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Abstract—This paper introduces an approach for the safe
design and modeling of dynamically reconfigurable FPGA based
Systems-on-Chip. This approach is carried out in a design frame-
work, GASPARD2, dedicated to high-performance embedded sys-
tems modeling using the OMG standard profile UML/MARTE.
Information employed by the reconfiguration mechanism is
identified to be extracted from MARTE models in order to
synthesize a controller using a formal technique which signif-
icantly simplifies the correct design of reconfiguration control.
This methodology is then demonstrated in a case study.

I. INTRODUCTION

Complexity in Systems-on-Chip (SoC) has been increasing
over the last few years, raising the need for proper design tools
and methodologies. The Model Driven Architecture (MDA)
intiative is successfully employed to solve various problems
tied to SoC design, especially by hiding classic low level
implementation details from the designer [5] [22] [2] [18].

The current study is based on the hypothesis that the need in
terms of self reconfigurable embedded systems will increase
and generalize for two reasons: i) Adaptation to the envi-
ronment. Hardware modification to cope with uncontrollable
environment is a key element in terms of dynamic optimization
(failure, quality of service, energy consumption...). ii) System
updates. An embedded system, in the same way as software,
should be able to evolve during its existence in oder to follow
the user needs (prototyping, updating and bug correcting).

In this context, this study will tackle two of the designer
needs: i) Modeling. Self adaptive architectures are not a new
concept. However their use in an industrial context is not
generally observed. Performance, energy consumption and
design complexity compared to unreconfigurable counterparts
are often strong arguments against adoption. Reconfigurable
architectures will not be exploited at their full potential un-
less an appropriate design methodology is provided. ii) Safe
reconfiguration control and decision. Designing correctness is
an important issue in critical SoCs, as a single error can lead to
a financial, material and/or human disaster. Adding reconfigu-
ration concepts in such SoCs increases the design complexity
as adaptive systems need to be both secure and optimized
to compromise between contradictory constraints (typically
Quality of Service and energy consumption [3]). A correct
by construction control generation, helping the designer in
the reconfiguration decision implementation, is chosen in this
study to answer that problem. So the contribution of this study

is to show how a MARTE model from Gaspard2, containing
information on how reconfigurations can be controlled, can
be used in combination with control objectives to obtain a
controller which guarantees a correct reconfiguration behavior.

This paper is organized as follows: Sections II, III and IV
present the key concepts, tools, and related work on which this
study is based, ie. High Level Modeling, Discrete Controller
Synthesis, and the execution platform. Section V explains the
transformation chain from high level to execution. Section VI
shows the case study. Finally, in section VII, we draw some
conclusions.

II. HIGH LEVEL MODELING

A. Model Driven Engineering (MDE)

This study follows a MDE approach for SoC Co-Design
specification and development. It allows to use a component
based model driven methodology to abstract and simplify the
system specifications. The Object Management Group (OMG)
has provided such approach in the form of the Modeling and
Analysis of Real-Time and Embedded Systems (MARTE) Uni-
fied Modeling Language (UML) profile, gradually becoming
a de-facto industry standard [7].

B. GASPARD2 framework

GASPARD2 [21] uses the MARTE profile to carry out, in
a graphical manner, unified high level specifications of SoC
applications and architectures along with their allocations and
the eventual deployment to Intellectual Properties (IPs). It
integrates a compilation chain to target different execution
platforms by transforming the high level models into suitable
code for SoC creation.

SoCs designed in the GASPARD2 framework relies on
a repetitive Model of Computation (MoC) inspired by the
industrial domain specific language Array-OL in which mul-
tidimensional structures are manipulated and describe both
task and data parallelism [4]. An application in GASPARD2
is then specified as a component dependency acyclic graph,
with respect to this MoC. Components (tasks) are connected
via ports, each one having a shape (or dimension).

Related to Dynamic Partial Reconfiguration (DPR), control
semantics have been introduced into GASPARD2 and MARTE
to specify reconfiguration behavior at high modeling levels
[24] [2]. These semantics follow the reactive mode automata
formalism [14] [8]. Mode automata were chosen due to their
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compositional nature and are exploited to produce the main
part of a reconfiguration controller. These semantics are being
used in this study by a formal technique, named ”Discrete
Controller Synthesis”, to generate the controller main part with
respect to rules, instead of doing it manually.

III. DISCRETE CONTROLLER SYNTHESIS (DCS)

A. Automaton model of reactive systems

One level of adaptive systems is related to events and states,
defining execution modes or configurations of the system,
with changes in the architecture and in the activation of
components. Reactive languages based on finite state automata
are widely used for these aspects, like StateCharts [11] or
StateFlow in Matlab/Simulink or UML variants. Their under-
lying model, transition systems, is also the basic formalism
for discrete control theory, which studies closed-loop control
of discrete-event and logical aspects of systems [9].

Adaptive SoCs considered in this study are modeled as
a set of components, each one having particular individual
constraints. Managing these constraints is performed in a
mixed imperative/declarative style where constraints intrinsic
to one component are modeled by an automaton. Controller
synthesis techniques and tools are used in order to combine
the set of communicating automata (from components) with
global constraints.

B. DCS and contracts for adaptation policy

DCS was originally defined in the framework of language
theory, often called supervisory control of discrete event sys-
tems, and is related to game theory. It is one of the automated
techniques that can exploit transition system models, and
involves algorithms that explore symbolically the state space in
a way like model-checking verification, with complexity issues
and capacities of the same order. It consists in considering
on the one hand, the set of possible behaviors of a discrete
event system, where inputs are partitioned into uncontrollable
and controllable ones. The uncontrollable inputs typically
come from the system’s environment, while the values of the
controllable inputs are given by the synthesized controller
itself. On the other hand, it requires a specification of a
control objective: a property typically concerning reachability
or invariance of a state space subset. Such programming makes
use of reconfiguration policy by logical contract. Namely,
specifications with contracts amount to specify declaratively
the control objective, and to have an automaton describing
possible behaviors, rather than writing down the complete
correct control solution. The basic case is that of contracts
on logical properties i.e., involving only Boolean conditions
on states and events.

Within the synchronous approach [20], DCS has been
defined and implemented as a tool integrated with the syn-
chronous languages: SIGALI [10]. It handles transition sys-
tems with the multi-event labels typical of the synchronous
approach, and features weight functions mechanisms to in-
troduce some quantitative information and perform optimal
DCS. It has been applied to the generation of correct task
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Figure 1. Reconfigurable multiprocessor architecture model

handlers, adaptive resource management [16], safe design of
data-intensive embedded systems [15], and integrated in a
synchronous language, named BZR.

C. The synchronous language BZR

BZR [19] [17] is used in the case study, and DCS is
embedded in this user-friendly programming language. Models
of the possible behaviors of the managed system are specified
in terms of hierarchical parallel automata, and adaptation
policies are specified in terms of contracts on invariance
properties to be enforced. The automata part of a BZR program
will be extracted from the MARTE specification, whereas the
adaptation policy is directly specified in BZR as a set of
boolean statements called the ”BZR contract”; one of which
is shown in the case study. Compiling BZR yields a correct-
by-construction controller (here in C), with the help of DCS,
which can then be integrated into the execution platform of
choice.

IV. EXECUTION PLATFORM

Validation of the global approach relies on a clear definition
of the hardware platform. Numerous experiences have been
carried out in the domain of reconfigurable embedded systems.
Eustache et al. [3] present a safe and efficient solution to
manage asynchronous configurations of dynamically recon-
figurable SoCs. In [6] Bomel et al. present a networked
lightweight and partially reconfigurable platform assisted by
a remote bitstreams server. The RAMPSoC [1] is an inter-
esting project, where are addressed the necessity to find a
trade-off between homogeneous and application-specific SoC,
and a meet-in the middle design methodology to offer run-
time configuration capabilities. The HDCRAM [12] approach
addresses the architecture management to be inserted inside
cognitive radio equipments and provides support for sensing
and decision-making facilities.

As can be considered from these researches, typical Mul-
tiprocessor Systems on Programmable Chip are composed of
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Figure 2. Configuration processing flowchart

a set of embedded processors executing tasks, which commu-
nicate together to implement the system functionality (Figure
1). Specific IPs (Intellectual Property) can be considered to
speed up the computation of intensive tasks. These IPs can
be used as co-processors directly connected to processors or
accelerators connected to internal buses. One of these kinds
of models of platform is a reconfigurable one, named XPSoC,
presented in [23]. This study is based on a similar model.

A. XPSoC architecture

The architecture model is composed of a manager processor
(Microblaze from Xilinx) controlling some slave processors
with a given number of co-processors and various other
components such as shared memories, IP and peripherals.
Basically, the manager is composed of a General Purpose
Processor interfacing the system with its environment; it runs
PetaLinux [13] and is mainly responsible for the coordination
of the system, software and input/output management, and thus
the controller obtained through DCS interacts with it.

B. Dynamic reconfiguration process

Figure 2 describes the reconfiguration flow used by the
SoC supporting the current study. This flow is in accordance

with the XPSoC one, and replaces the control part (previously
entirely written by hand) by the code generated from BZR.

The SoC automatically loads its first hardware architecture
(configuration) from non-volatile memory (e.g. Flash) after
power-on, and then loads boot binaries for the manager (here
the PetaLinux Operating System) and the slave(s) (here the
example application boots waiting for its first configuration).
The manager launches the main process, which is responsible
for managing all the tasks (organized in component depen-
dency acyclic graphs) and dynamic reconfiguration modules.
This main process now embeds the controller generated from
BZR, which means it sends events from the environment to
the controller and lets it compute the values of the necessary
controllable variables (in a maximally permissive manner).
Decision part comes next, meaning that if more than one
configuration are allowed by the controller, a choice must be
set. Decision is not part of this study, but it has to be noted
that whatever the quality of its implementation, decision is
always safe with respect to control objectives because it can
only choose a configuration in a set of secure ones given by
the synthesized controller.

If the manager determines a new configuration, it sends a
Reconfigure signal to the source tasks of impacted Workers.
Then it downloads the next configuration stream to memory
and performs hardware reconfiguration when it receives a
Ready signal from an impacted task. This task then receives
a Reset signal from the master when the new configuration is
put in place. Upon receiving this Reset signal, the impacted
task sends the Reconfigure signal to its next connected tasks
in the acyclic graph. This signal embeds an ID, thus avoiding
multiple same reconfigurations of the same task in a sequence.

V. TRANSFORMATION CHAIN

A. Design flow

Figure 3 illustrates the contribution of this paper with
respect to the GASPARD2 framework. Hardware and software
are initially modeled, associated and deployed at a high ab-
straction level, conforming to the UML/MARTE profile. From
the deployed MARTE model, the application is transformed
into a hardware functionality (specifically a hardware accel-
erator or co-processor having multiple implementations) by
the intermediate Register Transfer Level (RTL) representation,
while the control model is transformed into a BZR program
on which DCS is performed to provide the control code of a
reconfiguration controller merged and exploited with respect
to the XPSoC concepts.

B. Control information extraction

In the previously described MARTE models, the tasks of the
system are associated with mode automata, for which each
mode is associated to an implementation. As this study is
concerned by reconfiguration control, the aim is to let the
designer specify what can be controlled in the system by
placing controllable variables on transitions from automata.

Additional refinement is provided to optimize control:
quantitative attributes, or weights, representing non functional

33



UML MARTE Profile

Application Architecture
Allocation

Deployment Control

- mode automata
- contracts
- metrics

Deployed MARTERTL Synchronous 
equational model

BZR

Discrete Controller 
SynthesisVHDL/C

Synthesis Language

Profile Metamodel

Usage

Used for

Dependency
Transformation

Figure 3. The GASPARD2 framework with integrated control aspects

properties (energy consumption, memory footprint, quality of
service, etc.) can be associated to modes. The designer is
supposed to set the same type of weights on every modes
that need to be further compared. A type of weight defines a
partial order and a binary operation which can be used to per-
form control (enforcing rules on these weights) and decision
(deciding between remaining allowed implementations) based
on rules (or Contracts) on modes or weights.

Three kinds of control information coming from a MARTE
specification are thus identified: mode automata (with control-
lable variables), contracts and properties (with partial order
and binary operation). Currently, only mode automata are of-
ficially supported in MARTE. The standard is being reworked
in this project (ANR FAMOUS) to cope with further control
needs. So for this study, only mode automata can really be
extracted from a MARTE specification (contracts, for example,
are still written directly in BZR).

VI. CASE STUDY

This section presents the control aspects modeling of a
system composed of three tasks T1, T2 and T3, where T1
(source task) takes a picture from the environment and sends
it to T2 which applies a filter on this image then sends it to
T3 which displays it. Each task has multiple implementations.
The choice of an implementation is restricted by a synthe-
sized controller, obtained through DCS, enforcing a contract
(reconfiguration policy) described further.
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Figure 4. Platform of the case study

<<component>>
ColorFSM

event_color_up : Boolean [{1}]

event_color_down : Boolean [{1}]

mode_out : ColorModes [{1}]

black_and_white else

color else

grayscale else

when
event_color_downwhen

event_color_up

when
event_color_downwhen

event_color_up

<<component>>
EnergyFSM

event_energy_up : Boolean [{1}]

event_energy_down : Boolean [{1}]

mode_out : EnergyModes [{1}]

low else

high else

medium else

when
event_energy_down

or ctr_medium
when

event_energy_up
and aut_high

when
event_energy_downwhen

event_energy_up

Figure 5. Color and Energy SMCs

A. Platform model

The platform model used in this study, shown in Figure 4, is
an instance of the XPSoC model. In this case it is made of one
manager processor and one slave processor being dynamically
reconfigurable by means of three coprocessors C1, C2 and C3
respectively used by tasks T1, T2 and T3. The association
between hardware and software components stays simple in
this example. More complex associations are shown in [22].

B. Application model

With respect to the GASPARD2 underlying MoC, tasks
can be executed in different ways. the first one is a pure
software execution by the manager as a Linux thread. The
second solution is a software execution of the thread on a
slave. The third method consists in running the thread on a
slave with a standard function implemented on coprocessor.
The last possible implementation is when the whole thread
can be executed by a dedicated hardware accelerator. For
each version, a software binary file and/or a bitstream are/is
required.

C. Behavior specification

State Machine Components (SMC) are used in GASPARD2
to adopt a state-based control, following the reactive mode
automata formalism. In the current example, two SMC are
defined to control two different aspects of the system: Color
and Energy. As shown in Figure 5, the SMC named Ener-
gyFSM has an interface that includes input Boolean ports
(event energy up, event energy down) and an output mode
port (mode out). Values from input ports are dispatched to
trigger transitions. A mode value specified in a state is con-
veyed through the mode out port. Variables ctr medium and
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Figure 6. Modeswitch component connected with its default SMC

aut high are defined by the designer to give the DCS tool the
necessary information on what can be controlled in the system.
The synthesized controller will only be able to modify these
variables which may have an impact on forcing or inhibiting
a transition. A task under control may have several exclusive
implementations named running modes which can be activated
at run time by automata, where each state is associated with
a mode. Mode Switch Components (MSC) define a switch
function between different modes and are composed with SMC
to represent the state/mode association. Figure 6 shows a
default SMC connected a MSC for the task T2. Switching
from a mode to an other without restriction for the controller
is the default behavior at this level, which means that the
SMC is like a complete graph where each vertex is a state
and each edge is a controlled transition. This default SCM is
automatically generated but for some reasons, a designer could
want to reduce controllability from this point (for example to
forbid a transition from a mode to an other).

D. Contract specification

The two SMC (ControlFSM and EnergyFSM) specified
earlier are not connected to any MSC, but with the help of
BZR contracts, their behavior will impact the implementations
choices from the MSCs for the system’s tasks.

Two implementations are given for the task T1, named
T1 impl1 and T1 impl2; three for T2 (filter1, filter2 and
filter3) and two for T3 (T3 impl1 and T3 impl2). Now let’s
say the filter1 is useful when the system is in Low state for the
EnergyFSM SMC and in Black and white or Grayscale for
the ColorFSM SMC. The corresponding invariance property
is denoted not(filter1) or (Low and (Black and white or
Grayscale)). For this property, the controller will constrain the
values of the controllable variables in the SMC shown in Fig-
ure 6. Now let’s introduce a constraint between ControlFSM
and EnergyFSM. For example, it can be interesting to specify

contract
  var

ruleT11,ruleT12,
ruleFilter1,ruleFilter2,ruleFilter3,
ruleT31,ruleT32,
oneSolution,
rule : bool;

  let
ruleT11 = not (t1_impl1) or (black_and_white);
ruleT12 = not (t1_impl2) or (grayscale or color);

ruleFilter1 = not (filter1) or (low & (black_and_white or grayscale));
ruleFilter2 = not (filter2) or (medium or high);
ruleFilter3 = not (filter3) or (color);

ruleT31 = not (t3_impl1) or (black_and_white);
ruleT32 = not (t3_impl2) or (grayscale or color);

oneSolution = (t1_impl1 or t1_impl2)
& (filter1 or filter2 or filter3) 
& (t3_impl1 or t3_impl2)

rule = not(high & black_and_white);
  tel
   assume  (true)
   enforce (

ruleT11 and ruleT12 and
ruleFilter1 and ruleFilter2 and ruleFilter3 and
ruleT31 and ruleT32 and
oneSolution and
rule)

   with (ctr_medium_val,aut_high_val:bool)

Figure 7. BZR contract

First event_color_down forces ColorFSM
to go from color to grayscale mode

Second event_color_down forces to go to 
black_and_white.

The controller sets ctr_medium to 1...

...in order to force EnergyFSM to go from 
high to medium...

...because high and black_and_white can 
not be activated together.

Figure 8. Simulation of the controlled system

that the modes High (from Energy) and Black and white
(from Color) are never active at the same instant. Such a state
property is given by not(High and Black and white). To finish,
the designer wants to ensure the system can choose (at least)
one implementation for each of its task for every legal state
combination of Color and Energy SMC. This is checked by
the following property: (T1 impl1 or T1 impl2) and (filter1 or
filter2 or filter3) and (T3 impl1 or T3 impl2). This property
is true only when at least one mode is activated for each task.
Actually, an important required property of state machines is
determinism. Here it means that, given an instant, only one
mode by SMC can be activated. But given the contract shown
in Figure 7, one can see that when the system is in Medium and
Color modes, filter2 and filter3 can be activated. In reality, only
one of them will be activated but the controller will not decide.
It will only constrain the necessary controllable variables (to
enforce the contract) in a maximally permissive manner and let
the designer implement an algorithm to decide for the values
of the other controllable variables.
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E. DCS application

The previous state machines and controllable variables are
extracted from the MARTE specification and combined with
the contract from Figure 7 to form a BZR program. This pro-
gram is then compiled into synchronous equations to feed the
SIGALI tool which performs DCS. At the end of its computa-
tion, SIGALI has found no problem and thus, it means that it
has successfully produced a correct by construction controller
enforcing the specified rules for every possible executions
of the system. The prototype showing the integration of the
controller within the execution platform is not yet ready. But
for now, SIGALI comes with a tool that enables the simulation
of a controller and it will be sufficient to give an idea about
the final result. So the controller computed by SIGALI is
extracted and simulated (Figure 8). It has to be noted that
the simulator doesn’t provide a smart decision when multiple
choices are given by the controller (remaining controllable
variables are set to zero by default) so we will only focus on
Color and Energy SMC and controllable variables evolutions.
The system is set in High and Grayscale modes by sending
event color down. Then an other event color down is sent.
The simulation tool shows that the ctr medium is set to true,
meaning that the controller has triggered the transition from
High to Medium state, because staying in High is forbidden
in combination with Black and white and there is no way
for the controller to inhibit the transition from Grayscale
to Black and white. This is (without surprise because the
controller is formally correct) exactly the behavior expected
for the example of this study. It should be noted that, if all
this automated process had to be done by hand, which is
the classical approach, the corresponding controller would be
created as a last automata explicitly showing the synchronous
composition of the others. To give an idea, if the system had
20 automata, each one having two states, the controller could
necessitate (worst case) 220 states to represent the synchronous
composition. This (huge!) work should then be validated by
model checking to formally certify the correctness of the
controller. It can even be the case where such controller does
not exist, and it is then even better when an automatic approach
such as DCS can give a diagnostic about why it cannot exist,
instead of testing solutions by hand.

VII. CONCLUSION AND FUTURE WORKS

A safe approach to design self-reconfigurable systems on
chip by integrating rapid prototyping of adaptation policy into
a MDE methodology has been introduced in this paper. It relies
on information extraction (mode automata, controllable events,
rules and properties) from a modified MARTE specification in
order to generate the self-reconfiguration process by discrete
controller synthesis. The DCS formal method is made usable
by non-experts as it is embedded in a language (BZR) and
compiler, itself embedded in the MDE flow. The aim of this
approach is to enhance and facilitate the industrial adoption of
the design flow introduced by the GASPARD2 framework to
conceive self-reconfigurable SoC. The next steps will concern
the implementation of a prototype, involving intensive signal

processing, to demonstrate the methodology. This work is also
at the heart of reconfiguration control validation right from
the start of a reconfigurable embedded system design and is
preliminary of future works is this domain.
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