
IBC-EI: An Instruction Based Compression method
with Encryption and Integrity Checking

Eduardo Wanderley1,3, Reouven Elbaz2, 4, Lionel Torres2, Gilles Sassatelli2, Romain Vaslin3, Guy

Gogniat3 and Jean-Philippe Diguet3

1Dept. Informatics, CEFET-RN, wanderley@cefetrn.br

2LIRMM Laboratory, CNRS, Université de Montpellier II CNRS, [torres, sassatelli]@lirmm.fr
3LESTER Laboratory University of South Britany [vaslin, gogniat, diguet]@univ-ubs.fr

4Dept of Electrical Engineering, Princeton University, relbaz@princeton.edu

Abstract
 Code Compression has been shown to be efficient in
minimizing the memory requirements for embedded
systems as well as in power consumption reduction and
performance improvement. In this paper we devise a
code compression method, the IBC-EI (Instruction
Based Compression with Encryption and Integrity
checking), tailored to provide integrity checking and
encryption to secure processor-memory transaction.
The principle is to keep the ciphered code compressed
in the memory, thus reducing the memory footprint and
providing more information per memory access. The
results for the Leon Processor and a set of Mediabench
and MiBench benchmarks show that the overhead
introduced by the code encryption and integrity
checking scheme is almost completely eliminated by
the compression mechanism.

Keywords: Code Compression; Compression;
Encryption; Integrity Checking, Security;

1 Introduction

Embedded systems have been used in a large myriad of
applications and nowadays the crescent demand for
services from remote and/or mobile terminal are
coming more and more important. Many of these
services involve private information, like bank account
numbers, thus making security an important issue
today.
 In this scenario, we found the processor-memory
information traffic as a weakness in security.
Observing memory contents flow, to and from the
processor, reverse engineering of the software and/or
access to private or sensitive data can be accomplished
[1,2]. Those board level attacks challenge data
confidentiality as well as data integrity.
 In order to ensure confidentiality of processor-
memory transactions, encryption of the memory
footprint of the embedded software is implemented. On
the other hand, data integrity is ensured by using meta-
data, called TAG. Those TAG are computed with
MAC – Message Authentication Code – functions [16]

or are nonce (redundancy) added to plaintext block
before block encryption [6]. The main shortcoming of
integrity checking techniques is the off-chip memory
consumption for tag storage [3, 4, 5, 6].
 Code Compression (CC) was first idealized to
respond to the memory constraints of embedded
systems. When first introduced [7], a decompressor
engine was located between the cache and the main
memory of a system, thus the decompression overhead
could be hidden by the cache (a block decompression
occurs only on cache misses). This scheme imposes a
penalty in execution time due to decompression. On
the other hand less accesses to the main memory is
expected, which, in turn, overcomes the performance
problem.
 In this paper we propose the Instruction Based
Compression with Encryption and Integrity checking –
IBC-EI. IBC-EI is the combination of a decompression
core with the Parallelized Encryption and Integrity
Checking Engine (PE-ICE [5, 6]) which is based on a
single block encryption to provide data confidentiality
and integrity. The objective of this combination is to
decrease the off-chip memory overhead and the
performance hit produced by the decryption and
integrity checking processes of PE-ICE. In this work
we focus on the protection of code (i.e. Read Only
data), thus the encryption and the compression of
application code can be done off-line. However
decryption and decompression take place during
software execution thus for performance reason, those
process are performed in hardware. This paper
describes how works this hardware component at run-
time.
 This paper is organized as follows: in Section 2 the
threat model of the system is described and the existing
techniques ensuring code confidentiality and integrity
are described. Section 3 presents the proposed code
compression method. Section 4 shows the results for
the Leon Processor [8] and a set of benchmarks from
MiBench [9] and Mediabench [10] suites; in the
Section 5 a discussion is presented, inclusive with
other state of the art possibilities; finally, we present
our conclusions and future work in Section 6.

2 Threat Model and Existing
Countermeasures

2.1.Threat Model

 The threat model used in this work considers the
SoC as trusted. The attacks to be avoided are aimed at
the bus activity and the off chip memory. They are
called board level attacks and consist of an adversary
that probes the bus between the external memory and
the SoC. The goals are to retrieve (and possibly
understand) the information transmitted (passive
attacks challenging data confidentiality) and/or being
able to interfere in the execution trace (active attacks
challenging data integrity) with or without the
knowledge of the consequences the change will
produce.
 We are particularly interested in spoofing attacks in
which an adversary changes aleatoric bits in the
memory or on the bus and disturbs the program
behavior randomly. Splicing attacks are also addressed.
They consist in moving a block of memory to another
address. This block of memory, having a known
behavior, can help the attacker on finding its contents
and its relation with the remaining of the code. Such an
attack can be seen as a spatial permutation of memory
block in memory. Note that previous works also
dealing with board level attacks considers replay
attacks (temporal permutation of memory block);
however this attack do not apply to our threat model
since we only consider code (Read Only data are not
sensitive to replay since they are written in memory
once and are not modified at run-time).

2.2.Existing Techniques for Encryption
and Integrity Checking

In order to prevent the attacks previously listed we
must provide data integrity and confidentiality.
 To ensure data integrity, Message Authentication
Code – MAC – algorithms can be used [11]. The
purpose of such algorithms is to give a compact
representative image – called in the following TAG or
fingerprint – of the message at their input and of its
source. To do so the MAC function is applied on the
original plaintext by enrolling a secret key.
 For the confidentiality aspect an encryption
algorithm is used. There are two main families of such
algorithms: stream cipher and block cipher. In the first
one the encryption is done bit per bit while in the
second the message is split into blocks and then each
block is encrypted separately.
 The conventional way to provide both integrity
checking and confidentiality is to use one of three
different schemes: Encrypt-then-MAC, MAC-then-
Encrypt and MAC-and-Encrypt. Figure 1 shows these
three possibilities, from top to bottom respectively.
Encrypt-then-MAC is the most implemented scheme
since proved secure [12]. However, in all cases during
the ciphering, or during the deciphering, or both, the

MAC and Encryption/Decryption units are not
parallelizable; it ensures an impact on performance
and/or on silicon area to implement any of these
schemes.
 Thus, in this paper, we will use the concept of
block-level AREA (Added Redundancy Explicit
Authentication) introduced in [5, 6]. This principle
leverages the diffusion property of block encryption to
add the integrity checking capability to this type of
encryption algorithm. This is achieved by applying the
AREA technique at the block level [13]: redundant
data (e.g. a nonce – a Number used ONCE) is added to
each plaintext block before encryption and checked in
the decrypted ciphertext block. Upon a memory write,
the SoC appends an n-bit nonce to the data to be
written to memory, encrypts the resulting plaintext
block and then writes the ciphertext to memory.
 The encryption is performed using a key securely
stored on the SoC. The SoC decrypts the block it
fetches from memory on a read transaction and verifies
that the last n bits of the resulting plaintext block are
equal to the nonce that was inserted by the SoC upon
encryption. Since a single block encryption invocation
is required to provide both data confidentiality and
integrity, the concept of block-level AREA is
parallelizable on read and write operations and is
efficient in term of silicon area required (one block
encryption algorithm implementation instead of a
encryption and a MAC algorithms in conventional
approaches).

Pl
ai

nt
ex

t

E
nc

ry
pt

io
n

C
ip

he
rt

ex
t M

A
C

Fig. 1. Confidentiality and integrity integration

schemes.

D
ec

ry
pt

io
n

T
A

G
’

M
A

C

=

Pl
ai

nt
ex

t

T
A

G

t

Pl
ai

nt
ex

t

M
A

C

E
nc

ry
pt

io
n

C
ip

he
rt

ex
t

D
ec

ry
pt

io
n

Pl
ai

nt
ex

t
T

A
G

M
A

C

=

T
A

G
’

t

Pl
ai

nt
ex

t M
A

C

E
nc

ry
pt

io
n

D
ec

ry
pt

io
n

Pl
ai

nt
ex

t

M
A

C

=

T
A

G
’

t ciphering deciphering
on

C
ip

he
rt

ex
t

T
A

G

deciphering ciphering

E
(T

)

 As mentioned above, we focus on RO data which
are not modified during software execution Therefore
we use the address of each plaintext block as
redundancy since it is a nonce: the data and its address
are concatenated, encrypted and stored in the memory.
Whenever the processor accesses the block, using its
address, the ciphertext block is decrypted and the
address that comes up will be checked against the
address of the block provided by the processor. If they
match the block is considered valid. The first
implementation of the block-level AREA concept,
called PE-ICE was proposed in [5] and is shown in
Figure 2. The overhead of PE-ICE when compared to
the AES (Advanced Encryption Standard [14])
encryption is negligible in term of hardware area and
low in term of run-time performance [6].
. Nevertheless, this approach will still incur
performance penalties and, more inconvenient, a
considerable off-chip memory overhead (between 25
and 50%). The off-chip memory area used to keep the
same program will be increased by the TAG of the
block (its address).
 In this work we propose to compress the code to
compensate the memory overhead generated by the
TAG required by the integrity checking process.
Moreover, code compression means that more
information is brought on-chip with a single memory
access and thus improving run-time performance.

3 IBC-EI: the Instruction Based
Compression with Encryption
and Integrity Checking

 Code compression is aimed at minimizing the
constrained memory area requirement for embedded
systems. As a side-effect, the code compressed in
memory is transferred to the SoC using less memory
accesses (or more information is transferred per
memory access), thus improving performance and
reducing energy consumption. Unfortunately, the
decompressor used to restore the original information
will introduce some penalty in performance. However,

this penalty can be, and it is usually the case, hidden by
the expensive memory operations reduction.
 The idea to add code compression to the
(en|de)cryption and integrity checking scheme is based
on the fact that the main degradation (performance hit
and memory overhead) introduced by the underlying
cryptographic functions can be solved by compression.
 The framework for the proposed integration
method can be seen in Figure 3. First the original code
is compressed and then encrypted. This phase is
executed offline, so that the compression algorithm
performance is not critical, as well as the encryption
process. Then, the ciphered code is stored in the main
memory. During the code execution, a block of
memory is retrieved and delivered to the processor.
The Decryption Unit deciphers, checks the block and
transfers it to the Decompression Unit, which, in turn,
decompresses the block and delivers the instructions to
the Cache/Processor.
 The Decryptor and the Decompressor are allocated
into the trusted zone (i.e. SoC). The Decompressor will
be utilized only on cache misses, thus reducing the
possible negative impact on performance.
 To provide integrity checking, instead of using an
expensive hash algorithm, the block-level AREA
technique and PE-ICE model (AES based) are used.

3.1.Advanced Encryption Standard

 The Advanced Encryption Standard is a symmetric-
key encryption algorithm adopted by the National
Institute of Standards and Technology [14].
 AES uses a block of 128 bits of data to be
encrypted with key lengths of 128, 192 or 256 bits. The
AES implementation consists of 10 to 14 rounds of
four transformations, depending on the key length
chosen. Thus, the encryption (and the decryption
associated) will impose an important overhead in the
system performance.

@

PE
-I

C
E

E

nc
ry

pt

Trusted zone

Fig. 2. Parallelized confidentiality and integrity
checking scheme.

E
nc

ry
pt

io
n

C
ip

he
rt

ex
t

D
ec

ry
pt

io
n

D
at

aB
lo

ck

A

dd
r

=

A
dd

r

A
dd

r
D

at
aB

lo
ck

t ciphering deciphering

So
ft

w
ar

e

Code Comp
Code

Ciphered

C
om

pr
es

so
r

Ciphered

Main
Memory

C
ac

he

Pr
oc

es
so

r H
ar

dw
ar

e

D
ec

om
pr

es
so

r

PE
-I

C
E

D

ec
ry

pt
or

Fig. 3. Code Compression integration with security

Trusted Zone

3.2.Tailoring the Compression Method

 The compression method described here is based
on a dictionary approach in which the instructions in
the original code are substituted by an index into the
dictionary [15]. The index size, IDXsize, is a function of
the number of dictionary entries, DICTentries , as shown
in Equation 1.

 IDXsize = log2DICTentries (1)

 The more instructions are in the dictionary, the
greatest are the indexes. The compressed code will be a
sequence of indexes and its size will be determined by
the number of original instructions in the code
multiplied by the index size and possibly some final
padding bits to fulfill a memory word (Equation 2).
Moreover, the dictionary size, in bits, will be the
instruction word size multiplied by the number of
dictionary entries (Equation 3).

 COMPsize= #InstOrignalCode x IDXsize + Padding (2)

 DICTsize= DICTentries x InstructionWordsize (3)

 The metric used to evaluate a code compression
method will be the Compression Ratio, which
represents the size of the compressed code (and the
dictionary associated) over the original code size, as
defined in Equation 4. This metric, sometimes
presented in percentage, has the lowest value as the
best one.

COMPsize + DICTsize Compression Ratio = ORIGINALsize
 (4)

 This simple approach is still insufficient because
the code flow can be break by a branch instruction. In
this case the processor is supposed to begin
decompressing the next instruction from an address
and offset different of the following. Possible solutions
are aligning every code target and patching the branch
instructions offsets or using an Address Translation
Table, ATT, mapping original addresses to compressed
code addresses and offsets. The ATT size, which is
impractical, can be reduced if not every address is
mapped, but only a block of addresses. This is intuitive
for the case of decompression between the cache and
the main memory, as far as the cache line will be the
block of information to be fulfilled by the
decompressor. Thus, the ATT will keep just the
compressed addresses corresponding to the original
cache line addresses (and the offset associated). The
ATT can also be implemented as a linear function
since the indexes have fixed sizes.
 Some stronger compressions can be obtained by
using multiples dictionaries of varying sizes [15]. In
this approach the smaller dictionary, which will have
the smaller indexes associated, will keep the
instructions that appear the most in the original code.

 On the other hand, to identify the dictionary, to
which the index in the compressed code belongs, a
prefix is necessary. A typical curve for the compressed
code size as a function of the number of dictionaries
used can be seen in Figure 4. Normally, using 4
dictionaries with 2 bits prefix will lead to better
compression of the code. Then, we will use a set of
four dictionaries for our experiments.

3.3.Integrating Confidentiality and
Integrity Checking

 In our description we use the term chunk to indicate
the atomic block loaded from memory for decryption
and integrity checking. A chunk is composed of the
block address (the TAG used to check data integrity)
and one or more compressed cache line – also called
the payload of a chunk. A compressed cache line is the
representation of every original cache line with
prefixes (p) and indexes (i) into the dictionaries. This
chunk is encrypted with the AES and stored in the
main memory. To match the AES pattern a chunk will
be, necessarily, 128bit long. If a compressed cache line
extrapolates the chunk threshold – or more accurately
the payload threshold – it will be delocalized and
inserted in the next chunk. This will avoid the use of
two AES decryptions to fulfill a cache line whenever
necessary, although the compression results will be
negatively affected.
 The ATT will map the address of every original
cache line to the address of the chunk in which the
compressed line is present plus the offset, in bits, of
where the corresponding line starts.
 Figure 5 shows a conceptual view of a typical
chunk in memory before encryption. Such a chunk
contains two compressed cache lines. In this case, the
original cache line size is 16 bytes or 4 instructions.
Supposing that the next compressed cache line does
not fit the remaining bits of the chunk it will be
assembled in the next one and padding is inserted at
end of the current chunk.

Fig. 4. Compressed Code size for multiples
dictionaries usage relative to the original

50%

55%

60%

65%

70%

1 2 4 8 16

C
o

m
p

re
ss

ed
 C

o
d

e
S

iz
e

 In the figure we can also observe the creation of the
ATT. For every cache line in the original code an
address mapping is present. Actually, only the original
addresses bits used to indicate the cache line serve as
indexes into the ATT. Moreover, some bits of the
addresses are constant (and program size dependents),
so that, only the varying bits are used and stored,
reducing considerably the ATT size. The offset is
always 7 bits long to be able to represent any of the
128 bits possible starting offsets in the chunk. The first
cache line (40000000h) is mapped into the position of

the corresponding compressed chunk, for example,
40000000h. The offset of this first line is 32. The
second cache line (40000010h) is mapped into the same
chunk address but the offset is now 74. The next cache
line (40000020h) will be mapped into the next chunk
(40000010h), as only two compressed cache lines are
present in the first chunk.

 The main components of the decompressor engine,
shown in Figure 6, are the ATT, the set of Dictionaries,
and the AES deciphering unit. Whenever a cache miss
occurs, the cache line address is presented to the
decompressor engine. The first address goes through
the ATT and the converted chunk address is found. A
copy of this address is kept in one of the inputs of the
Comparator (Comp). Then, the encrypted chunk is
transferred to the Decompressor Engine. The AES
deciphering unit (AES-1) is used to retrieve the original
compressed block that is kept in a buffer. Once the
decryption is done, the portion of the information used
to hold the TAG is compared with the first address of
the block to check for integrity. If they match, the
block is valid and the decompression begins. A series
of shifts obtains the prefixes and indexes into the
dictionary. Finally, the instructions can be delivered to
the processor. If a second line is requested by the CPU
the ATT converts the address and the comparator is
used to check if the cache line is already buffered in
the Engine. If so, no memory access is required,
neither the AES-1 unit usage. To provide the correct
sequence of addresses to the main memory, an adder is
used to increment the initial position supplied by the
ATT.

@ChunkAddress
 …i p i p i p
 i p i p i p i p i…
 padding i p C

hu
nk

(1

28
 b

its
)

(A
E

S
bl

oc
k)

00 00 32
00 01 74

40000000
40000004
40000008
4000000c
40000010 @ChunkAddress

01 02 32

?? ?? ??? : : :

in
de

x

ATT
Offset

(base 10)

0 31

40000 _ _ 0
Cache line address

constant constant

p: dictionary prefix
i : index into the
 corresponding
 dictionary

40000 _ _ 0

constant

Chunk address
Compressed
 line start bit

@blockAES

Memory

Encrypted
 chunk

Fig. 6. The decompression engine with security issues integrated

Fig. 5. Typical chunk pattern before encryption
used in the IBC-EI composed by two compressed

cache lines and the correspondig ATT.

CPU

ca
ch

e

@original

ATT

4 +

AES-1

Comp

Instruc

Ok?

Dictonaries

Decompressor Engine

T
A

G

PE-ICE

 A FPGA implementation of the compression
method without the cryptographic functions
implemented, revels that it imposes a four-cycle
penalty for the decompression itself [15]. The present
version of the decompression core will be not very
different in term of hardware requirement as the logic
is the same, with just the comparator in addition but
with easier fetch-from-memory control logic. Note
that the expensive deciphering operation required by
PE-ICE will be used over compressed data, which
means that more information will be brought on-chip
on each memory access (and thus saving block
decryption invocation). This means that decryption is
only required upon decompressor necessity, not
necessarily on every cache miss.

4 Results

The processor targeted is Leon (SPARC V8)
open source processor [8]. The benchmarks are
extracted from MiBench [9] and Mediabench [10].
They are a string search algorithm, Search, commonly
used in office suites; Dijkstra, an algorithm used in
network routers; Djpeg and Cjpeg, used for
compressing and decompressing images from and to
JPEG formats; and Adpcm that encodes or decodes
audio.
 We used LECCS, a GCC based compiler for the
Leon processor, with –O2 option in all the
benchmarks, so that we avoid typical optimizations
that increase object code size, like function in-lining
and loop unrolling.
 The general setup for the simulator is shown in
Table 1. Moreover, to highlight the advantage of IBC-
EI we evaluate PE-ICE and AES encryption in the
same simulation framework.
 We begin by showing the compression ratio
obtained in comparison to the original code, including
each component of the new compressed code: the
ATT; the Dictionaries; and the Compressed Code
itself with the associated TAGs. Figure 7 shows the
Compression Ratio obtained for each benchmark. On
average, an overhead of only 1% in relation to the
original code size is obtained. A maximum of 19% is
obtained for the djpeg. When PE-ICE is implemented
in addition to code compression, the increase of 50%
in the code memory area, caused by the TAG usage
for each cache line, is completely overcome by
compression. This result comes from the fact that the
compression reduces the size of the code, thus
requiring less TAGs to ensure the integrity of the
whole memory footprint and on the other hand frees
memory space for the remaining TAGs.
 Notice that the off-chip memory will keep only
the compressed code. The ATT and the Dictionaries
will be kept on-chip.

Table 1. Simulator Architectural Parameters.

Parameter Specification

I-Cache 1k, 8k / 16B lines,
Direct Mapped

D-Cache 8k / 16B lines,
Direct Mapped

Memory latency 80 cycle to retrieve
a cache line

AES latency 17 cycles

Decompression latency 4 cycles

0

20

40

60

80

100

120

ad
pc

m_e

ad
pc

m_d
cjp

eg
djp

eg

dijk
str

a
se

arc
h

su
sa

n

C
o

m
p

re
ss

io
n

 R
at

io
 (

%
)

ATT

DICT

CODE

 The compressed code components present the
ATT contribution with 14% of the compressed
footprint; while the contribution from the dictionaries
is 35%; and the compressed code contribute with
51%, on average. These values depend on the
instructions redundancy found in the original code,
which allows the compression. The higher is the
redundancy, the smaller are the dictionaries. Thus, the
smaller is the compressed code.
 The next experiments show the performance of the
system in relation to the one without cryptographic
and compression functions implemented – called in
the following “base execution” since used as
reference. In order to provide a minimal comparison
we also show the case in which only confidentiality is
addressed with AES encryption. The PE-ICE-only
proposal is also estimated. The experiments use two i-
cache sizes, as stated in Table 1.

Fig . 7. Compression Ratio of IBC-EI

0,0

0,2

0,4

0,6

0,8

1,0

1,2

adpcm_e adpcm_d cjpeg djpeg dijkstra search susan

IP
C

 r
el

at
iv

e
to

 b
as

e
ex

ec
u

ti
o

n
IBCEI AES-only PE-ICE

0,0

0,2

0,4

0,6

0,8

1,0

1,2

adpcm_e adpcm_d cjpeg djpeg dijkstra search susan

IP
C

 r
el

at
iv

e
to

 b
as

e
ex

ec
u

tio
n

IBCEI AES-only PE-ICE

 Figure 8 and Figure 9 show the Instruction per
Cycle obtained for each benchmark, normalized to the
base execution. Note that in all cases the IBC-EI
outperforms the AES-only approach, while providing
integrity checking in addition to encryption.
Moreover, the IBC-EI also outperforms the original
PE-ICE implementation.
 Note that, as the cache size increases, the
performance tends to be the same as the original. This
fact is due to the nature of cache misses that tends to
be Compulsory in majority, especially for the smaller
benchmarks like ADPCM. Once in the cache, and
with a low miss ratio, the Decompressor engine is not

more used, and the only AES usage is for fulfilling
the cache.
 On average, IBC-EI performance penalty is
negligible (less than 1%) when compared to a base
execution.

5 Improvement Discussion

 The blobk-level AREA concept and the related
engine for SoC, PE-ICE, optimize run-time
performance and hardware resources when compared
to conventional method [3, 4, 11] providing data
confidentiality and integrity [5, 6]. However, PE-ICE
as well as those conventional methods still generates a
non-negligible off-chip memory overhead to store off-
chip the tag required for memory integrity checking.
We show that our proposed engine IBC-EI, which
adds a layer of code compression to PE-ICE, allows
for the cancellation of this off-chip memory overhead.
 Moreover, in term of run-time performance, IBC-
EI outperforms the first by about 15% in average in
terms of IPC, for the same platform and benchmarks.
In general the IBC-EI provides the means to use more
effectively the expensive AES block, providing not
only one cache line per chunk. As a result, IBC-EI
allows for providing code integrity in addition to code
confidentiality at almost no cost when compared to an
AES encryption scheme. On the oher hand, the
internal memory necessary to implement it will be
greater than the one for PE-ICE, due to the
dictionaries storage.
 In terms of security, our solution can be seen as an
extension to the PE-ICE solution which relies on the
diffusion feature of the encryption algorithm. Thus
corrupting one bit of the ciphertext will affect various
bits in the plaintext after decryption. In other words,
changing one bit in the memory will affect the tag
area with a strong probability in the decrypted chunk
and invalidate the block after the tag matching
process. This probability depends on the length of the
tag as shown in [6]. When the 32-bit address is used
as tag, spoofing attack has 1/232 likelihood to succeed
[6]. Concerning splicing attacks, the tag used – the
chunk address – is a nonce, thus a different tag is used
for every chunk stored off-chip. It results that a
spliced block will always be detected upon the
corresponding tag matching process. On the other
hand, AES encryption is implemented in IBC-EI,
preventing passive attacks carried out on the
processor-memory bus to succeed. Moreover,
compression will enhance the entropy before the
encryption, which in turn, can provide better
statistical spread of information in the ciphertext.

6 Conclusion

 In this paper we presented IBC-EI, a code
compression method tailored for integrity checking
and confidentiality. We showed that the code

Fig. 9. Performance for the 8k i-cache

Fig. 8. Performance for the 1k i-cache

compression layer of IBC-EI added to PE-ICE allows
for the reduction of its off-chip memory overhead.
Moreover, IBC-EI incurred a negligible run-time
performance hit. It results that IBC-EI ensures the
confidentiality and integrity security services to code
at almost no cost.
 Future work involves the relocation of cache lines
to better explore the chunk space and/or to better
compress the critical execution paths of the code. The
energy measurements are also necessary to provide a
complete picture of the solution. Moreover, we
currently adapt the concept behind IBC-EI to read
write data.

7 References

[1] M. G. Kuhn, “Cipher Instruction Search Attack on the
Bus-Encryption Security Microcontroller DS5002FP”,
IEEE Trans. Comput., vol. 47, pp. 1153–1157,
October. 1998.

[2] A. Huang. "Keeping secrets in hardware the microsoft
xbox case study". MIT AI Memo, 2002.

[3] Gookwon Edward Suh, “AEGIS: A Single-Chip
Secure Processor”, PhD thesis, Massachusetts Institute
of Technology, September 2005.

[4] G. Suh, D. Clarke, B. Gassend, M. van Dijk and S.
Devadas, “Efficient Memory Integrity Verification
and Encryption for Secure Processors” In Proceedings
of the 36th Int’l Symposium on Microarchitecture
(MICRO-36). pp. 339-350, (Dec. 2003).

[5] R. Elbaz, L. Torres, G. Sassatelli, P. Guillemin, M.
Bardouillet and A. Martinez. “A Parallelized Way to
Provide Data Encryption and Integrity Checking on a
Processor-Memory Bus” In Proceedings of the 43rd
Design Automation Conference (DAC-43). pp. 506-
509, (July 2006).

[6] R. Elbaz, “Hardware Mechanisms for Secured
Processor-Memory Tansactions in Embedded
Systems” PhD Thesis, LIRMM laboratory Montpellier
University, 2006.

[7] A. Wolfe and A. Chanin. “Executing compressed
programs on an embedded RISC architecture”. In

Proceedings of the Int’l Symp. on Microarchitecture
pp. 81-91 (Dec. 1992).

[8] Gaisler, G. Leon, 2003. Available at:
http://www.gaisler.com accessed June/2006

[9] Guthaus, M., Ringenberg, M., Ernst, D., Austin, T.,
Mudge, T. and Brown, R. MiBench: a free,
commercially representative embedded benchmark
suite. In Proceedings of the IEEE 4th Annual
Workshop on Workload Characterization pp. 3-14,
(Dec. 2001).

[10] Lee, C., Potkonjak, M. and Mangione-Smith, W.
MediaBench: a tool for evaluating and synthesizing
multimedia communication system. In Proceedings of
the Int’l Symp. on Microarchitecture, pp.330-337,
(Dec. 1997).

[11] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D.
Boneh, J. Mitchell and M. Horowitz. “Architectural
Support for Copy and Tamper Resistant Software”. In
Proceedings of the 9th Int’l Conference on
Architectural Support for Progamming Languages
and Operating Systems (ASPLOS-IX) pp. 168-177,
(Nov. 2000).

[12] M. Bellare and C. Namprempre, “Authenticated
Encryption: Relations among Notions and Analysis of
the Generic Con-struction Paradigm”, In T. Okamoto,
editor, Asiacrypt 2000, volume 1976 of LNCS, p. 531-
545. Springer-Verlag, Berlin Germany, December
2000.

[13] C. Fruhwirth, “New Methods in Hard Disk
Encryption”, Institute for Computer Languages,
Theory and Logic Group, Vienna University of
Technology, 2005. Available at
http://clemens.endorphin.org/cryptography. Accessed
May/2007

[14] National Institute of Science and Technology. FIPS
PUB 197: Adavnced Encryption Standard (AES),
Nov. 2001

[15] R. Azevedo, “An architecture for Executing
Compressed Code in Embedded Systems” PhD
Thesis, Institue of Computing, UNICAMP. 2002.

[16] A. J. Menezes, P. C. van Oorschot, and S. A.
Vanstone. Handbook of Applied Cryptography. CRC
Press, 1996.

