand frees 
memory space for the remaining TAGs. 
 Notice that the off-chip memory will keep only 
the compressed code. The ATT and the Dictionaries 
will be kept on-chip. 
 

 
Table 1.  Simulator Architectural Parameters. 

 

Parameter Specification 

I-Cache  1k, 8k / 16B lines, 
Direct Mapped  

D-Cache  8k / 16B lines, 
Direct Mapped  

Memory latency  80 cycle to retrieve 
a cache line  

AES latency 17 cycles   

Decompression latency 4 cycles 
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 The compressed code components present the 
ATT contribution with 14% of the compressed 
footprint; while the contribution from the dictionaries 
is 35%; and the compressed code contribute with 
51%, on average. These values depend on the 
instructions redundancy found in the original code, 
which allows the compression. The higher is the 
redundancy, the smaller are the dictionaries. Thus, the 
smaller is the compressed code.  
 The next experiments show the performance of the 
system in relation to the one without cryptographic 
and compression functions implemented – called in 
the following “base execution” since used as 
reference. In order to provide a minimal comparison 
we also show the case in which only confidentiality is 
addressed with AES encryption. The PE-ICE-only 
proposal is also estimated. The experiments use two i-
cache sizes, as stated in Table 1.  
 

Fig . 7.  Compression Ratio of IBC-EI 
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 Figure 8 and Figure 9 show the Instruction per 
Cycle obtained for each benchmark, normalized to the 
base execution. Note that in all cases the IBC-EI 
outperforms the AES-only approach, while providing 
integrity checking in addition to encryption. 
Moreover, the IBC-EI also outperforms the original 
PE-ICE implementation. 
 Note that, as the cache size increases, the 
performance tends to be the same as the original. This 
fact is due to the nature of cache misses that tends to 
be Compulsory in majority, especially for the smaller 
benchmarks like ADPCM. Once in the cache, and 
with a low miss ratio, the Decompressor engine is not 

more used, and the only AES usage is for fulfilling 
the cache. 
 On average, IBC-EI performance penalty is 
negligible (less than 1%) when compared to a base 
execution. 

5   Improvement Discussion 

 The blobk-level AREA concept and the related 
engine for SoC, PE-ICE, optimize run-time 
performance and hardware resources when compared 
to conventional method [3, 4, 11] providing data 
confidentiality and integrity [5, 6]. However, PE-ICE 
as well as those conventional methods still generates a 
non-negligible off-chip memory overhead to store off-
chip the tag required for memory integrity checking.  
We show that our proposed engine IBC-EI, which 
adds a layer of code compression to PE-ICE, allows 
for the cancellation of this off-chip memory overhead.  
 Moreover, in term of run-time performance, IBC-
EI outperforms the first by about 15% in average in 
terms of IPC, for the same platform and benchmarks. 
In general the IBC-EI provides the means to use more 
effectively the expensive AES block, providing not 
only one cache line per chunk. As a result, IBC-EI 
allows for providing code integrity in addition to code 
confidentiality at almost no cost when compared to an 
AES encryption scheme. On the oher hand, the 
internal memory necessary to implement it will be 
greater than the one for PE-ICE, due to the 
dictionaries storage. 
 In terms of security, our solution can be seen as an 
extension to the PE-ICE solution which relies on the 
diffusion feature of the encryption algorithm. Thus 
corrupting one bit of the ciphertext will affect various 
bits in the plaintext after decryption. In other words, 
changing one bit in the memory will affect the tag 
area with a strong probability in the decrypted chunk 
and invalidate the block after the tag matching 
process. This probability depends on the length of the 
tag as shown in [6]. When the 32-bit address is used 
as tag, spoofing attack has 1/232 likelihood to succeed 
[6]. Concerning splicing attacks, the tag used – the 
chunk address – is a nonce, thus a different tag is used 
for every chunk stored off-chip. It results that a 
spliced block will always be detected upon the 
corresponding tag matching process. On the other 
hand, AES encryption is implemented in IBC-EI, 
preventing passive attacks carried out on the 
processor-memory bus to succeed. Moreover, 
compression will enhance the entropy before the 
encryption, which in turn, can provide better 
statistical spread of information in the ciphertext. 

6   Conclusion 

 In this paper we presented IBC-EI, a code 
compression method tailored for integrity checking 
and confidentiality. We showed that the code 

Fig.  9.  Performance for the 8k i-cache  

Fig.  8.  Performance for the 1k i-cache  



compression layer of IBC-EI added to PE-ICE allows 
for the reduction of its off-chip memory overhead. 
Moreover, IBC-EI incurred a negligible run-time 
performance hit. It results that IBC-EI ensures the 
confidentiality and integrity security services to code 
at almost no cost.  
 Future work involves the relocation of cache lines 
to better explore the chunk space and/or to better 
compress the critical execution paths of the code. The 
energy measurements are also necessary to provide a 
complete picture of the solution. Moreover, we 
currently adapt the concept behind IBC-EI to read 
write data. 
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