Self-reconfigurable embedded systems: from
modeling to implementation

Guy Gogniat, Jorgiano Vidal, Linfeng Ye, Jérémie Crenne, Sébastien Guillet,
Florent de Lamotte, Jean-Philippe Diguet, Pierre Bomel
Université de Bretagne Sud - UEB, Lab-STICC - CNRS, UMR 3192
Centre de Recherche - BP 92116, F-56321 Lorient Cedex - FRANCE

Abstract—Self-reconfigurability is becoming a reality from
an hardware point of view. Many studies have shown the
benefit of such a technology which allows greater flexibility,
performances and cost reductions. However there are several
points that still represent major challenges: i) design flow and
associated tools as current solutions are too tightly connected to
hardware platforms. A need for abstraction is strongly required
to allow designers to build and evaluate efficient systems. ii)
architecture models and associated portfolio of reconfigurable
IPs as most of current solutions are based on ad hoc approaches
which lack of reusability and portability. A more systematic
design methodology associated to an efficient architecture model
is required for a large adoption of such a technology. iii)
bitstreams repository since most available solutions are based on
a bitstreams library stored in Flash memory. Such an approach is
not meeting scalability requirements and a more global solution
is mandatory with a clear hierarchy of bitstreams repository.
In this paper a comprehensive methodology is presented in
order to address these three major points. Our solution leads
to an efficient approach from modeling to implementation of
self-reconfigurable embedded systems.

I. INTRODUCTION

Advances in reconfigurable technologies allow entire mul-
tiprocessor systems to be implemented in a single FPGA
(Multiprocessor System on Programmable Chip, MPSoPC).
Designing such systems with existing tools will soon become
unmanageable due to complexity and productivity reasons.
One promising solution to mitigate designer task is to further
increase abstraction levels in order to hide many implemen-
tation details. Such an approach will allow system designer
to have access to various SW and HW technologies without
being an expert of all of them. Several efforts have been
performed these last years to promote UML (Unified Modeling
Language) [1] in order to consider it as an efficient language to
model multiprocessor systems. Considering a single language
to design these systems is very interesting and allows to speed
up design time and system integration.

To build an efficient design flow it is mandatory to rely on
a well defined model of platform. Typical MPSoPC systems
(Figure 1) are composed of a set of embedded processors
executing tasks, which communicate together to implement the
system functionality. Specific IPs (Intellectual Property) can
be considered to speed up the computation of intensive tasks.
These IPs can be used as co-processors directly connected to
processors or accelerators connected to internal buses. During
the development process, flexibility, performance and area

Dynamic and partial reconfigurable circuit

XWorker-1 XWorker-2
(mkernel) (mkernel)

XManager
(Linux)

'=Processor
M=Memory
C=Co-processor
B=Bridge
A=Accelerator
10=Input/Output

XWorker-3
(mkernel)

Reconfigurable
components

Fig. 1.

Reconfigurable multiprocessor architecture model

correspond to key concerns for the designer. Existing FPGA
technology (e.g. Xilinx Virtex devices) offers dynamic and par-
tial reconfiguration (DPR) features that can be advantageously
considered to address these points. DPR allows HW tasks to
share the same resource if their execution is exclusive. Such a
solution is very interesting as it reduces the total system area
while still meeting performance constraints. Supporting DPR
allows multiprocessor systems to replace co-processors or
accelerators at run-time, it can significantly increases platform
flexibility. Unfortunately there is a lack of tools addressing
the design of reconfigurable MPSoPCs at the abstraction level
mentioned above. Thus in this paper we propose to reduce the
gap between the design of reconfigurable MPSoPCs and the
targeted technology (FPGA).

The rest of the paper is organized as follows: In Section II
we discuss existing efforts in the domains of reconfigurable
systems/technology and also in the domain of embedded
systems modeling. In Section III, the reconfigurable multi-
processor architecture model is described. In this section, both
hardware and software components are detailed. In Section IV
the bitstreams repository hierarchy is presented. This section
illustrates how providing an efficient infrastructure to deliver
bitstreams to the system. Section V focusses on the modeling
of embedded systems and on code generation. This part
shows how guiding designer to provide more rapidly and with
more reliability a system. Section VI illustrates our approach
through an example. Finally Section VII concludes the paper.

II. RELATED WORK

A. Reconfigurable systems

Numerous experiences have been carried out in the domain
of reconfigurable architectures. The RAMSoC [2] is an inter-
esting project, where are addressed the two main drawbacks of
traditional approaches. The first one is the necessity to find a
trade-off between homogeneous and application-specific MP-
SoC. The second one is a meet-in the middle design method-
ology to offer run-time configuration capabilities. This work is
related to an architecture model with various processor types.
The proposed solution is based on soft-processor (Microblaze)
with configurable accelerators that can communicate through a
configurable network on chip. The MOLEN [3] reconfigurable
processor uses microcode and custom configured hardware to
improve performance, which allows the programmer to modify
the processor functionality and hardware without architectural
and design modifications. However the focus is not the design
flow but the platform. In both previous projects, there are no
reference to a programming model with standard API, which
are nevertheless required to transparently use processor, HW
accelerators or co-processors.

The hArtes Approach [4] addresses the development of an
holistic tool-chain for reconfigurable heterogeneous platforms.
The entire tool-chain consists of three phases: Algorithm
Exploration and Translation, Design Space Exploration and
System Synthesis. The objective of the hArtes design flow is
to automate the rapid design of heterogeneous embedded sys-
tems. But from the reconfigurable application designer’s point
of view, it’s rarely necessary to design a specific reconfigurable
MPSoC platform, that is why we propose a rapid application
development based on multi-processor reconfigurable systems.

B. Reconfiguration technologies

There have been several works dealing with reconfiguration
through a network. Lagger et al. [5] propose the ROPES (Re-
configurable Object for Pervasive Systems) system, dedicated
to the acceleration of cryptographic functions. It is built with
a Virtex2 1000 running at 27 MHz. The processor is a syn-
thesized Microblaze executing uCLinux’s code. It downloads
bitstreams via Ethernet with HTTP and FTP protocols on top
of a TCP/IP stack. For bitstreams of an average size of 70
KB, DPR latencies are about 2380 ms with HTTP and about
1200 ms with FTP. The reconfiguration speed is about 30 to
60 KB/s, be a maximum of 17 Kb/(s.MHz). Williams and
Bergmann [6] propose uCLinux as a universal DPR platform.
They have developed a device driver on top of the ICAP. This
driver enables to download the content of bitstreams coming
from any location because of the full separation between
the ICAP access and the file system. Connection between a
remote file system and the ICAP is done at the user level
by a shell command or a user program. When a remote file
system is mounted via NFS/UDP/IP/Ethernet the bitstreams
located there can naturally be downloaded into the ICAP. The
system is built with a Virtex2 and the processor executing
the OS is a Microblaze. The authors agree that this ease of

use has a cost in terms of performances and they accept it.
No measures are provided. To have an estimation of such
performances, some measures in a similar context have been
done. A transfer speed ranging from 200 KB/s to 400 KB/s
has been measured, representing a maximum performance of
about 32 Kb/(s.MHz).

C. Modeling approaches

The use of model based approaches for codesign has been
discussed in [7], which pointed out some advantages: cost
decrease, silicon complexity handling, productivity increase,
etc. Several works have also shown the benefit of using
UML for embedded system modeling [8], [9], [10], [11],
[12]. However most of them define specific profiles to model
embedded systems. Using specific profiles limits a large
adoption of these approaches as they do not rely on a stan-
dard. Furthermore proposed approaches mainly target system
analysis and simulation. Dynamic and partial reconfiguration
modeling using UML allows such methodologies to take
advantage of dynamic reconfiguration capabilities of moderns
FPGAs. Although there is a lot of work on embedded system
modeling using UML, only few explore dynamic and partial
reconfiguration capabilities [13], [14].

In [13], authors use UML sequence diagram with specific
stereotypes to model dynamic reconfiguration. Their approach
is very simple and efficient, but it lacks platform modeling.
In their work the system platform is fixed: a processor with a
reconfigurable device as an auxiliary computing unit. Also, it
does not support dynamic and partial reconfiguration.

In [14], authors detail a dynamic reconfigurable system
by extending UML/MARTE with specific stereotypes. Their
approach is developed in a design environment called GAS-
PARD, where VHDL code is generated. This approach is very
target-dependent and requires a strong level of expertise as all
elements of the Xilinx partial reconfiguration design process
need to be modeled.

D. Contribution

Compared to existing efforts, our contribution takes place
at three levels: i) architecture model from an hardware and
software point of view, ii) bitstreams repository hierarchy and
iii) modeling and code generation for reconfigurable systems.
Our approach relies on communication between a master
processor running Linux and specialized slaves, without OS,
executing computation intensive tasks. Our objective is to
decide configuration online and to provide synchronization
solutions between master and slaves and to execute programs
where registered functions are called. So our contribution,
regarding this aspect, is independent from the OS choice and
mainly related to the way a master can fire and specialize
slaves with specific computing intensive tasks. Concerning
modeling of reconfigurable systems, our approach only uses
standard UML/MARTE elements. We have defined specific
properties, which are required by the code generation tool
that is target dependent. However, in order to allow a large
adoption of dynamic and partial reconfiguration we hide

from system designer many technological details. Furthermore,
reconfiguration services and resources are automatically added
to the system during the code generation step and are based
on predefined APIs.

III. ARCHITECTURE MODEL

In order to be able to provide an efficient and reliable
solution for designers it is fundamental to define a generic
architectural model which can be tuned depending on the
application requirements and associated constraints. In our
case we propose a multiprocessor reconfigurable architecture
with several computation nodes connected through shared
memories.

A. Reconfigurable multiprocessor architecture model: XPSoC

The XPSoC is based on a master processor (XManager)
and several slave processors (XWorker) and/or several re-
configurable IPs (XModules). A XModule can be either a
standalone HW accelerator connected to the internal system
bus or an HW coprocessor directly connected to a slave
processor (XWorker). This model has been designed for data-
flow applications where intensive computations are required.
Communications between processors are implemented through
shared memories (for data) and message passing (for control).
The XManager runs Petalinux and deals with applications
execution management (e.g. loading new configuration, start-
ing new task, synchronization between tasks). Each XWorker
can execute a single task at a time, this task is provided by
the XManager depending on execution requirements. When a
XWorker is in an idle mode, it pends on its shared memory
waiting for some new tasks to be executed.

A general definition of the XPSoC is defined by a reference
model MxSy;Sy;+15Yyn, where Mz is a XManager with x
places for reconfigurable coprocessors, S means a XWorker
with y; coprocessor places. In case S is not a XWorker but
an hardware accelerator (XModule), no reconfigurable places
are mentioned.

Figure 1 shows an example of a given architecture model
composed of one XManager and three XWorkers. The three
XWorkers have different reconfigurable coprocessors. These
coprocessors, which are acceded through FSL links when the
softcores are Microblazes, are configured by the XManager
at run-time. Note that Xilinx partial reconfiguration flow
enables execution/reconfiguration overlapping, thus the XMan-
ager can reconfigure an unused coprocessor without freezing
the XWorker. The objective of the reconfiguration decision is
to optimize execution time according to applications needs.

B. Software architecture and synchronization

An application is modeled as a set of tasks which can
be executed in different ways. The first one is a pure SW
execution by the XManager as a Linux thread. The second
solution is a SW execution of the thread on a XWorker. The
third method consists in running the thread on a XWorker
with a standard function implemented on coprocessor. The
last possible implementation is when the whole thread can

XFunclmageProcessing
(PGM_FUNCTIOND, inAddr,
inSize, outAddr, desc)

* Decryption

void D (gmap *in, gmap *out, unsigned int key)
{

unsigned int data; (Software version)

unsigned int bit;
unsigned inti, res, size;
unsigned int *temp;
unsigned int *datain;

— ~

key = XTaskGetNextDesc (desc);
void D (in, out, key)
temp=(unsigned int*)(out->raster); {
datain=(unsigned int*)(in->raster);
size=(in->width*in->height)/4; }
for (i=0; i<size; i++)
{

data=*(datain+);

for (bit=0; bit<32; bit++) XFunclmageProcessing
(PGM_FUNCTIOND, inAddr,

inSize, outAddr, desc)

(Hardware version)

key = XTaskGetNextDesc (desc);
for (i=0; i<size; i++)

{
if (bit%2 == 0)
{

/A=CAB
res I= ((((data >> bit) A (key >> bit)) & 0x1UL) <<

bit);

—

else

{
//A=~(C AB)
res I= (((~((data >> bit) A (key >> bit))) & 0x1UL)
bit);
<o data=*(datain+i);

microblaze_nbwrite_datafs| (data, 0);
microblaze_nbwrite_datafsl (key, 0);
microblaze_nbread_datafsl (res, 0);
*(temp-+i)=res;

*(temp+i)=res;
res=0;

}

Fig. 2. XFunc prototype example for Hardware and Software tasks

be executed by a dedicated hardware accelerator. For each
version, a software binary file and/or a bitstream are required.
Considering that most connected embedded systems are based
on standard functions, we assume they can be available in the
system memory or from remote configuration servers as will
be described in Section IV.

For each XWorker, a configuration table is defined in a
memory space shared with the XManager. This table contains
records used for XWorker/XManager synchronization. The
first record provides global parameters such as architecture
model ID (XM;p), XWorker status and input and output
addresses and sizes. The second record is the queue of tasks to
be executed. Each task is specified with addresses pointing on
HW and SW versions of task binaries, with input and output
data buffer addresses and sizes. Then a record is added for
each coprocessor, it mainly contains the standard function ID
(FU;p) that also indicates I/O data formats.

This hardware model is efficient but is not sufficient from a
software designer point of view. Indeed, there is still a need,
at the application level, for programming models and commu-
nications APIs. These APIs must enable designers to easily
map applications over many different possible reconfigurable
architectures without tedious rewriting, while at the same time
ensuring efficient code production. To cope with this issue
and simplify XPSoC application development and reuse of
reconfigurable IPs (XModule), we propose two API libraries:
XTask and XFunc.

C. APIs for reconfigurable application

Considering productivity constraints and debugging over-
head, the software engineer cannot and must not spend too
much time to understand details about configurable coproces-
sors and accelerators or on-the-fly partial reconfiguration steps.
So at the application level, there is a need for programming
models and communications APIs that make a clear separation
of concepts. This is the objective that motivated the develop-
ment of XFunc/XTask API libraries.

1) XFunc API: XFunc is a set of generic functions that can
be specialized to handle various application classes (Video,
Audio, Network, etc). XFunc provides a unified programming
prototype for hardware version and software version. XFunc
is specified as XFunc_Class_of_Applications(parameters). The
objective of the XFunc API is:

« Offering application designers a solution to develop appli-
cations without a strong understanding of the complexity
of DSP algorithms or underlying hardware.

o Changing critical function (e.g. SW or HW Audio / Video
codecs) within the involved class of application without
modifying the code at application level.

o Adapting any application code to a reconfigurable MP-
SoC system.

Various implementations of a given XFunc, corresponding
to various performance/area trade-offs, may be available. How-
ever the API for function calls must remain unchanged for a
given application domain. Figure 2 illustrates a simple example
of an XFunc API for decoding encrypted PGM images.
XFuncImageProcessing is a generic API for image processing
to be executed in hardware or software with the following
parameters. PGM _FUjp is the function ID of PGM image
processing in this example, inSize is the size of the input
buffer which has the following memory mapping inAddr, and
outAddr which corresponds to the memory address of the
output buffer, finally desc is a pointer to a specific structure
used in this case to get the key used for image encryption.

2) XTask API: XTask is an API that supports reconfigurable
application programming in C on XPSoC. It consists of a set
of library routines and environment variables that create and
manage tasks to be executed on XWorkers. The main services
offered by XTask API are:

o Creation, suspension, destruction of an XTask.

o Synchronization between XManager/XWorker.

« Management of XModules (spots of reconfigurable re-
sources).

e On-the-fly reconfiguration decision.

o Management of dynamic partial reconfiguration.

The XManager creates a specified number of XWorker
tasks (XTask). An application can be composed of none,
one or multiple XTasks. An XTask runs concurrently, with
the runtime environment allocating hardware accelerators to
different XModules. In order to manage the reconfigurable
resources and the reconfigurable XTasks, we define a set of
functions. The following is a brief description of XTask main
API:

o XTuaskCreate creates a XTask for F'U;p function in main
memory

o XTaskRunBlocking copies XTask to shared memory and
launches a blocking task.

o XTaskUpdateFuntionList updates the list of function to
be implemented in hardware by order of priority.

o XTaskUpdateSystem updates the XPSoC architecture by
performing dynamic partial reconfiguration if necessary.

l’

3 Global
rr bitstreams L3
server
%
/
3
r- Local
bitstreams L2
server
0
FPGA
xsec | L1

Fig. 3. Bitstreams repository hierarchy

IV. BITSTREAMS REPOSITORY HIERARCHY

XPSoC relies on the availability of bitstreams at run-
time in order to dynamically adapt the system. Thus, a
bitstreams repository becomes necessary in order to manage
self-adaptivity. Furthermore, bitstreams repository can contain
a large number of configurations and in some cases reconfig-
uration time can be critical, thus a hierarchy of repositories is
required. The repositories must communicate through adapted
physical channels and network protocols with the partially
reconfigurable FPGAs. The bitstreams repository hierarchy has
to deliver all IPs to targeted XPSoC implemented on FPGAs.
In a typical network topology, this hierarchy is composed of
three levels (Figure 3):

o L1: a board local bitstreams cache in memory.

o L2: a fast bitstreams server located in a dedicated LAN
using a data link level protocol.

o L3: a standard global slower server located anywhere
and accessed via TCP (Transmission Control Protocol)
or UDP (User Datagram Protocol) based protocols.

A. Hierarchy Level LI

Level L1 is the board level where designers glue together
FPGAs and Flash or RAM memories. Bitstreams can be stored
in memories and it is very common to use 512 MB Flash ones.
This is the most popular way to store bitstreams and build
prototypes. But the less memories there are, the cheaper the
system is to produce in high volume. L1 is geographically the
closest repository to the FPGA, and the one with the smallest
latency (in the range of ms).

The PR (Partial Reconfiguration) community agrees on
the fact that, in applicative domains with strong real-time
constraints, PR latency is one of the most critical aspects in
its implementation. If not fast enough, the PR interest to build
efficient systems can be jeopardized.

Depending on the system designer’s ability to build an
efficient data pipeline from the bitstream storage (RAM, Flash,

or remote) to the ICAP, the performances will be close (or
not) to the peak values. Maximum downloading speed rate
announced by the fabless in internal reconfiguration mode is
capped to a maximum of 800 Mb/s when ICAP accesses are
8 bits wide.

1) Cache Architecture: The use of a Flash memory via
a mass storage card or an integrated on board memory is
well known and used, at least for boot time. This kind of
non-volatile storage is useful for maintaining a large range
of bitstreams, and when the access time is not a constraint.
Without talking about writing transactions, reading is close
to 500 cycles for a single 32 bits word. This value is of
course dependant on the Flash technology, and the associated
controller. With the use of a cache, designers are able to solve
this issue by copying a bitstream into a faster memory which
is located closer to the XManager in our case. The problem
here is that partial bitstreams are in a range of hundredths
of KB. Then, BRAMs memories are not the answer due to
the overall available blocks which are much lower. BRAMSs
are a very scarce resources in FPGA. In our approach, we
propose the use of an SRAM for a cache memory. It is a
tradeoff between the faster volatile memory (BRAM) and the
lower non-volatile memory (Flash). This solution is efficient to
speed up reconfiguration for some critical bitstreams at a low
memory cost. The policy about memory usage is LRU (Least
Recently Used) based, which means the less used bitstreams
will be replaced by the most used ones if there is not enough
memory space to store all bitstreams.

B. Hierarchy Level L2

Level L2 is the LAN level with a specific data link level
protocol. It can provide a reconfiguration service with an
average latency of 10 ms. Ethernet, in its simplest usage, is a
medium sharing mechanism on top of which many protocols
have been added. But it can also be seen as an excellent serial
line. In terms of buying cost and ease of deployment it is a
prime candidate to transfer bitstreams between close devices
like our FPGAs and the LAN bitstreams server.

When looking at the state of the art, it appears that
”Microblaze + Linux + TCP” dominates. Unfortunately, best
downloading speeds are far below the ICAP and network
maximum bandwidth.

1) Data Link Over Ethernet 100 Mb/s: Ethernet standard
IEEE 802.3 is now a rich set of communication technologies to
build cost effective LANs and to connect computers together.
It is based on the diffusion of packets on a shared medium with
collision detection (CSMA-CD). The insertion of switches
and hubs (multi-ports repeaters) to simplify cabling and to
improve speed and quality of services, transforms the LAN
into a set of point to point links connected through LAN-
level routing equipments. With this topology, two equipments
connected to the same switch communicate through a quasi-
private link (excepted for the broadcast packets). Ethernet’s
evolution is such that tenths, and even hundredths, of Mb/s
are now available at very low costs and with quasi-null error
rates.

2) Ethernet access: With our repository hierarchy the
bitstreams server is connected to the same LAN than our
platform, it does not need level 3 routing toward any other
LAN. Therefore we do not need IP routing and its companion
protocols such as ICMP, ARP, TCP and UDP. The immediate
drawback is that it does not allow the downloading of a
bitstream from any other machine over Internet, this is the
function of the L3.

C. Hierarchy Level L3

An ad-hoc specific data link is useful when no IP routing
is required and only a little amount of hardware and software
resources is available. However it is also necessary to be able
to download a bitstream from any machine. The use of the
standard network architecture TCP/IP fits perfectly when a
remote reconfiguration is necessary. Level L3 is the WAN
(Wide Area Network) level where the latency is about 100
ms because of its geographic position which is the farthest.

1) Common Used Transport Protocols: Rind et al. [15]
describe choices for TCP (Transport Communication Pro-
tocol) over UDP (User Datagram Protocol) and vice-versa
related to speed, numbers of mobile devices and link capacity
(bandwidth) metrics. Results are given in terms of throughput
and goodput via a network simulator. It shows that TCP is
giving better performance when minimum number of mobile
devices are connected to a WLAN (Wireless LAN) and clearly
setup that faster moving nodes are highly disturbing packets
transmissions. UDP is found better if it is possible to bear little
loss of packets. Consequently it is a first choice protocol for
fast delivery of data. As the system we target will be using a
WIFI link and thus is limited to a much lower throughput,
very high Gigabit transfer rate is oversized. Ploplys et al.
[16] perform a study where “wireless” UDP is used for real-
time performance in control. Loss of data is well defined,
explained and evaluated based on many factors such as range,
environmental obstacles, computational loads and increased
network traffic. Existing work establishes that TCP is vastly
employed in LAN topology and UDP in WLAN. The use of
UDP is thus natural when targeting wireless handled devices.
UDP is also the most suitable standard for systems with a high
latency and needs by nature, a shorter communication time.

2) TCP/IP Architecture Model: For a wireless environ-
ment where bit error rate is high, TCP performances are
highly degraded due to its window based congestion control
mechanism. UDP is similar to TCP and stands in the same
TCP/IP layer. Known UDP applications are DNS and SNMP.
Connectionless, its difference is located in the relationship
between two parties. In other words, one can send data to
another and that is all. UDP doesn’t provide any reception
reliability thus, there is no guarantee that packets will arrive.
However if the transmission is correct, the packet will be
received without any data corruption. UDP is faster than TCP
as there is no extra overhead for error-checking above the
packet level. A comparison between TCP and UDP is given
in Table I. In the context of bitstreams downloading from a
wireless server, UDP provides better performances over TCP

and in case some errors occur during transfers, the whole
bitstream is resent. This solution is acceptable as bitstreams
size is low compared to network capacity.

D. Hardware Architecture

In our approach XManager (a Power PC PPC405 or a
Microblaze) executes the reconfiguration service. The Ethernet
PHY controller is connected to the PLB and uses an inte-
grated DMA (Direct Memory Access) to speed up transfer of
incoming packets to the cache memory. A second DMA can
be instantiated and managed by the Xmanager itself in order
to copy a bitstream in cache to the ICAP removing PPC405
software copy bottlenecks. Finally the ICAP, connected to the
OPB, manages the access and the downloading of bitstreams
into the reconfigurable areas.

In this study, the XManager (PPC405) instruction cache was
activated and set to 16 KB large (8§ BRAMs). When enabled
the data cache is also 16 KB large. Table II demonstrates
that software data copy with data cache enable is the best
setup. This can be explained because EDK’s DMA engine has
no internal buffering, and doesn’t perform burst transfers. For
processor without instruction cache, it might make sense to add
a DMA, otherwise the inner loop of the optimized memory
copy would be in cache and be executed at 2 cycles per
instruction. The limiting factor will become the OPB latency
(reading/writing from/to the OPB RAM). Indeed, when a data
cache is enabled and as the processor exhibits cache coherency
anomalies, it has to remain clean. It is the responsibility of the
developer to ensure that any buffers in cache which are passed
to the DMA are flushed from it.

E. Software Architecture

Onto the client FPGA, the XManager runs an executable
built with a PPC GNU GCC and a TCP/IP stack.

1) IwIP as a TCP/IP networking stack: Instead of devel-
oping a networking library from scratch, we choose an open
source TCP/IP stack designed for embedded systems: 1wIP.
Directly available in EDK, IwIP [18] is an implementation
under BSD licence of the TCP/IP stack with RAM usage
friendly in mind. The porting proposed by Xilinx in EDK
is quite robust (both Microblaze and PPC can be used without
any problems). IwIP is also featuring a quite exhaustive
characteristics list (IP, ICMP, ARP, UDP and TCP) and can
be run with an underlying OS or not.

Our first approach was to tailor IwIP to use UDP only as
we don’t need another protocol. To ensure packets producer-
consumer paradigm, IwIP stack uses a pool of buffers. This
pool is a critical point in terms of performances and goodput
and has to be well scaled. Default setting value for this
segment is close to 800 KB large be 512 packets of 1528 bytes.
With that consideration we found native IwIP parameters to be
oversized in EDK. The absence of transmission errors during
days of testing, which consists of sending and receiving data
as fast as possible and checking right packet order, proves that
reducing it to 100 KB is pertinent without interfering overall
performances.

Throughput

—+—wireless link
wired link
—=Xilinx

—=<Williams

Throughput (Mb/s)

i /
20

—a—Lagger

16 32 64 128 256 512 1024 1472

Packet Size (bytes)
b. L3 level: throughput vs transmitted packets size

Throughput
” /’_—.—’4
70
60 /

~—-DMA

I
3

noDMA

&
]
|
|

—=Xilinx

Throughput (Mb/s)

30 —<Williams

20 —4-Lagger

1 2 3 4 5

a. L2 level: throughput vs paékets buffer size allocated to the PR protocol

Fig. 4. Performances of bitstreams repository hierarchy servers for a
XManager running at 100MHz

2) Software DPR Protocol: The protocol is able to work
in two modes: slave and master. In master mode, the FPGA
is responsible for asking the server a partial bitstream. In
slave mode, it reacts to the server requests and is forced to
update itself. Obviously, obtaining a maximal reconfiguration
throughput must be considered with care. Safety concerning
the write of a partial bitstream to the reconfigurable area
is necessary in partial reconfiguration context. A loss of a
packet will result in an incomplete form of data reception, so
on an impossibility of writing the complete partial bitstream
into the reconfigurable area. Manifestly, it will lead to an
unpredictable behavior. To avoid this, a frame number helps to
know if a packet is missing or a wrong received order reception
occurs. In addition, before writing to ICAP, a CRC (Cyclic
Redundancy Check) is done to be sure that everything was
fine during the transmission and every packets was received
correctly without transmission errors.

F. Performances

At the L1 level, with our solution we can reach an average
download of bitstreams from the cache to the ICAP of about
2.1 Mb/(s.Mhz) be 210 Mb/s when the XManager (PPC405)
is clocked at 100 MHz. The cache is configured to store 16
cachelines of 32 slots of 1496 bytes. With partial bitstreams
of 74 KB, it is possible to store 10 bitstreams. The throughput
decreases when the number of requested bitstreams is higher
than the cache capacity. When no required bitstream is found
in the local cache the hierarchy level L2 is automatically
queried. This level is able to give access to a large number of
partial bitstreams using a local server. At the L2 level, results

Protocol | Complexity | Speed Architecture Caveats
UDP Low High | Broadcast Client/Server | Unreliable, String data
TCP Average Low Client/Server String data
TABLE I

COMPARISON BETWEEN TCP AND UDP PROTOCOLS [17]

Cache Enable | Cache Disable | Cache Disable + ICAP DMA | Cache Enable + Both DMAs
throughput - + - +
hardware memory footprint + + - -
software memory footprint + + - -
overall ++ +++ - +
TABLE II
HARDWARE/SOFTWARE PARTITIONING OPTIONS RESULTS
obtained (Figure 4.a) depend on packets buffer size allocated <<component>> H]
to the PR protocol. The curves at the top represent measured P | P <<RtUnit>>
speeds for our solutions (with or without DMA). Maximum <<RtUnit>> \AddResp. adder
speeds of 400 Kb/(s.MHz) and 800 Kb/(s.MHz) can be reached " 1Adder
when the adapted packets buffer size is set up (9 KB, 6 x ctrl

1.5K B). Compared to usual buffer pools of hundredths of
KB for standard protocol stacks, this is a very small amount
of memory to provide a continuous PR service. Flat lines
curves at the bottom, represent the average speeds reached
by Xilinx, Lagger and probably Williams. Our PR protocol
exhibits a reconfiguration speed of 80 Mb/s closer to our local
100 Mb/s Ethernet LAN limit. At the L3 level Figure 4.b sums
up throughput results. Results obtained depend as we could
expect, on transmitted packets size. We obtain a sustainable
60 Mb/s throughput with an average packet size of 1492 bytes.
This high transfer throughput matches with WIFI WLAN rate
where “only” 30 Mb/s is reachable.

V. MODELING OF MULTIPROCESSOR RECONFIGURABLE
SYSTEMS

The next step in our approach for building reconfigurable
systems is to define a design methodology that can capture
both multiprocessor architecture model and bitstream down-
loading services. To achieve that goal our methodology takes
into account three main elements to be modeled: the applica-
tion, the platform and how application fits into the platform,
what we call the allocation. As previously described, the ap-
plication is defined as a set of communicating tasks where each
task performs some computations. The platform is defined as a
set of connected IPs (XManager, XWorker, XModule) and the
allocation is a mapping between application tasks and platform
components. The allocated model is used to generate the final
system. Our approach only uses standard UML/MARTE ele-
ments. Embedded C code is used to implement software tasks.
The code generation tool supports the set of transformation
rules used to perform the system generation from the three
previous models.

A. Modeling concepts

We achieve dynamic and partial reconfiguration through the
allocated model, which explores a reconfigurable platform by

IMultResp

<<component>> gl

IContfoller <<RtUnit>>

multiplier

IMultipli

Fig. 5. Components model for application tasks

performing a mapping between an application and a reconfig-
urable platform.

1) Application: The application is defined as a set of tasks
that perform computations and communicate to exchange data.
Each task (XFunc) receives data, performs some computations
and sends results to other tasks. Communications among tasks
are done by events. An event contains a type and associated
data. Upon an incoming event, a task performs computation
and sends results to other tasks.

In order to model tasks using our methodology we use
UML components. Each component behavior is performed by
classes instances. The main behavior of a component is de-
scribed by an active class, whose behavior is defined by a state
machine. The only way to communicate with a component is
by sending/receiving events to/from the component. The events
(UML signals) must be sent through ports, that offer or require
a service, defined in UML by means of interfaces.

Figure 5 shows an example with three components: one
for a controller task, responsible for the control flow and
the scheduling, and one component for each operation. Our
controller task is used to send/receive events to/from the co-
processors (XModule) and to communicate with other pro-
cessors (XManager or XWorker) or external components. The
controller task receives the inputs and triggers both operations,
one after the other. All communications are done by UML
ports and use only UML signals, by sending events. Each port
contains an associated interface, which will be explained later.

Each component contains the MARTE HLAM RtUnit

= OPB
<< XilinxIP >> g] OoPB ST = =]. O
<<Hwl_O>> O 0 <<HwBus>>
Uarto1 '
<<HwEndpoint>> OPBO1 L] .

L

OoPB =
<<HwPLD>> 2] << XiinxlP >> H] << XilinxIP >>
FSL <<HwBus>> FSL <<HwProcessor>>
<<HwEndgoint>>
Co-pro FSLO1 mbCtrl
XModule XWorker
S|

<<XiinxP>> 2] F
<<HwBus>>

FsL FSL02

<< XilinxIP >>

<<HwBuUs>> g] LMB
LMBO1

LVB << XilinxIP >> 5]
O {1 <<HwBus>> LMB
LMB02 [}

Fig. 6.

<<XilinxIP>> g] LMB
<<HWRAM>>

localMemory

Platform components modeling

<<component>> &3]

<<component>> g]
<<RtUnit>>

<<component>> g]
<<RtUnit>>

<<RtUnit>>

adder multiplier

<<allocate>>
Nature=timeScheduling

<<allocate>>
Nature=timeScheduling

<<Reconfig>> <<Reconfig>>

<<allocate>; ID=adder_v_1.0.0 ID=mult_v_1.0.0
<< XilinxIP >> <<component>> g]
<<HwProcessor>> <<HwWPLD>>
mbCtrl Co-pro
XWorker XModule

Fig. 7. Allocation of the application on the platform

stereotype. The RtUnit indicates that the component is a real-
time unit. Such information allows allocation of the application
components to the platform components.

2) Platform: The platform is defined as a set of IPs that
can be reused from an IPs library (XManager, XWorker,
XModule).

UML components are used for platform modeling, where
each component is an IP. We use UML MARTE HRM
profile elements to identify the IP characteristics e.g. ver-
sion, name and address [19]. Thus specific stereotypes are
used for each IP library. Figure 6 shows a typical plat-
form in UML which contains one processor which can be
a XWorker (mbCtrl), a co-processor which is a XModule
(co—pro), an input/output component (Uart01), and a mem-
ory (localMemory). These components are connected to-
gether by buses (OPB01,FSL01,FSL02,LMB0O1 andLMBO02,).
All the components except the co-processor contain the
<XilinxIP>> stereotype, with specific information for IP
reuse. The co-processor can be dynamically replaced as we
use FPGA dynamic and partial reconfiguration property. To
identify such a property we use MARTE HRM HwPLD
stereotype.

The reconfiguration service (XTasks API, XTaskUpdateSys-

tem) is not modeled by the designer in order to abstract
the implementation details of such a technology. The service
instantiation is handled by the code generation tool. This
approach allows the model to target different technologies.

3) Allocation: Allocation is the key step in our method-
ology as it models the complete system to be implemented.
Once the behavior is defined in the application model and the
execution structure is defined in the platform model, we need
to map the behavior to the platform, what we call the allocated
model. This step is performed manually. All application com-
ponents stereotyped RtUnit (from MARTE HLAM profile)
are allocated to a platform computing component (processor
or PLD, as defined in MARTE HRM profile).

Figure 7 shows a part of the allocated model of our example.
The controller task is allocated to the processor (XWorker in
that case) and the operation tasks are both allocated to the same
co-processor (XModule). The allocation of two application
components to a same non programmable but reconfigurable
platform component with some specific information indicates
reconfigurability and is explained in the next section. Our
example requires two IPs: adder and multiplier that share the
same HW area. This is a design decision, as their services are
not requested at same time.

4) Reconfiguration: Our approach to model reconfigura-
bility is done in the allocation step where the application
is mapped to the platform. We allow co-processors to be
reconfigured at run-time. In Figure 7 two RtUnit are allocated
to the same co-processor. Specific stereotypes are used to
indicate the reconfiguration modeling.

An allocation is an UML dependency stereotyped with
MARTE <allocate>> stereotype. Nature tag must be set to
timeScheduling in order to inform the code generation tool
that dynamic and partial reconfiguration is required to share
HW area. For each allocation an ID needs to be defined,
which is used by the reconfiguration service (XTasks API,
XTaskUpdateSystem) to identify the right bitstream to be
loaded upon request.

The HWPLD stereotype is used to indicate a reconfigurable
component in the platform. This information is used by the
code generation tool to generate the right information for the
synthesis tools used to implement the system on the target
platform (FPGA). We have added the Reconfig stereotype
to the allocation, to allow the code generation tool to insert
the reconfiguration service call in the processor code. The ID
tag is used to perform bitstream selection and downloading.

Figure 8 shows the generated code from a state of the
controller that sends an event to a co-processor. The code
generation tool searches in the controller state machine all
events sent to co-processors. For each event it checks if it
is sent to a reconfigurable component. If true a reconfigu-
ration request is inserted just before sending the event. The
reconfiguration command provides the bitstream ID to the
reconfiguration service. The XTaskUpdateSystem command is
offered by the reconfiguration service (XManager). Of course
if the configuration is already active, the XManager does not
reconfigure the component.

Controller state machine
multResp

port_06.send(new multiply(value,c));

Insert
: reconfiguration
v service call

XTaskUpdateSystem(“mult_v_1.0.0");
port_06.send(new multiply(value,c));

Insert
reconfiguration
service call

i‘ll'askUpdateSyslem(“adder_v_1 .0.0”);
port_04.send(new add(a,b));

Fig. 8. Allocation with specific stereotypes models dynamic reconfiguration

‘/ C code ‘ mPsopC 4 Platform Transformations
generation (EDK) ‘ ‘ generation are performed by
: i - RulesComposer
some % [paton
- { Model ‘ ‘ e | Add BUS_MACRO _
MARTE t °
T o) — 1 Top VHDL
MPSoPC '{r Mfodel { Platform R e A
Model ransformation Model (ISE) bitstreams
(Rhapsody)
~ Hardware 3 \ ?
S B
Model) N 7
) v \ 6 Reconfigurable R MPSOPC
‘ VHDL code } VHDL code| | ¥| ~ System (PlanAhead)
| generation | (ISE) ‘ ‘ | e
Fig. 9. Flow and used tools: The code generation tool generates projects

and scripts

B. Development flow and tools

As we consider a high abstraction level for modeling we
require implementation steps into existing technology and
tools. Our development flow relies on existing tools for UML
modeling, model transformation, embedded platform design,
HW synthesis and bitstream generation. Xilinx FPGAs and
associated tools are used, as they offer dynamic and partial
reconfiguration technology. Figure 9 shows the development
flow and considered tools.

Rhapsody UML modeler is used for UML modeling. Rule-
sComposer, a Rhapsody plugin, is used as model transforma-
tion/code generation tool. Through RulesComposer we can de-
fine transformation rules, that take as input an UML/MARTE
model and generate implementation models. We have defined
implementation models for platform, VHDL and C code. Code
generation facility is built from the UML model, where a set
of transformation rules creates a specific target model. As the
UML model contains the complete system design, the first step
is to extract the various system parts: platform with existing
IPs (1), software code (2) and new IPs (3).

The platform and software models are used to automatically
generate a Xilinx EDK project [19] (4), which is the Xilinx
tool used for embedded system design. EDK defines a platform
as a set of IPs and each new IP is generated with an empty
behavior. Each processor (XManager and XWorker) contains
a software project associated to it. The C model is used
as input to generate processor software code in EDK. The
code generation tool automatically inserts in the EDK project
several IPs required to perform dynamic reconfiguration (i.e.
ICAP, Ethernet controller). The EDK project is automatically

transformed into an ISE project (5). Xilinx ISE is the tool
used for hardware design, which accepts VHDL as input
language. The EDK project exports a top VHDL file with all
the components of the system.

Each VHDL model (new IPs) is used to generate ISE
projects (6). At that step of the design flow we have one ISE
project for the system and one VHDL project for each new
IP. Then in the Xilinx flow we update the VHDL files with
reconfiguration information. Each reconfigurable component
must be connected through BUS_MACRO. A BUS_MACRO
is a placement and routing constraint used to allow partial
reconfiguration area in the target Xilinx FPGA. BUS_MACRO
is inserted in the top VHDL file by the designer'. The set of
ISE projects is used to generate a set of files that contains
logical design data and constraints: the NGC files. Each NGC
file is an IP that must be placed in the FPGA.

The NGC files are used as input to generate the PlanAhead
project (7) which is required to generate the set of bitstreams.
With PlanAhead we place all IPs in the FPGA and mark
which areas of the chip are dynamically reconfigurable. Then
PlanAhead generates one bitstream for the initial configuration
and a set of partial bitstreams for each possible configuration.
Also, an empty bitstream is generated for each reconfigurable
area in the design (for each co-processor (XModule) in our
architecture).

In our example, from Figure 7, 4 bitstreams were generated:
static_full.bit (initial system configuration), copro_add.bit
(adder component), copro_mult.bit (multiplier component)
and an empty bitstream, copro_blank.bit.

Each bitstream is stored in a bitstream server on the
network and contains an ID. At system start up the
static_full.bit bitstream is loaded into the FPGA (with
the empty co-processor by default). The reconfiguration ser-
vice present in the system contains information about how to
load the bitstream and where to load it from. Reconfiguration
commands (XTaks API) inserted by our code generation tool
uses the reconfiguration service to load the bitstreams specified
by the ID.

VI. RESULTS

An object tracking application was used to validate our
approach. A video camera captures images and a set of
operations is performed to track moving objects, which are
then labeled and the result image is shown in a VGA screen.

The application is defined by 9 application components,
with four main processing tasks: background substitution (BG
subs), morphological transformation (morph trans), motion
test and image update. Each one can use secondary tasks
to perform compute intensive processing. Our reconfiguration
design method is applied to the morphological transformation
step. The morphological transformation task uses three aux-
iliary tasks: erosion, dilatation and reconstruction. They are

Version 11 of Xilinx tools eliminates the need of BUS_MACRO, which
simplifies this step. Our experiments are done in version 8.2i with EAPR
(Early Access Partial Reconfiguration)

performed in sequence and the next one needs the preceding
result to process data.

The platform contains 60 components, including 4 pro-
cessors (3 microblaze processors and one PowerPC). The
PowerPC which acts as the XManager apart from managing
the whole system captures the next image and sends it to the
first microblaze. The image processing is performed by the
microblazes (XWorkers) in sequence, and the image update
and display is performed by the PowerPC.

The microblaze processor that performs morphological
transformation is connected to a co-processor (XModule)
by two FSL busses, one to send request and one to
receive results. Such a co-processor is dynamically re-
configured to compute the three image processing tasks
(erosion, dilatation and reconstruction). Three IPs were
generated: copro_erosion, copro_dilatation and
copro_reconstruction, each one performs an image
processing step belonging to the morphological transforma-
tion. For each IP a bitstream is generated and a fourth one, the
empty bitstream, is also generated. Partial bitstream is about
80KB for each co-processor. The reconfiguration throughput
is close to 80Mb/s, thus total reconfiguration time is about
2ms. In this case study we have considered the L1 level
for the bitstreams repository as the global size of bitstreams
does not exceed the SRAM size. As three reconfigurations are
performed by the morphological transformation, 6ms is the
total time overhead added by reconfigurability.

The time constraint for each step in the processing is 40
milliseconds (25 images processed per second). Each of the
morphological transformation step takes less than 10ms, which
leads to 36ms to perform the morphological transformation:
30ms for the computation and 6ms for the reconfigurations. In
that case partial dynamic reconfiguration allows a significant
area optimization (we used 1 co-processor instead of 3)
without performance penalties. The necessary memory used
by the reconfiguration service (XTask API) executed on the
PowerPC is less than 8OKB (40KB for executable code and
32KB for local data).

VII. CONCLUSION AND FUTURE WORKS

In this paper we have shown a global approach to design
self-reconfigurable multiprocessor systems on chip. In order
to provide a comprehensive approach we believe three key
points must be addressed: i) definition of an efficient archi-
tectural model with adapted API in order to help designer
during the design steps, ii) a bitstreams repository hierarchy
to face potential huge number of bitstreams which will be
required for future versatile systems and iii) a complete design
methodology starting from a high level of specification (UML
in our case). Increasing modeling abstraction levels allows to
hide implementation details to the designer, leaving focus on
system requirements rather than implementation issues.

In order to achieve our goals the platform must support
dynamic and partial reconfiguration. We have applied our
methodology to Xilinx Virtex series FPGAs. Although our

experimentations are target-specific, our approach can be ap-
plied to other dynamic and partial reconfigurable platforms.
Our approach allows a semi-automatic generation of dynamic
reconfigurable MPSoPC. Results obtained demonstrated that
replacing co-processors at run time allows area optimization
without performance penalties.

REFERENCES

[1] OMG, “The Unified Modeling Language (UML),”
http://www.omg.org/uml. [Online]. Available: http://www.omg.org/uml

[2] D. et al., “Runtime adaptive multi-processor system-on-chip: RAMP-
SoC,” in IPDPS, April 2008, pp. 1-7.

[3] S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuzmanov, and
E. Panainte, “The molen polymorphic processor,” IEEE Transactions on
Computers, pp. 1363-1375, 2004.

[4] M. Rashid, F. Ferrandi, K. Bertels, E. Informazione, and 1. Milan,
“hArtes design flow for heterogeneous platforms.”

[5]1 A.Lagger, A. Upegui, E. Sanchez, and 1. Gonzalez, “Self-reconfigurable
pervasive platform for cryptographic application,” Field Programmable
Logic and Applications, 2006. FPL '06. International Conference on,
pp. 1-4, Aug. 2006.

[6] J. W. Williams and N. Bergmann, “Embedded linux as a platform for
dynamically self-reconfiguring systems-on-chip,” in ERSA, T. P. Plaks,
Ed. CSREA Press, 2004, pp. 163-169.

[71 J. Dekeyser, P. Boulet, P. Marquet, and S. Meftali, “Model driven
engineering for soc co-design,” IEEE-NEWCAS Conference, 2005. The
3rd International, pp. 21-25, 2005.

[81 Y. Zhu, Z. Sun, A. Maxiaguine, and W.-F. Wong, “Using uml 2.0 for
system level design of real time soc platforms for stream processing,”
in RTCSA °05: Proceedings of the 11th IEEE International Conference
on Embedded and Real-Time Computing Systems and Applications
(RTCSA’05). Washington, DC, USA: IEEE Computer Society, 2005,
pp. 154-159.

[9] T. Wang, X.-G. Zhou, B. Zhou, L. Liang, and C.-L. Peng, “A MDA
based SoC Modeling Apporach using UML and SystemC,” in Pro-
ceedings of the sixth IEEE International Conference on Computer and
Information Technology (CIT’06), september 2006, pp. 245-245.

[10] P. Kukkala, J. Riihimaki, M. Hannikainen, T. D. Hamalainen, and
K. Kronlof, “Uml 2.0 profile for embedded system design,” in DATE
’05: Proceedings of the conference on Design, Automation and Test in
Europe. Washington, DC, USA: IEEE Computer Society, 2005, pp.
710-715.

[11] E. Riccobene, P. Scandurra, A. Rosti, and S. Bocchio, “Designing
a Unified Process for Embedded Systems,” in Fourth International
Workshop on Model-Based Methodologies for Pervasive and Embedded
Software. 1EEE Computer Science, mars 2007, pp. 77-90.

[12] S. Bocchio, A. Rosti, E. Riccobene, and P. Scandurra, “UML and MDA
for Transactional Level Transactional Level Modeling,” in UML-SoC,
2007.

[13] C.-H. Tseng and P.-A. Hsiung, “UML-Based Design Flow and Partition-
ing Methodology for Dynamically Reconfigurable Computing Systems.”
in EUC, 2005, pp. 479-488.

[14] Imran Rafiq Quadri, Samy Meftali, and Jean-Luc Dekeyser, “High level
modeling of dynamic reconfigurable FPGAs,” International Journal of
Reconfigurable Computing, vol. 2009, p. 15, 2009.

[15] A. Rind, K. Shahzad, and M. Qadir, “Evaluation and comparison of
tep and udp over wired-cum-wireless lan,” Multitopic Conference, 2006.
INMIC °06. IEEE, pp. 337-342, Dec. 2006.

[16] N. Ploplys and A. Alleyne, “Udp network communications for dis-
tributed wireless control,” American Control Conference, 2003. Proceed-
ings of the 2003, vol. 4, pp. 3335-3340 vol.4, June 2003.

[17] N. Instruments, “Building networked applications with the labwindows
/evi udp support library,” January 2009.

[18] A. Dunkels, “Iwip,” Computer and Networks Architectures (CNA),
Swedish Institute of Computer Science, http://www.sics.se/@dam/lwip/,
2001.

[19] J. Vidal, F. de Lamotte, G. Gogniat, J.-P. Diguet, and P. Soulard, “Ip
reuse in an mda mpsopc co-design approach,” in ICM’09: Proceedings
of the International Conference on Microeletronics, 2009.

