
INTERFACE DESIGN APPROACH FOR SYSTEM ON CHIP BASED ON
CONFIGURATION

Issam MAALEJ1-2*, Guy GOGNIAT2, Mohamed ABID1, Jean Luc PHILIPPE2

1 E N I S - DÉPARTEMENT DE GÉNIE ÉLECTRIQUE, B.P : W 3038 SFAX TUNISIE
2L.E.S.T.E.R., UNIVERSITÉ DE BRETAGNE SUD, FRANCE ; RUE SAINT MAUDE - 56100 LORIENT

* Email: maalej@ iuplo.univ-ubs.fr

ABSTRACT
Communication synthesis is an essential step in
hardware/software co-synthesis: many embedded systems use
automatic generation of interface for point to point
communication or use external supports of communication as
standard bus or micro network. In this paper, we address the
problem of hardware – software interface design in codesign
approach for real-time applications. We refer to the hardware
component as hardware accelerator and the software component
as processor. In our approach, the accelerators are directly
integrated into the processor core in order to optimize the
transfers of data between the two units. In this paper we describe
a configuration approach to design a communication interface.

 1. INTRODUCTION
Telecommunication and multimedia computing are the fastest
growing segments of microelectronics market today. The market
sectors are stimulated by emerging business and consumer
application that are now possible with recent advances in wireless
communication, multimedia processing, and integrated network
technology. In fact, thanks to the micro-electronic advances in
integration and the progress made by silicon manufactures,
implementation of embedded systems is observing a quick
shifting from system on board to System on Chip (SoC) where all
components are on the same silicon. Thus, hardware/software
SoC codesign is one of the most important electronic application
area in future-oriented designs.

The complexity of these embedded systems and their time to
market constraint pressure designers to leverage the reuse of both
software and hardware modules. These modules are called VC
(Virtual Component) or IP (Intellectual Property). These
components represent function of specific domain like signal
processing (DCT, FFT), telecommunication and multimedia
(VLC, Turbo codes) etc. In this area, IP integration and
management require new concepts innovative breakthroughs in
order to introduce new quality in Electronic Design Automation
(EDA).

In the work presented in this paper, we focalize on the problem of
communication design for SoC. In fact, communication synthesis
is a key step in the integration of embedded system. Interfacing
between hardware and software is the bottleneck in many
embedded systems, since communication links add chip costs and
timing overhead.

To enable flexible low-cost designs in a short design cycle, some
emerging designs are based on heterogeneous embedded system

architecture that integrate multiple software programmable
components, e.g. processor cores, together with dedicated
hardware components into a single chip. Programmability is then
introduced in these embedded system architectures (offering
more flexibility to the designer), while maintaining most of the
advantages of customized VLSI and ASIP solutions (such as the
potential to optimize processing performance and reduce time to
market).

In this paper, we address the problem of automatically obtaining
a customized interface between processor and hardware
accelerator modules. We present an original approach based on
configuration of generic model to design communication
interface for SoC.

The paper is organized as follows. Section 2 gives a brief
description of previous and related work. Section 3 describes the
target architecture and formulates the problem that we consider.
Section 4 presents our approach of communication synthesis.
Some results concerning the communication between a processor
core and some accelerators are presented in section 5. LEON
processor core using AMBA bus is considered for this study.
Finally, section 6 concludes the paper and presents some lines of
future work.

 2. RELATED WORK
Different approaches attempt to ease and quick assembling SoC.
Some of the designers committee agree that the key approach to
enhance the reuse and integration of IPs into a wide range of
applications is the one separating communication from behavior.
This model called interface-based design [1] has two main
advantages. The first is that VC creators can easily update their
products to customer's architecture by limiting the modifications
to IP interfaces, while keeping the IP cores untouched. The
second advantage is to promote the definition and the
development of standards and design methodologies for IP
interfaces. Today, these concerns are being addressed by many
industries as SoCiations like Virtual SoCket Initiative Alliance
(VSIA).

Some designers treat the problem during high level synthesis
thanks to tools or languages of specification like Cosmos [2],
Polis [3], SystemC [4] and Coware [5], which allow automatic
generation of communication interfaces. [6] treats
communication synthesis by an approach based on synthesis of
the communication structures (interfaces, arbitration schemes).
Others focalize in the automatic generation of interface to point-
to-point communication [7] [8]. [9] addresses the problem
between standard components that have incompatible protocols.
These approaches require having a perfect knowledge of the

protocols of both the sender and the receiver. Furthermore, they
represent a dedicated approach: for each new application it is
entirely necessary to redesign the interface.

Other designers propose the use of external communication
resources as standard bus (e.g. AMBA) or micro network
architecture (e.g. Sonics). In this case it is necessary to define
wrappers in order to ensure the communication between the
hardware accelerators and the bus. The problem that tries to
resolve these approaches is the communication with the bus on
one-side and with the IP on the other side.

In our approach, we propose a methodology to help the designer
during the communication interface definition step. Our method
is based on a separation between the communication and the
behavior which:
• Do not require detailed knowledge about communication

protocol,
• Uses a generic model of communication,
• And, conducts to an efficient implementation of the

communication interface in term of time and area.

 3. TARGET ARCHITECTURE
In this section, we present a typical SoC architecture and different
aspects related to communication problems.

Architecture of embedded system includes generally many types
of components as processor cores hardware accelerators and
software modules. For these systems, designer can target three
types of processors according to constraints on the system:
processor specific to an application as ASIP, processor specific to
a domain as DSP or VSP (Digital/Video Signal Processor) and
processor of a general nature as RISC processor (Reduced
Instruction Set Computer). The first and the second types present
better performances and flexibility but they require a significant
cost of design. Contrary, the last type has the most short design
time and presents an acceptable performance. However, in order
to meet tight constraints in numerous specific applications it is
generally necessary to add some hardware components to the
RISC processor cores.

Target architecture considered in this work is depicted in figure 1.
Such architecture includes hardware accelerators which represent
computing units that have not enough control logic to be
autonomous. These accelerators need external control unit to
manage the communication transfers. Thus, they are connected to
the internal bus of the processor through a communication

interface and are considered as slave while processor core is the
master of the system.

Using this architecture, we consider the following assumptions:
• The processor commands transfer operations, since it is the

master of the system and all hardware accelerators are
slaves,

• Hardware accelerators do not have their own communication
logic, they need a communication interface,

• Hardware accelerators are connected to the on core
processor bus in order to enhance the communication
performances between the processor and accelerators,

• Processor data size may be different from hardware
accelerators data size.

 4. COMMUNICATION SYNTHESIS
Considering the architecture and the assumptions described
before, we propose a communication interface design
methodology based on a configuration approach. This approach
deals with a generic model of communication interface. The
designer configures the communication interface considering the
performances and constraints it has to meet.

The objective of our approach is to allow the interface design for
SoC implementation without requiring detailed knowledge about
communication implementation and generation of optimized
communication (performances, constraints, cost etc.).

The interface model is presented in figure 2 and has two sides:
the first side communicates with processor core, the second
communicates with accelerator. Side1 is connected to the on core
processor bus that has its own protocol. In this work we have
focused on AMBA AHB and APB buses. Side2 is connected to
hardware accelerator that can be classed in two types. The first is
characterized by a constant computing time, no large
memorization (only few registers), a fine granularity, and a
constant input/output data size. This type is called FGDTA (Fine
Granularity & Deterministic Time Accelerator). Typically, this
type of accelerator is DCT, Exponent, FIR … The second type is
called VGNDTA (Variable Granularity & Non Deterministic
Time Accelerator) and considers others accelerators as variable
input/output data size, non deterministic computation time,
variable granularity, etc. Note that both types can have different
data sizes than the processor data size.

4.1 Communication with the bus

To design a generic communication interface, we consider a
generic communication chronogram of simple transfers as shown

Processor

Internal bus

HW
accelerator

RAM

ROM

ROM

Figure 1: SoC architecture

Memory
Controller

Processor core

Memory
port

Interface

Figure 2: Interface entity

Communication
Interface

ydata

xdata

Start

Busy

Reset
Clk

Data &
Address
Buses

Control signals

Hardware
Accelerator

Processor
Core

in figure 3. For this work, AMBA AHB and APB buses are
considered [10].

This chronogram is composed of two clock cycles. On the first
clock cycle, address and control signals generated on the
processor bus and read by the interface module. On the second
clock cycle, data is transferred from/to processor to/from
interface. To allow a generic protocol, the transfer is performed
only on the second half of the second clock cycles since the
majority of existing buses correspond to this model. For example,
the APB bus has such a simple transfer, while AHB uses specific
protocol as burst protocol. However, the burst protocol is a
duplication of two simple transfers where the second transfer
begins on the second cycle of the first transfer.

In order to build the interface control unit is able to communicate
with different protocols, the considered protocol model (i.e.
shown in figure 3) is designed with parallel units in order to
allow the duplication between the address and the data steps.

4.2 FGDTA interface

We consider here FGDTA accelerators where communication can
be performed with a simple transfer mechanism. If the target
accelerator has the same data size than the processor core, only
the selection of the accelerator and the transfer direction are
controlled. More sophisticated interface module is used only
when data sizes are different. Two cases may be presented:
processor data size (ProcDS) is larger then accelerator data size
(AccDS), or AccDS is larger then ProcDS.

i) If ProcDS > AccDS:

a. The communication interface detects the selection of the
accelerator and begins the transfer,

b. The communication interface reads data from the
processor core until the totality of data has been
transferred inside the interface,

c. When the accelerator is ready, the interface transfers data
to the accelerator and sends a start impulsion to command
the beginning of the hardware accelerator computation,

d. When the accelerator has finished data computation the
interface reads the result and sends it to the processor
core.

ii) If AccDS > ProcDS:

a. The communication interface reads data from the
processor,

b. The communication interface saves data in registers,

c. The communication interface sends the accelerator data
with a start impulsion,

d. The communication interface reads the result from the
accelerator when the busy signal is set to ‘0’,

e. The communication interface transfers the result to the
processor.

4.3 FGDTA Interface specification

The FGDTA interface is described in VHDL language and is
performed in two files. The first is a package that describes the
data types necessary for the interface. It contains four types: one
describing the size of the target processor core internal buses,
another describing the size of the hardware accelerator data
buses, and two others describing the control signals (input and
output) associated to the processor bus. The second file
constitutes the functional description of the interface. It
corresponds to the control unit that performs the communication
management. 5 processes grouped in one «process», which is
sensitive to the clock signal «clk», ensure the communication.
Each process is controlled by specific conditions to its operation.
The first process corresponds to the procedure of launching of the
transfer of the data. It detects the beginning of the transfer
operation when all the operating conditions are validated. This
process has as a function to validate the transfer operations in
writing and reading. These two operations constitute successively
the second and the third process. The operating conditions of
these processes are ordered by the first, the fourth and the fifth
processes that correspond successively to the processes of reset of
writing and of reading.

4.4 Interface FGDTA configuration

The FGDTA communication interface represents a generic
module that can be connected with various types of buses and
different accelerators. The interface is able to ensure the transfer
of data between processor and accelerator having different bus
sizes. This propriety is performed in the code description-using
notion of package in the VHDL language. Using this approach,
the designer does not have to use an automatic interface
generation but has to configure the communication interface.
Hence, the communication interface definition is summarized in
the three following steps:

1. Configure the data types of the buses in the package,

2. Configure the signals of the buses in the package,

3. Update the code description.

This approach has the advantage of making possible the
communication without detailed knowledge of protocols and
sequencing of the tasks.

Address step Data step

CLK

ADDR

Control

WDATA

READY

RDATA

Data (A)

Data (A)

Control

Address

Figure 3: generic transfer chronogram

 5. EXPERIMENTAL RESULTS
The communication interface module is described using VHDL
and the generic code has been optimized in order to conduct to an
efficient implementation in term of area and frequency. Note that
the processor and the hardware accelerators can work with
different frequencies. Several examples were done, in the
following we present the communication interface between DCT
(Discrete Cosines Transform) as hardware accelerator and LEON
[10] as processor core.

LEON processor has two internal buses AMBA AHB and AMBA
APB. In order to validate the generic connection with buses, the
FGDTA interface has been used to communicate between these
two buses and the DCT accelerator. The DCT uses 64 bits as
inputs/outputs and the two LEON buses are 32 bit widths. Some
results about the experiments of the communication interface
(throughput and interface area) are shown in table 1.

These results confirm that the AHB bus is more adapted for high
performance communication. These experiments were conducted
with a Virtex FPGA from Xilinx as target technology. The FPGA
has a maximum frequency of 100Mhz. The DCT and the
communication interface are implemented on the processor core.
After synthesis, as shown in table 2 the interface designed uses a
minimum area and the frequency of the accelerators is maximal.

Hence, the utilization of the generic interface conducts to a
negligible area overhead and ensures a high communication
speed.
Similar results were obtained using the interface to communicate
between APB and PCI buses (also exist on LEON processor)
with the same DCT. These buses have also 32 bits as data bus
size but have different protocol complexity. This diversity
confirms the reliability of the interface module designed.
In order to evaluate the VGNDTA interface, some tests were also
done with VLC (Variable Length Coder) and DCT considering
different granularities. The VLC presents a variable granularity
and non-deterministic properties while the DCT presents a
variable granularity but a deterministic computation time
(depending of the considered granularity). Experiments with the
DCT are presented here and allow studying the impact of the
granularity on system costs as area and computing time (figure
5). If the granularity increases the computing time decreases;
however, the area cost increases. To help designers to make a
choice about the granularity degree figure 5 gives a tradeoff curve
between speed and area.

 6. CONCLUSION
This paper proposes a configurable generic interface model
allowing the refinement of the communication between processor
core and various hardware accelerators. This approach allows the
designer to simplify the communication integration step. This
model is sufficiently generic in order to be able to adapt to
various bus protocols and accelerators data sizes. The experiment
results show that this method is efficient for hardware
accelerators. Generic chronogram will be generated in future
work to have a generic model for more standard bus. Our work
will be extended to be more generic for more bus and accelerator
type.

7. REFERENCES
[1] J.A. Rowson and A.L. Sangiovanni-Vincentelli, Interface-Based

Design, in Proc. of DAC, June 9-13 1997

[2] Benner T., ENST R., An Approach to Mixed System Co-Synthesis,
proc. INT'1 Workshop on Hardware/Software Co-design,
Braunschweig, Germany, Mars 1997.

[3] Balarin F., Chiodo M., Lavagno L., Passerone C., Sangiovanni-
Vincentelli A., Sentovich E., Suziki K., Tabbra B., Hardware-
Software Co-Design of embedded system : The Polis Approach,
Kluwer 1997.

[4] Kjetil Svarstad, Gabriela Nicolescu, Ahmed A. Jerraya A model for
describing communication between aggregate objects in the
specification and design of embedded systems, DATE 2001.

[5] Vercauteren S., Hardware/Software co-design of application-
spécific Heteregeneous architectures, IMEC, PhD thesis, Dec.
1998.

[6] A. Zitouni, M. Abid, K. Torki, R. Tourki, Communication synthesis
techniques for multiprocessor systems, International Journal of
Electronic 2002, VOL. 89, NO. 1, 55-76.

[7] Bill Lin, Vercauteren Steven, Hardware/Software Communication
and system Integration For Embedded Archtectures.

[8] Narayan S., Gajski D., Interfacing Incompatible Protocols using
Interface Process Generation. Proc. Design Automation
Conference. San Francisco, CA, USA, June, 1995.

[9] R. Passerone, J.A. Rowson, A. Sangiovanni-Vincentelli, Automatic
Synthesis of Interfaces between Incompatible Protocols, Proc. of
DAC, 1998

[10] www.gaisler.com

Figure 5: Granularity impact for a DCT accelerator

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

0 1000 2000 3000 4000 5000 6000

Area (LUT)

Time (ns)

FGDA Interface – DCT 1 butterfly

VGNDA Interface - DCT 1 block

VGNDA Interface - DCT 11 blocks

VGNDA Interface - DCT 1 image

Bus type Throughput
(Moctet/s)

Interface area
(LUT)

AHB 88 196
APB 36 196

Table 1: Bus communication performance

Area
(% of total area)

Frequency (Mhz)

Interface 1 100
LEON
processor

28 35

DCT 6 100

Table 2: Experimental results (Virtex XCV800)

