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Abstract—In this paper we propose a design methodology to
explore partial and dynamic reconfiguration of modern FPGAs.
We improve an UML based co-design methodology to allow
dynamic properties in embedded systems. Our approach targets
MPSoPC (Multiprocessor System on Programmable Chip) which
allows area optimization through partial reconfiguration without
performance penalty. In our case area reduction is achieved by
reconfiguring co-processors connected to embedded processors.
Most of the system is automatically generated by means of
MDE techniques. Our modeling approach allows designers to
target dynamic reconfiguration without being expert of modern
FPGAs as many implementation details are hidden during the
modeling step. Such a methodology allows design time speed-
up and a significant reduction of the gap between hardware
and software modeling. In order to validate our approach,
an object tracking application has been implemented on a
reconfigurable system composed of 4 embedded processors and
3 co-processors. Dynamic reconfiguration has been performed
for one co-processor which dynamically implements 3 different
computations.

I. INTRODUCTION

Advances in reconfigurable technologies allow entire mul-
tiprocessor systems to be implemented in a single FPGA
(Multiprocessor System on Programmable Chip, MPSoPC).
Designing such systems with existing tools will soon become
unmanageable due to complexity and productivity reasons.
One promising solution to mitigate designer task is to further
increase abstraction levels in order to hide many implemen-
tation details. Such an approach will allow system designer
to have access to various SW and HW technologies without
being an expert of all of them. Several efforts have been
performed these last years to promote UML (Unified Modeling
Language) [1] in order to consider it as an efficient language to
model multiprocessor systems. Considering a single language
to design these systems is very interesting and allows to speed
up design time and system integration. In [2], the authors
have identified UML properties required to model embedded
systems. More recently the MARTE profile [3] (Modeling
and Analysis of Real-time and Embedded systems) which is
in adoption by OMG (Object Management Group) addresses
real-time embedded system modeling issues.

To build an efficient design flow it is mandatory to rely on
a well defined model of platform. Typical MPSoPC systems
(Figure I) are composed of a set of embedded processors
executing tasks which communicate together to implement the
system functionality. Specific IPs (Intellectual Property) can
be considered to speed up the computation of intensive tasks.
These IPs can be used as co-processors directly connected to
processors or accelerators connected to internal buses. During
the development process flexibility, performance and area
correspond to key concerns for the designer. Existing FPGA

P

B

C

Dynamic and partial reconfigurable circuit

M

P C

M

P C

M

M A

M

P

M

IOIO

P=Processor
M=Memory
C=Co-processor
B=Bridge
A=Accelerator
IO=Input/Output

P=Processor
M=Memory
C=Co-processor
B=Bridge
A=Accelerator
IO=Input/OutputReconfigurable 

components

Fig. 1. Reconfigurable multiprocessor system: Accelerators and co-
processors can be dynamically replaced.

technology (e.g. Xilinx Virtex devices) offers dynamic and par-
tial reconfiguration (DPR) features that can be advantageously
considered to address these points. DPR allows HW tasks to
share the same resource if their execution is exclusive. Such a
solution is very interesting as it reduces the total system area
while still meeting performance constraints. Supporting DPR
allows multiprocessor systems to replace co-processors or
accelerators at run time which significantly increases platform
flexibility. Unfortunately there is a lack of tools addressing
the design of reconfigurable MPSoPCs at the abstraction level
mentioned above. Thus in this paper we propose to reduce the
gap between the design of reconfigurable MPSoPCs and the
targeted technology (FPGA).

In [4], an UML based co-design methodology for embedded
systems has been presented. We propose to enhance this
approach with reconfigurability modeling techniques. Our co-
design approach considers application and platform models to
be designed separately. A further allocation step is performed
to obtain the allocated model, which represents the final
embedded system. In our methodology we consider a platform
model as the one shown in Figure I where we limit the
reconfiguration to co-processors. Thus our approach allows the
design of dynamically and partially reconfigurable multipro-
cessor systems, where HW tasks (co-processors) are replaced
at run time. We use a reconfiguration service, described in [5]
to perform DPR.

The paper is organized as follows: In Section II we discuss
existing efforts. In Section III we introduce the execution
scheme. In section IV we introduce our modeling methodology
and detail reconfiguration modeling. In Section V we present
our tools chain and detail the development flow. In Section VI
we show some results on an object tracking application.
Finally, in Section VII we conclude and present some future
work.
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II. RELATED WORK

The use of model based approaches for co-design has been
discussed in [6], which pointed out some advantages: cost
decrease, silicon complexity handling, productivity increase,
etc. Several works have also shown the benefit of using
UML for embedded system modeling [7], [8], [9], [10], [11],
[12], [13]. However most of them define specific profiles
to model embedded systems. Using specific profiles limits a
large adoption of these approaches as they do not rely on
a standard. Furthermore proposed approaches mainly target
system analysis and simulation. Few of them propose SystemC
code generation [8], [14] which reduces the gap between the
specification and the implementation but still requires further
synthesis steps.

Dynamic and partial reconfiguration modeling using UML
allows such methodologies to take advantage of dynamic
reconfiguration capabilities of moderns FPGAs. Although
there is a lot of work on embedded system modeling using
UML, only few explore dynamic and partial reconfiguration
capabilities [15], [16].

In [15], authors use UML sequence diagram with specific
stereotypes to model dynamic reconfiguration. Their approach
is very simple and efficient, but it lacks platform modeling.
In their work the system platform is fixed: a processor with a
reconfigurable device as an auxiliary computing unit. Also, it
does not support dynamic and partial reconfiguration.

In [16], authors detail a dynamic reconfigurable system by
extending UML/MARTE with specific stereotypes. Their ap-
proach is developed in a design environment called GASPARD
[17], where VHDL code is generated. This approach is very
target-dependent and requires a strong level of expertise as all
elements of the Xilinx partial reconfiguration design process
need to be modeled.

Compared to previous efforts, our approach only uses stan-
dard UML/MARTE elements. Specific properties are required
by the code generation tool that is target dependent. In order to
allow a large adoption of dynamic and partial reconfiguration
we hide from system designer many technology details. Re-
configuration services and resources are automatically added
to the system during the code generation step.

III. EXECUTION SCHEME

To define a dynamically reconfigurable MPSoPC we con-
sider a platform architecture as described in Figure I. In our
case the application does not exhibit reconfiguration features.
The application execution is defined as a static one since
the execution of the tasks are not data or control dependent.
However when two tasks are executed exclusively they can
share the same HW area. In that case the reconfiguration is
performed at the end of the execution of the first task before
launching the second one.

Data used by processors are stored locally into distributed
memories as shown in Figure I. Communications between two
tasks contain all required data to perform the corresponding
computation. Communications between processors are im-
plemented through a shared memory [18]. Communications
between a processor and a co-processor are performed through
a dedicated channel. A co-processor can only communicate
with its associated processor. When a processor sends an event
to a co-processor, it contains the event and the associated
data. The same scheme is used when a co-processor sends
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Fig. 2. Model transformation. Allocated model is used as input to the code
generation tool.

an event back to a processor. Thus co-processors do not store
any data between two executions. This execution scheme is
considered to efficiently perform dynamic reconfiguration of
co-processors.

In this paper we explore dynamic and partial reconfiguration
of modern FPGAs. FPGA configuration is performed by
loading a bitstream into the device. The bitstream contains the
system to be implemented into the FPGA. When dynamic and
partial reconfiguration is done a partial bitstream is required
as only a part of the system is modified (in our case co-
processors).

To perform dynamic reconfiguration we need some specific
features. In the paper we call reconfiguration service all the
elements used to perform dynamic and partial reconfiguration
[5]. This service is composed of hardware and software
elements (e.g. ethernet controller, Xilinx ICAP (Internal Re-
configuration Access Port), reconfiguration API) required to
perform bitstream loading. In the next sections we rely our
modeling techniques on these characteristics.

IV. MODELING

Our co-design methodology takes into account three main
elements to be modeled: the application, the platform and
how application fits into the platform, what we call the
allocation. The application is defined as a set of communicat-
ing tasks where each task performs some computations. The
platform is defined as a set of connected IPs (components)
and the allocation is a mapping between application tasks
and platform components. Figure 2 exhibits the dependencies
between the three models. The allocated model is used to
generate the final system. The target platform is composed
of a set of IPs where each IP can be defined in a library or
designed during the development cycle. Embedded C code is
used to implement software tasks. The code generation tool
supports the set of transformation rules used to perform the
system generation from the three previous models.

We achieve dynamic and partial reconfiguration through
the allocated model, which explores a reconfigurable platform
by performing a mapping between a static application (not
reconfigurable) and a reconfigurable platform. We detail our
modeling techniques in Sections IV-A (application modeling),
IV-B (platform modeling) and IV-C (allocation modeling). In
Section IV-D we introduce the reconfigurability modeling and
associated code generation.

A. Application

The application is defined as a set of tasks that perform
computations and communicate to exchange data. Each task
receives data, performs some computations and sends results
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Fig. 3. Application tasks graph: two operations are performed sequentially.

to other tasks. Our modeling approach is well suitable for
data flow systems (e.g. audio and video coders/decoders) that
are generally specified by means of communicating tasks.
Communications among tasks are done by events. An event
contains a type and associated data. Upon an incoming event,
a task performs computation and sends results to other tasks.

Figure 3 shows an application example with two tasks (in
that case two operations). It takes three inputs: a, b and c.
The first two inputs are sent to the first task and the third
input is sent to the second task with the result from the first
task. As it can be observed, both tasks are exclusive i.e. they
are not executed at the same time, as the second one needs
a result from the first one. The designer can take benefit of
this execution dependency to share the same HW area for both
tasks.

In order to model such tasks using our methodology we use
UML components. Each component behavior is performed by
classes instances. The main behavior of a component is de-
scribed by an active class, whose behavior is defined by a state
machine. The only way to communicate with a component is
by sending/receiving events to/from the component. The events
(UML signals) must be sent through ports, that offer or require
a service, defined in UML by means of interfaces. An interface
defines a set of UML signals (events) that a component port
accepts to receive and process. All events are sent from/to
active class instances.

Figure 4 shows the example of Figure 3 with three compo-
nents: one for a controller task, responsible for the control flow
and the scheduling, and one component for each operation.
Our controller task is used to send/receive events to/from the
co-processors and to communicate with other processors or
external components. The controller task receives the inputs
and triggers both operations, one after the other. All commu-
nications are done by UML ports and use only UML signals,
by sending events. Each port contains an associated interface,
which will be explained later.

Figure 5 shows the interfaces and classes definition. An
active class behavior is defined by means of a state machine.
Passive classes contain operations that are called by active
classes instances. A component contains exactly one active
class instance and may contain several passive class instances.

Each component contains the MARTE HLAM RtUnit
stereotype. The RtUnit indicates that the component is a real-
time unit. Such information allows allocation of the application
components to the platform components.

Figure 6 shows the Controller and Adder components with
its objects. The controller contains one active class instance
and the adder contains one active and one passive class
instances.

Our application contains three components, where each one
is driven by an active class instance. Each active class must
realize at least one interface. The interface defines the events
accepted by the component and used by the active class
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Fig. 5. Interface and class definition. The active class controls the component
and uses passive classes to perform operations.

instance. Each interface is also associated with an UML port
(shown in Figure 4. An outgoing event is sent by an UML
port which is connected to a port in another component that
accepts the event.

B. Platform

The platform is defined as a set of IPs that can be reused
from an IPs library or built during the development process.
New IPs are built from the UML model specification [19].

UML components are used for platform modeling, where
each component is an IP. We use UML MARTE HRM
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profile elements to identify the IP characteristics e.g. ver-
sion, name and address [18]. Thus specific stereotypes are
used for each IP library. Figure 7 shows a typical platform
in UML which contains one processor (mbCtrl), a co-
processor (co-pro), an input/output component (Uart01),
and a memory (localMemory). These components are
connected together by buses (OPB01,FSL01,FSL02,LMB01
andLMB02,). All the components except the co-processor
contain the ≪XilinxIP≫ stereotype, with specific information
for IP reuse. The co-processor can be dynamically replaced as
we use FPGA dynamic and partial reconfiguration property.
To identify such a property we use MARTE HRM HwPLD
stereotype.

The reconfiguration service is not modeled by the designer
in order to abstract the implementation details of such a
technology. The service instantiation is handled by the code
generation tool. This approach allows the model to target
different technologies. Moreover, the reconfiguration service
parameters can be specified in the code generation tool, leaving
the system design clean from technology details.

C. Allocation

Allocation is the key step in our methodology as it models
the complete system to be implemented. Once the behavior is
defined in the application model and the execution structure is
defined in the platform model, we need to map the behavior
to the platform, what we call the allocated model. This step is
performed manually. All application components stereotyped
RtUnit (from MARTE HLAM profile) are allocated to a
platform computing component (processor, ASIC or PLD, as
defined in MARTE HRM profile).

Figure 8 shows the allocated model of our example. The
controller task is allocated to the processor and the opera-
tion tasks are both allocated to the same co-processor. The
allocation of two application components to a same platform
component with some specific information indicates reconfig-
urability and is explained in the next section. Our example
requires two IPs: adder and multiplier that share the same
HW area. This is a design decision, as their services are not
requested at same time.
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Fig. 8. Allocation of the application on the platform.

D. Reconfiguration

Our approach to model reconfigurability is done in the al-
location step where the application is mapped to the platform.
We allow co-processors to be reconfigured at run time. In
Figure 8 two RtUnit are allocated to the same co-processor.
Specific stereotypes are used to indicate the reconfiguration
modeling. As we can observe, the reconfigurability is related
to the platform, whereas our application has a static behavior
i.e. the application scheduling is static and predictable.

An allocation is an UML dependency stereotyped with
MARTE ≪allocate≫ stereotype. Nature tag must be set to
timeScheduling in order to inform the code generation tool
that dynamic and partial reconfiguration is required to share
HW area. For each allocation an ID needs to be defined,
which is used by the reconfiguration service to identify the
right bitstream to be loaded upon request.

The HwPLD stereotype is used to indicate a reconfigurable
component in the platform. This information is used by the
code generation tool to generate the right information for the
synthesis tools used to implement the system on the target
platform (FPGA), this point is detailed in the next section.
We have added the Reconfig stereotype to the allocation,
to allow the code generation tool to insert the reconfiguration
service call in the processor code. The ID tag is used to
perform bitstream selection and downloading.

Figure 9 shows the generated code from a state of the
controller that sends an event to a co-processor. The code gen-
eration tool searches in the controller state machine all events
sent to co-processors. For each event it checks if it is sent to
a reconfigurable component. If true a reconfiguration request
is inserted just before sending the event. The reconfiguration
command provides the bitstream ID to the reconfiguration
service. The reconfig command is offered by the reconfig-
uration service. The execution of the application is aborted
until reconfiguration is done. It is up to the reconfiguration
service to verify configuration in order not to reconfigure a
co-processor that is already implemented.

V. DEVELOPMENT FLOW AND TOOLS

As we consider a high abstraction level for modeling we
require implementation steps into existing technology and
tools. Our development flow relies on existing tools for UML
modeling, model transformation, embedded platform design,
HW synthesis and bitstream generation. Xilinx FPGAs and
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associated tools are used, as they offer dynamic and partial
reconfiguration technology. Figure 10 shows the development
flow and considered tools.

Rhapsody UML modeler [20] is used for UML model-
ing. RulesComposer, a Rhapsody plugin, is used as model
transformation/code generation tool. Through RulesComposer
we can define transformation rules, that take as input an
UML/MARTE model and generate implementation models.
We have defined implementation models for platform, VHDL
and C code. Code generation facility is built from the UML
model, where a set of transformation rules creates a specific
target model. As the UML model contains the complete system
design, the first step is to extract the various system parts:
platform with existing IPs (1), software code (2) and new IPs
(3).

The platform and software models are used to automatically
generate a Xilinx EDK project [18] (4), which is the Xilinx
tool used for embedded system design. EDK defines a platform
as a set of IPs and each new IP is generated with an empty
behavior. Each processor contains a software project associ-
ated to it. The C model is used as input to generate processor
software code in EDK. The code generation tool automatically
inserts in the EDK project several IPs required to perform
dynamic reconfiguration (i.e. ICAP, Ethernet controller). The
EDK project is automatically transformed into an ISE project
(5). Xilinx ISE is the tool used for hardware design, which
accepts VHDL as input language. The EDK project exports a
top VHDL file with all the components of the system.

Each VHDL model (new IPs) is used to generate ISE
projects (6). At that step of the design flow we have one ISE
project for the system and one VHDL project for each new
IP. Then in the Xilinx flow we update the VHDL files with
reconfiguration information. Each reconfigurable component

must be connected through BUS_MACRO. A BUS_MACRO

is a placement and routing constraint used to allow partial
reconfiguration area in the target Xilinx FPGA. BUS_MACRO
is inserted in the top VHDL file by the designer1. The set of
ISE projects is used to generate a set of files that contains
logical design data and constraints: the NGC files. Each NGC
file is an IP that must be placed in the FPGA.

The NGC files are used as input to generate the PlanAhead
[21] project (7) which is required to generate the set of
bitstreams. With PlanAhead we place all IPs in the FPGA
and mark which areas of the chip are dynamically reconfig-
urable. Then PlanAhead generates one bitstream for the initial
configuration and a set of partial bitstreams for each possible
configuration. Also, an empty bitstream is generated for each
reconfigurable area in the design (for each co-processor in our
architecture).

In our example 4 bitstreams were generated: static full.bit
(initial system configuration), copro add.bit (adder compo-
nent), copro mult.bit (multiplier component) and an empty
bitstream, copro blank.bit.

Each bitstream is stored in a bitstream server on the
network and contains an ID. At system start up the
static_full.bit bitstream is loaded into the FPGA
(with the empty co-processor by default). The reconfiguration
service present in the system contains information about
how to load the bitstream and where to load it from [5].
Reconfiguration commands inserted by our code generation
tool uses the reconfiguration service to load the bitstreams
specified by the ID.

VI. RESULTS

A more complex example was developed in order to validate
our approach: An object tracking application. Figure 11 shows
the UML model of the application. A video camera captures
images and a set of operations is performed to track moving
objects, which are then labeled and the result image is shown
in a VGA screen.

The application is defined by 9 application components,
with four main processing tasks: background substitution (BG
subs), morphological transformation (morph trans), motion
test and image update. Each one can use secondary tasks
to perform compute intensive processing. Our reconfiguration
design method is applied to the morphological transformation
step. The morphological transformation task uses three aux-
iliary tasks: erosion, dilatation and reconstruction. They are
performed in sequence and the next one needs the preceding
result to process data.

The platform contains 60 components, including 4 proces-
sors (3 microblaze processors and one PowerPC), and is not
shown due to space limitations. The PowerPC captures the
next image and sends it to the first microblaze. The image
processing is performed by the microblazes in sequence, and
the image update and display is performed by the PowerPC.

The microblaze processor that performs morphological
transformation is connected to a co-processor by two FSL
BUS, one to send request and one to receive results. Such
a co-processor is dynamically reconfigured to compute the

1Version 11 of Xilinx tools eliminates the need of BUS MACRO, which
simplifies this step. Our experiments are done in version 8.2i with EAPR
(Early Access Partial Reconfiguration)
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three image processing tasks (erosion, dilatation and re-
construction). Three IPs were generated: copro_erosion,
copro_dilatation and copro_reconstruction,
each one performs an image processing step belonging to
the morphological transformation. For each IP a bitstream is
generated and a fourth one, the empty bitstream, is also gen-
erated. Partial bitstream is about 80KB for each co-processor.
The reconfiguration throughput is close to 80Mb/s, thus total
reconfiguration time is about 2ms. As three reconfigurations
are performed by the morphological transformation, 6ms is the
total time overhead added by reconfigurability.

The time constraint for each step in the processing is 40

milliseconds(25 images processed per second). Each of the
morphological transformation step takes less than 10ms, which
leads to 36ms to perform the morphological transformation:
30ms for the computation and 6ms for the reconfigurations. In
that case partial dynamic reconfiguration allows a significant
area optimization (we used 1 co-processor instead of 3)
without performance penalties. The necessary memory used
by the reconfiguration service executed on the PowerPC is
less than 80KB (40KB for executable code and 32KB for local
data).

VII. CONCLUSION AND FUTURE WORKS

In this paper we have shown how to use a UML co-design
approach to explore dynamic and partial reconfiguration char-
acteristics of modern FPGAs. We propose a reconfigurability
modeling technique which has been implemented into our co-
design flow. Increasing modeling abstraction levels allows to
hide implementation details to the designer, leaving focus on
system requirements rather than implementation issues.

In order to achieve our goals the platform must support
dynamic and partial reconfiguration. We have applied our
methodology to Xilinx Virtex series FPGAs. Although our
experimentations are target-specific, our approach can be ap-
plied to other dynamic and partial reconfigurable platforms.
Our development flow allows a semi-automatic generation of
dynamic reconfigurable MPSoPC. Results obtained demon-
strated that replacing co-processors at run time allows area
optimization without performance penalties.

We have explored dynamic reconfiguration by means of
tasks allocation that share a same HW area. As future work
we will explore reconfiguration at the application level when
adaptive features are required. Such adaptability can also take
advantage of FPGA reconfigurability for area optimization and
needs to be modeled.
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