
System level design space exploration for multiprocessor system on chip

Issam Maalej, Guy Gogniat, Jean Luc Philippe
European University of Brittany - UBS

CNRS, FRE 3167, Lab-STICC
Lorient - FRANCE

Mohamed Abid
GMS Laboratory

ENIS, University of Sfax
Sfax, Tunisia

Abstract

Future embedded systems will integrate hundreds of pro-
cessors. Current design space exploration methods cannot
cope with such a complexity. It is mandatory to extend these
methods in order to meet future design constraints. We be-
lieve one solution is to add a new design exploration step
above current methods. This extension corresponds to an
abstraction rising to provide designer with a restricted de-
sign space. We propose in this work to enrich the classical
exploration approaches by a pre-exploration step which re-
duces the architecture design space. This new step i) simpli-
fies ii) performs and iii) makes possible, for a complex ap-
plication the architecture exploration for future tera-scale
multiprocessor-based systems. This method drastically re-
duces the architecture space at a higher level of the design
flow which mitigates the codesign complexity and enables
the designer to explore a large set of architectures.

1 Introduction

Since several years, we are facing a significant increase
in the complexity of systems on chip design. Indeed, tech-
nology advances allow more and more functionalities to be
integrated into a SoC. In the future the technology scal-
ing will continue to follow Moore’s Law, providing inte-
gration capacity of billions of transistors and providing an
abundance of interconnections to realize complex architec-
tures [1]. Thus SoCs will be made of hundreds of software
and hardware components communicating through many
resources.

SoC designers are already facing with conflicting design
requirements regarding performance, flexibility, power con-
sumption, area, reliability and cost. A great part of those
conflicts are solved when the architecture is defined. How-
ever, finding an efficient architecture, which satisfies con-
straints as real time, low power and also time to market, low
cost becomes exponentially difficult in the jungle of hard-
ware and software resources. Generally, system designers
use their own experience to define their SoC architecture or
rely on a platform based design approach.

In order to enable designer to face these current and fu-
ture design challenges we propose in this paper a design ap-

proach based on extending the traditional exploration meth-
ods by performing a pre-exploration step before any other
design tasks. This step consists in analyzing the application
at a high level to reduce the size of the solutions space. This
rising of abstraction is mandatory, when dealing with hun-
dreds of processors, to efficiently address system level de-
sign decisions before refining the architecture through tra-
ditional codesign approaches.

In the following sections, we present the pre-exploration
approach and the different metrics used to guide the explo-
ration. We also introduce the genetic algorithm defined to
automatically perform the pre-exploration step. Finally, we
present some results to explain and validate our proposition.

2 Related work

The exploration of architecture consists in, theoretically,
exploring all the space of architectures and extracting the ar-
chitecture which best optimizes the costs of the system (e.g.
time, area, power consumption). However, considering the
complexity of the application, it is difficult to take into ac-
count all the architecture elements (hardware components,
software components, communication).

In [2], Lahiri et al. explore, initially, the space of the
architectures independently of the communication architec-
ture and with a communication time equal to 0. Then, man-
ually they choose the communication architecture and pa-
rameterize it with a tool they have developed. In [3] and
[4], the authors initially consider the architecture of com-
munications and then explore the architecture space. These
methods offer a rather good exploration. However, fac-
ing expected applications and architectures containing hun-
dreds of hardware, software and communication compo-
nents, this type of exploration becomes increasingly com-
plex and expensive. In [5], the authors explore the archi-
tecture by mapping the communication resources from a li-
brary. In [6], the authors propose a methodology based on
platform. This method consists in mapping the application
into a pre-defined platform. Such an approach significantly
reduces the costs and the complexity of the application since
the architecture space is reduced to the one offered by the
platform. However, the system performance is limited by
the platform performance and the architecture is constrained
to the platform architecture. Finally in [7], the authors re-
duce the exploration process by dividing it into two steps.

IEEE Computer Society Annual Symposium on VLSI

978-0-7695-3170-0/08 $25.00 © 2008 IEEE
DOI 10.1109/ISVLSI.2008.34

93

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on July 28, 2009 at 08:39 from IEEE Xplore. Restrictions apply.

Application

Pre-exploration step
m ultiobjective
optim ization

Pre-exploration step
m ultiobjective
optim ization

Clusters

Exploration step
(e.g. codesign)

Exploration step
(e.g. codesign)

Architecture

Tasks analysisTasks analysisDesigner analysisDesigner analysis

M ultiprocessor PACM
architecture m odel

t1

t2

t3

t4

t5

t1

t2

t3

t4

t5

t1

t2

t3

t4

t5

PACM 1 PACM 2

PACM 1 PACM 2

Proc M em

Bridge

M em

Proc IP

t5t3t4

t1
t2

Figure 1. Architecture exploration design
flow.

They demonstrate the effectiveness of their method for a
vast space of architecture. However, the cost of the appli-
cation remains rather high since the two phases require es-
timates or computations related to the task performance on
each software or hardware resources.

In conclusion, certainly an exploration in only one step
of all the solution space enables the designer to converge
toward an efficient architecture. However, this method is
expensive and encounters an increasing vast architecture
space. Thus, this kind of approach will reach its limits
shortly and other solutions need to be considered. Taking
into account the architecture at a higher level of exploration
and splitting the exploration process will reduce the com-
plexity and the costs of the exploration. We propose such
an approach by extending current methods of exploration.

3 Extended new design flow

Our approach is motivated by the following concerns.
We target a methodology which presents a tradeoff be-
tween: i) Accuracy - The capacity of the method to find
an optimal architecture, ii) Robustness - The capacity of
the method to quickly explore a complex set of architec-
tures and iii) Cost - The capacity of the method to mitigate
the exploration cost in time and money.

For that purpose we extend the traditional methods of
explorations (as [3] and [4]), by taking benefit of the ad-
vantages of platform based design, progressive exploration
and tasks analysis. As shown in Fig. 1 we perform a pre-
exploration step which consists in collecting information
from the application at a high level and computing infor-
mation from the tasks analysis and the designer experience.

This analysis takes into account a model of architecture in
order to drive the exploration. This model is generic enough
to cover an important part of the architecture space.

3.1 System designers analysis

System designer’s experience is essential during the de-
sign process since he provides some guidance to the design
flow. For example, designer usually analyzes the applica-
tion before going through the design process in order to
evaluate the overall system costs. He also checks how many
components are available in his library before defining the
system architecture. However, manually reaching a trade-
off between system costs and system performances may be-
come impractical. Designer has to take some key decisions
early in the design process that will significantly impact the
final solution.

We believe it is essential to take into account designer’s
experience but also to help him during the strategic decision
phase. For that, information from designer is collected to
enrich the system specification. For example designer can
specify if it is better or not to execute a task into a proces-
sor; he can also define if a task should be implemented into
a hardware IP available from the library. This information
is taken into account during the pre-exploration step in the
Affinity metric as will be explained in Section 4.1; how-
ever his decisions are not automatically respected if finally
they penalize the overall performances and costs.

3.2 Tasks analysis

The most effective and simple way to control the im-
pact of the tasks implementation consists in implementing
each task into all the execution resources and to compute
or to estimate all execution costs. It clearly appears that
for simple architectures it is conceivable but intractable for
multiprocessor architectures when dealing with hundreds of
resources.

Another approach is to perform a high level analysis of
the tasks. Several works as those presented in [8] and [9]
propose such a technique. This analysis provides some
rough evaluations of the system performances which help
designer to take decision about his architecture early in the
design process. This analysis, although it helps to define
some system architecture parameters, is not sufficient to
fully explore the architecture. Indeed, the communication,
memory sharing and different other interactions between
the application tasks have also a significant influence on the
exploration process and have to be considered. We have de-
fined several metrics (Section 4.2) that capture these char-
acteristics which are used during the pre-exploration step.

3.3 PACM architecture model

To explore the architecture space, we use an architec-
ture model. This architecture model is generic enough
to cover a large number of architectures especially archi-
tectures which optimize flexibility, communication, mem-
ory organization and processor mapping. To target high

94

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on July 28, 2009 at 08:39 from IEEE Xplore. Restrictions apply.

complexity systems we propose a multi PACM architecture
model. A PACM (Processor, Accelerator, Coprocessor and
Memory) is a processing node which consists of one pro-
cessor at most, some coprocessors if necessary, one or sev-
eral memories, and some hardware components (i.e. hard-
ware accelerators). A PACM can be specialized to perform
specific processing depending on the processor characteris-
tics and associated hardware IPs. Examples of specialized
PACM are signal, cryptography, 3D, video processing ele-
ments. This multi PACM architecture consists of a number
of PACMs which communicate through communication re-
sources (e.g. bus, NoC). This architecture model is an ab-
stract view and allows us to: i) have information about loca-
tion of the tasks before the architecture generation, ii) have
information about memory size at an early step, iii) simplify
the communication design, iv) simplify the addition or the
removing of processors or other components, and v) have
information about data transfer location.

4 Pre-exploration step

The goal of the pre-exploration is to cluster the tasks into
PACM models based on the analysis of the application (Fig.
1). The analysis is based on the interactions and the ex-
changes between tasks and on the properties of the tasks.
The application is specified with a tasks graph describing
the properties of the tasks and the dependencies between
them. The analysis is based on metrics to quantify the prop-
erties of the application. A genetic algorithm is used to clus-
ter the tasks into PACM in order to optimize the costs of the
system.

4.1 Specification tasks graph of the ap-
plication

The tasks graph describes the application at the tasks
level. It describes the characteristics of each task within
the application and the interactions between the tasks such
as dependencies or data transfers [10]. The graph consists
of nodes and edges.

A node represents a task and an edge corresponds to a
data dependency. The node is weighted with different val-
ues, which characterize the task. Each node is characterized
by the following attributes:

Throughput constraint (Tc bits/s). An application has
generally some computing constraints especially input and
output constraints.

Affinity vector. It is a vector, which gathers the affinity
values of a task ti to Processing Element (PE) possibilities.
Affinity(ti)(PEj) of task ti to a PE PEj is a real value
between 0 and 1 (respectively unsuitable and suitable to the
PE). These values can be determined based on prior experi-
ence of the designer and/or based on some work as proposed
by Sciuto et al. [8].

Local memory size (LM size). It determines the size
of the memory resources required by the task. This value
can be evaluated using existing tool [9].

Execution rate (Exec rate). This value indicates the
number of executions of the task during one execution of
the system.

An edge represents the interaction between tasks such as
dependency and data transfer. It is labeled with informa-
tion about data size transfer and the type of transfer. The
Word size is a value representing the granularity of the
data transfer. The Word number is a value representing
the number of words transferred from a task to another.

4.2 Metrics for pre-exploration

Several metrics have been defined to perform the analy-
sis of the system [10]. Each metric captures some specific
properties of the system, communication, memory, paral-
lelism, performance. The goal of these metrics is to provide
information to converge toward the definition of a system
that optimizes the performance, the area and the power con-
sumption.

4.2.1 Communication metrics

These metrics evaluate the degree of optimization of com-
munications and their impact on the system performances.
Due to system complexity, several communication re-
sources are required. The tasks graph is split into clus-
ters (PACM model). Inside each cluster communication re-
sources are shared. Communication resources are also re-
quired between clusters. To optimize the communication
cost in the architecture, we target two objectives:

Equilibrate the exchanged data sizes within the different
clusters To optimize the communication cost, exchanged
data quantity must be the lowest in each cluster. Further-
more it must be equally distributed among the different
clusters. For that, we define the E De metric, which in-
forms about the balance between the exchanged data quan-
tity in each cluster. When the data are balanced between all
the clusters, E De is equal to 1.

Minimize data transfers between clusters To evaluate
this point, we propose two metrics. The first one computes
the degree of exchanged data between clusters. This metric
is named DataExchangeInterCluster metric DEIC. If
all data is exchanged between clusters, the clustering is very
poor, and the metric DEIC is 0. The second one computes
the degree of connections between clusters. It is named
ConnectionInterCluster metric CIC. When close to 1
it means that most of the connections are within each cluster
which minimizes the total load onto the global communica-
tion architecture.

4.2.2 Memory metric

This metric enables designer to avoid memory bottleneck
and to improve global performance (i.e. power, area,
time). For that, the metric Mem informs about the best

95

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on July 28, 2009 at 08:39 from IEEE Xplore. Restrictions apply.

distribution of memory. This metric evaluates the mem-
ory resources size needed within a cluster: shared and lo-
cal resources. For local resources, the local memory size
LM size is computed using an existing tool [9]. Shared
memory resources is determined using the tasks graph. This
metric evaluates from the tasks graph the percentage of
memory used by each cluster and verifies the balance of
the memory distribution (the value is defined between 0 and
1). This value is 1 when the memory is the same in each
cluster.

4.2.3 Affinity metric

When a task ti has the highest affinity to a PEj , its per-
formance is optimal when implemented on this PEj . We
define a metric AFF which is equal to 1 when all tasks are
executed in the resource that optimizes their performances
[10]. This metric results from the Affinity vector associ-
ated to each task ti of the tasks graph (Section 4.1).

4.2.4 Throughput constraint metric

Some tasks have a throughput constraint. This throughput
is the minimum throughput that communication resources
have to respect to meet constraints. The best clustering has
to efficiently distribute the throughput constraints to opti-
mize system costs and performance. We define this metric
as throughput constraint metric Tc.

All the metrics presented above (detailed in [10]) are
used to explore the architecture space. This step corre-
sponds to a multiobjective problem where the goal is to find
a solution which maximizes the metrics. We use a genetic
algorithm to explore the solution space and to search for the
best solution.

4.3 Genetic algorithm

Using a genetic algorithm is interesting to perform the
pre-exploration step since several parameters, that may be
in conflict, need to be optimized. The genetic algorithm
initially explores an initial set of architectures. The pre-
exploration metrics are then computed to evaluate the per-
formances of these architectures. Solutions which maxi-
mize the metrics are selected to constitute the parents of the
following generation. This process is iterated several times
until the majority of the solutions are the same one (the best
solution). Once the genetic algorithm ends its computation
the pre-exploration is achieved. The application is parti-
tioned into several clusters (i.e. PACM) and the solution is
fully characterized with the exploration metrics.

5 Results

In this section, we evaluate our approach on two exam-
ples: an UMTS transmitter [11] and an AC3 decoder [12].
First, we discuss the different metrics by computing them
on several examples related to UMTS. Then we evaluate
the efficiency of the genetic algorithm for both applications.

Table 1. Characteristics of 2 solutions for a
2-cluster system.

Solution 1 Solution 2
Cluster1 Cluster2 Cluster1 Cluster2

Tasks 1-2-3-4 5-6-7-9 1-2-3-4 8-9-10-11
8-12-13-14 10-11 5-6-7 12-13-14

data (bits) 80,368 80,550 7,168 192,150
ComDegree(p) 0.40 0.40 0.03 0.96
shared mem(p) 39,600 1,200 1,200 39,600
Mem Degree(p) 0.97 0.02 0.03 0.97

min(Tc) 116,800 15,000 116,800 15,500
max(Tc) 38,400,000 15,000 116,800 38,400,000

Affinity metric 0.91 1.00 1 0.04

Table 2. Metrics for the 2 solutions for a 2-
cluster system.

Individual E De DEIC CIC Mem AFF Tc

(solution)
1 0.99 0.80 0.85 0.03 0.91 0.003
2 0.04 0.99 0.93 0.03 0.91 0.003

Using UMTS we compare our solution with a hand-made
one and with AC3 we show the benefit of doing the pre-
exploration step before a codesign exploration.

5.1 Metrics validation

5.1.1 UMTS application

The transmitter of the uplink UMTS terminal is composed
of 14 tasks and 13 edges. The UMTS application is under a
real time constraint since the application has to be executed
every 10 ms. It leads to apply some throughput constraints
to different tasks: task1 - 114 kbits/s, task8 - 37 Mbits/s,
task10 - 15 kbits/s and task14 - 8 Mbits/s. Concerning the
specification of the application no other information is re-
quired and the analysis can be performed. To discuss the
proposed metrics, we use a two-cluster solution for divid-
ing the UMTS application tasks into clusters (i.e. PACM).
The values presented in Table 1 correspond to intermediate
results required to compute the metrics presented in Table
2. These intermediate values are presented in order to en-
able the discussion that follows about the metrics.

In Table 2 we present the metrics computed for the two
solutions. In the following sections, we use these two solu-
tions to discuss the validity of the proposed metrics. Also,
we demonstrate the impact of these metrics on the architec-
ture design.

5.1.2 Communication metrics validation

Fig. 2 shows the distribution of the data exchanged for
both solutions. The E De metric evaluates the distribution
of the transfers into the different clusters. When equals to
1, a same quantity of data is exchanged within each cluster
and when equals to 0 all the data is exchanged in only one
cluster. In solution 1, the two clusters of the UMTS applica-
tion have the same quantity of exchanged data. The metric

96

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on July 28, 2009 at 08:39 from IEEE Xplore. Restrictions apply.

Data exchanged
w ithin cluster1

Data exchanged
w ithin cluster2

Data exchanged
betw een clusters

a. Data exchanged distribution for solution 1

Data exchanged
w ithin cluster1

Data exchanged
w ithin cluster2

Data exchanged
betw een clusters

a. Data exchanged distribution for solution 1 a. Data exchanged distribution for solution 2

Data exchanged
w ithin cluster2

Data exchanged
w ithin cluster1

Data exchanged
betw een clusters

a. Data exchanged distribution for solution 2

Data exchanged
w ithin cluster2

Data exchanged
w ithin cluster1

Data exchanged
betw een clusters

Figure 2. Distribution of the exchanged data
into the architecture.

E De is close to 1. In solution 2, 96% of data exchanged
is in cluster2. The E De metric highlights this point as it
is close to 0. The amount of data exchanged between the
two clusters in solution 1 is not very high. However it is
greater than the data exchanged between the clusters in so-
lution 2. The DEIC metric for both solutions is close to 1
(Table 2). Using a classical architecture exploration tool,
if the designer wants to find an architecture composed of
two processors from the UMTS application, he has to de-
fine a communication architecture enabling the transfer of
200,000 bits. With our exploration method, one communi-
cation support is allocated for each cluster. In solution 1,
each communication resource has to manage a maximum
of 80,000 bits. As a consequence, the communication ar-
chitecture will be faster and simpler to design.

5.1.3 Memory metric validation

In both solutions, the distribution of the memory is concen-
trated into one cluster (Table 1). Thus the Mem metric is
close to 0. For such distributions, the architecture will use
large memories which contain most of the data. This will
strongly impact the performance of the system as access
memory time will increase as well as power consumption.

5.1.4 Throughput constraint metric validation

Throughput constraint metric (Tc) for both solutions is
close to 0 as throughput constraints are very different within
each cluster. The communication architecture needs to be
designed to manage the highest constraint even if most of
the time this constraint is not faced. In Solution 1 the high-
est throughput is within cluster1 (38,400,000 bits/s). The
lowest throughput constraint for the same cluster is 116,800
bits/s. Such a clustering, from the throughput point of view,
is far from optimal as the communication architecture as to
manage too different constraints.

5.1.5 Metric space and its impact on the architecture

Fig. 3 shows the different metrics computed for the two
solutions. The metrics of both solutions do not cover all
the metric space. In solution 1 (Fig. 3.a), Tc and Mem
metrics are close to 0. The analysis of these metrics is in-
teresting to have a first idea of the performance and the cost
of the architecture. In the case of solution 1 the architecture

E_De

DEIC

CIC

M em

AFF

Tc

E_De

DEIC

CIC

M em

AFF

Tc

E_De

DEIC

CIC

M em

AFF

Tc

E_De

DEIC

CIC

M em

AFF

Tc

E_De

DEIC

CIC

M em

AFF

Tc

E_De

DEIC

CIC

M em

AFF

Tc

a. M etric space for solution 1 b. M etric space for solution 2

Figure 3. Metric space coverage for different
solutions.

will need a large memory size which will impact the global
performance. The communication architecture will have to
face high fluctuating throughput which may lead to reliabil-
ity problems. However the communications are well bal-
anced within the architecture which is an important aspect.
In solution 2 (Fig. 3.b), E De, Tc and Mem are close to
0. This solution may lead to an unbalanced and inefficient
architecture as many points are non-optimized. The metric
space coverage provides the designer with first ideas of the
quality of his solution. The goal of the genetic algorithm
is to automatically perform the exploration in order to con-
verge toward an efficient and optimized decomposition of
the system.

5.2 Genetic algorithm validation

5.2.1 UMTS application

The UMTS transmitter has been designed and optimized
by hand [13]. The targeted platform was based on Pen-
tek boards composed of DSP and FPGA components. We
have applied our approach to the UMTS application in order
to evaluate the quality of the exploration process. During
the exploration we have not considered the E De metric as
most of the communications within a cluster correspond to
software/software communications (tasks executed on the
DSP). The result of the pre-exploration step is illustrated in
Fig. 4. The coverage of the metric space is quite good as
any metric is penalized. The implementation proposed in
[13] is the following one: the set of tasks {1,2,3,4,5,6,7,9}
are implemented onto a DSP, the set {8,10,11,12,13} onto
another DSP and the task 14 onto a FPGA. This partitioning
corresponds to the one resulting from the pre-exploration
step which indicates that our approach leads to good guid-
ance for the designer. The pre-exploration step enables the
designer to provide some constraints through the Affinity
vector and to remove some metrics if not relevant for the
exploration. Thus this tight interaction between the de-
signer and the pre-exploration step enables to converge to-
ward efficient solutions.

5.2.2 AC3 application

We have considered The AC3 application to analyze the
benefit of using the pre-exploration step before performing

97

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on July 28, 2009 at 08:39 from IEEE Xplore. Restrictions apply.

E_De

DEIC

CIC

M em

AFF

Tc

Figure 4. Metric space coverage for the UMTS
solution.

area

tim e
CODEF Pre exploration + CODEF

Figure 5. AC3 exploration space results.

a more traditional codesign flow. In order to perform the
whole architecture exploration process, we have used the
codesign CODEF tool [3]. The pre-exploration step aims
at clustering the AC3 application into two clusters. Then
the CODEF tool is used to perform the hardware/software
partitioning. To handle the exploration with CODEF, a list
of the tasks and their costs for all resources available in the
library is needed. After the pre-exploration step, each task
is associated to a cluster (i.e. PACM). Thus, each task can
only be executed onto the processor or an hardware IP. So
all other possibilities of execution (i.e. on other resources)
are removed from the library used by CODEF. This reduces
the architecture space to be explored by CODEF and speeds
up the exploration.

The architectures found using the pre-exploration step
and then CODEF are shown as rhombuses in Fig. 5. The
solutions obtained when using only CODEF are shown as
triangle in Fig. 5. Each solution is characterized by its
performance in terms of area and time. CODEF goal is to
optimize the area and to satisfy the time constraint. CODEF
reaches its goal as the smaller solution is found by the tool.
However, when using both pre-exploration and CODEF,
more solutions which optimize the time or the time vs. area
tradeoff are found. Several Pareto points are obtained using
the combination of both approaches. Combining both steps
allows designer to explore more rapidly the design space
and to emphasize some interesting solutions that were not
considered by CODEF.

6 Conclusion

The complexity of future applications and systems is
raising a new design wall. Classical codesign flows will not
be able to face this challenge in a near future as they will not
be efficient enough to design MPSoC systems composed of
hundreds of processors. It is mandatory to extend current
approaches, as it has always been performed in the past,

by rising the level of abstraction. We believe that an ear-
lier, fast and automatic pre-exploration step is essential to
identify the application’s characteristics in order to provide
some guidance to codesign flows. To perform such an ap-
proach, we have extended exploration methods by preced-
ing them with a new step which analyzes the application.
Our new pre-exploration step simplifies current exploration
methodologies.

References

[1] Borkar Shekhar, Jouppi Norman, P. Stenstrom Per ”Microprocessors
in the Era of Terascale Integration” Design, Automation and Test in
Europe Conference and Exhibition, 2007. DATE ’07, pages 1 - 6, April
2007.

[2] K.Lahiri, A.Raghunathan, S.Dey, ”System-Level Performance Anal-
ysis for Designing On-Chip Communication Architectures”, IEEE
Transaction on Computer-Aided Design of Integrated Circuits and Sys-
tems, vol. 20, no.6, pp.768-783, June 2001.

[3] M. Auguin, L. Capella, F. Cuesta, et E. Gresset. ”CODEF: a System
Level Design Space Exploration Tool” ICASSP, pages 1031-1034, Salt
Lake City, USA, Mai 2001.

[4] Peter Voigt Knudsen and Jan Madsen. ”Integrating communication
protocol selection with hardware/software codesign.” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
pages 1077-1095, August 1999.

[5] Baghdadi, A.; Zergainoh, N.-E.; Cesario, W.O.; Jerraya, A.A.;
” Combining a performance estimation methodology with a hard-
ware/software codesign flow supporting multiprocessor systems” Soft-
ware Engineering, IEEE Transactions on Volume 28, Issue 9, Pages
822 - 831, Sept. 2002.

[6] Wieferink, A.; Kogel, T.; Leupers, R.; Ascheid, G.; Meyr, H.; Braun,
G.; Nohl, A.; ”A system level processor/communication co-exploration
methodology for multi-processor system-on-chip platforms” Design
Automation and Test in Europe Conference and Exhibition, Pages 1256
- 1261, Proceedings Volume 2, 2004.

[7] B.P.Dave, G.Lakshminarayana and N.K. Jha, ”COSYN : Hardware
software Co-synthesis of heterogeneous distributed embedded sys-
tems”, In IEEE Transaction on software Engineering, volume 7, mars
1999.

[8] D.Sciuto, F.Salice, L.Pomante and W.Fornaciari, ”Metrics for Design
Space Exploration of Heterogeneous Multiprocessor Embedded Sys-
tems”, CODES’02, Estes Park, USA, May 2002.

[9] Yannick Le Moullec, Nader Ben Amor, Jean-Philippe Diguet, Mo-
hamed Abid and Jean-Luc Philippe ” Multi-Granularity Metrics for
the Era of Strongly Personalized SOCs” Design, Automation and Test
in Europe Conference (DATE 03), Munich, Allemagne, 3-7 Mars 2003.

[10] Issam Maalej, Guy Gogniat, Mohamed Abid, Jean Luc Philippe,
”Metrics for a high level analysis of a multiprocessor system on chip”
Embedded Real-Time Systems Implementation Workshop(ERTSI
2004), Lisbon, Portugal December 2004.

[11] Universal Mobile Telecommunication System, 2002, [Online].
Available: http://www.umtsworld.com/

[12] Advanced Television System Committee. Digital Audio Compres-
sion Standard (AC3), 1995.

[13] Christophe Moy, Apostolos Kountouris, Luc Rambaud,Pascal
Lecorre, ”Full Digital IF UMTS Transceiver for Future Software Ra-
dio Systems” ERSA’2001, Las Vegas, USA, 25-28 June 2001 (first in-
ternational conference on Engineering of Reconfigurable Systems and
Algorithms).

98

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on July 28, 2009 at 08:39 from IEEE Xplore. Restrictions apply.

