
Operating Environment on-line Metrics for Application Architecture

Matching

Milad El Khodary, Jean-Philippe Diguet, Guy Gogniat
LESTER, CNRS / UBS Research center, 56321 Lorient Cedex, France

Abstract

The need to execute highly demanding and real-time applica-
tions on ambient computing networks will be a big challenge
in the future. In this paper we present an Operating Envi-
ronment (OE) that allows application partitioning on such
platforms. The OE decisions are made based on a trade ne-
gotiation protocol and energy efficiency and resource match-
ing metrics. The metrics matches application and architec-
ture using purely application and architectural defined char-
acteristics. Application is modeled as hierarchical task graphs
with Meta-data and architecture as a reconfigurable and multi-
granular instruction set virtual processor. Metrics complexity
is adequate for on-line decisions thanks to easy generalization
through the application hierarchy.

Keywords: adaptive systems, ambient computing,
metrics, operating environment

1 Introduction

This work is a part of the Æther1 project which investi-
gated auto-adaptation approach for future emerging elec-
tronic systems and applications. The project has identi-
fied the need to execute highly demanding and real-time
applications on ambient computing networks. Projects
like java-RT [1] has already emerged from strong today’s
need to execute hard or soft real-time applications on
broadly available systems. Taking this a step further, fu-
ture applications will be distributed on widely available
ambient computing platforms as today’s high intensive
application benefits from grid systems. But adapting dy-
namically available computing resources to application
objectives will be a great challenge in future emerging
systems. In fact, application computing performance ob-
jectives could undergo huge variations during the life cy-
cle of the application and the amount of available com-
puting resources in certain urban area is dynamically
variable.

Today’s OS will be extended as Operating Environ-
ment (OE) to fit to the context of pervasive computing
and will guarantee an acceptable efficiency for the whole
platform. This could be possible through the character-
ization of: application objectives and quality of services;
architecture computing performance and then matching
them at runtime. The specification of applications and
architectures is done at design time while matching and
auto-adaptation is done by the OE at runtime. Section
2 presents the Æther auto-adaptive concept, OE require-
ments and the control flow of the trading negotiation
protocol. Section 3 describes the application and the

1European IST-FET Project 027611

ProcessingLocal memory
Supervision Config.ControlObserver HwHwHwSwSwSw� Inter�Sane� Inter�Hierarchy LevelCommunications

Data In+ Meta�Data Data Out+ Meta�Data
Figure 1: The SANE concept

architecture models and specification data needed by on-
line metrics. Section 4 presents the efficiency and the
resource matching metric and concludes with a numeri-
cal application of these metrics showing how they can be
used by the OE. Section 5 concludes the paper.

2 SANE OE concepts

2.1 Separation of adaptation concerns

Self-adaptation may occur at all levels of application con-
trol. At the lowest level of the control flow we consider a
sequence of non-conditional operations that can be mod-
eled as a data-flow graph to be mapped onto a recon-
figurable functional unit. At a higher level the OE par-
titions application tasks (processes) onto a set of dis-
tributed reconfigurable processors SPs according to soft
or hard real-time constraints. Auto-adaptive application
can be specified as a set of tasks including a configuration
task that can create, kill and modify other tasks accord-
ing to application specific metrics and adaptation rules.
The same Self Adaptive Network Entity (SANE) concept
can be used to specify self-adaptation on all levels.

The Æther SANE concept depicted in Fig.1, is appli-
cable at all levels of hierarchy, so the approach can be
implemented in different ways. The figure shows a loop
composed of four blocks. The processing part of the con-
figurable architecture can be a gate, a co-processor, a
processor or a multiprocessor SOC. The observer, feeds
the controller with measurements such as temperature,
data-rate, etc needed during the decision process. The
controller selects the right configurations and configures
the architecture. Finally, the communication interface
transports control signals to/from other SANE or to up-
per control layers that require information for global de-
cisions. For instance the ID of current selected configu-
ration can be provided.

1

1-4244-1517-9/07/$25.00 (C)2007 IEEE

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on July 28, 2009 at 08:38 from IEEE Xplore. Restrictions apply.

2.2 Requirements

The OE must deliver four main services. The first service
is the dynamic and abstract specification of computing,
memory and communication resources. OE must be able
to discover and qualify existing and/or configurable re-
sources. This service requires specific effort to formalize
application characteristics and architecture reconfigura-
tion space. Another issue is the identification and certi-
fication of ambient processors for security concerns.

The second service includes real-time, QoS manage-
ment and monitoring for qualifying applications dis-
tributed over dynamic platforms. There are two issues
addressed in this service. The first one is the static hard
or soft Real-Time analysis used before mapping decision.
The second one is performed on-line and deals with mon-
itoring. It is used to check whether applications perfor-
mance objectives are met or not and so it stimulates task
delegations for example.

The third service is the trading of resources and ser-
vices between the SP network. This service is based on
previous ones and decides task allocation, hardware /
software partitioning and reconfiguration decisions. The
service provides a trade-off between solution optimality
and the cost of partitioning in terms of delay and power
overhead. The OE must be able to fulfill application re-
quirements in terms of resource allocation.

The last service deals with task synchronization and
communication protocols.

2.3 OE partitioning strategy

2.3.1 Decision flow

The operating environment is implemented on each
SANE processor. A SP will match the state of its re-
sources with application needs when an application is
launched. If there are sufficient resources locally, the SP
will execute the application. If resources are insufficient
the SP will negotiate with other SPs in the environment
to find other resources as shown in Fig.2 . The negotia-
tion includes

• Request: the initiator SP broadcasts the description
of the application (task graph skeleton + objectives).

• Bidding: each available SP matches the request with
the current state of its resources, relative to the spec-
ified constraints on QoS, energy efficiency, etc. Then
each SP returns a bidding proposal containing re-
source characteristics (type and quantity) that it is
willing to invest.

• Partitioning: based on received bids, proposals are
evaluated and sorted. A selection relies on a credit-
based calculation and a real-time analysis.

• Contracting: once above steps are completed, a par-
titioning solution (if successful) is identified and a
contract is sent to selected SPs. Then, the SPs co-
ordinating the execution of the application update
their credit accounts.

• Monitoring and adaptation: adaptation implies dy-
namic resource allocation and (perhaps partial) re-
deployment of available resources to applications.
An adaptor service checks monitoring data (e.g.

App licationS ummary :Characteris ationMetrics,FunctionalB lock IDs + ex ecutioncons traintsApp lication Tasks / SP iMatchingroug h WCET es timation
SP 2A2SP 1A1 SP 3A3 SP 4A4SP 5A5Es timated ex ecution time (wcet)P riority, R es ource availab ilitySP 2A2SP 1A1 SP 3A3 SP 4A4SP 5A5

Tasks dep loymentSP 2A2SP 1A1 SP 3A3 SP 4A4SP 5A5Tasks p artitioningS chedulab ility analys isF eedb acks

1)
2)
3)

Figure 2: SANE Environment

communication bandwidth, task execution time,
etc.) and compares it with specified thresholds. If
contract violation occurs, a delegation procedure in-
volving part of the application may by initiated. The
same model is used for the whole application.

2.3.2 Bidding

The selection of partner SPs must be adaptive, fast and
low cost. For this reason, a two-step procedure has been
chosen. The first step is selecting candidates based on a
credit/debt protocol. This step is inspired by the evolu-
tion and adaptation processes of a famous contract net
protocol [2]. Usually multi-agent systems are used in a
bidding framework based on a monetary approach. In
order to balance task mapping over the most efficient set
of SPs, we use the concept of social debt within a coop-
erative system. The idea is the following: If OE A runs
Task T for OE B (initiator), OE A increases its credit
account with respect to B, and B’s OE increases its debt
regarding SP A.

A credit balance is used during the selection step of
the mapping strategy. Possible contractors are sorted
according to a cost function based on metrics and credits
which favor efficiency and balance processing load. This
policy has two positive effects. First, in order to obtain
resources from other OEs, an OE will favor choices that
reduce its debt in answer to proposals. Secondly, it will
favor a choice that minimizes the impact of its contracts
by accepting tasks for which it is efficient with certain
priority. Thus an OE will try to send bids in order to
balance its social debt with a minimum of effort.

The second step of the selection procedure is applied on
a reduced set of SP candidates. A fast real-time analysis
is performed to address hard real-time, soft real-time or
best effort applications[3].

2

1-4244-1517-9/07/$25.00 (C)2007 IEEE

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on July 28, 2009 at 08:38 from IEEE Xplore. Restrictions apply.

Figure 3: Application operations and energy signatures

3 System models

3.1 Application specification

Ambient computing implies a range of products that re-
quire standards and interoperability. This observation
leads to the two following implementation assumptions.
First, each device implements a Sane Virtual Processor
(SVP) that can execute (or interpret) SANE applications
more or less efficiently. Second, multimedia and tele-
com applications are implemented with standard func-
tions which may have different specific HW/SW config-
urations.

Thus, an application can be specified as a dynamic task
graph in which each task is a hierarchical control data-
flow graph as shown in Fig.3. Leaf nodes in the graph
correspond to basic instructions of the SVP. As a part of
the semantics of the specification model, some meta-data
are introduced during compilation across all hierarchy
levels to guide metrics calculation for partitioning and
scheduling. Meta-data includes:

• Fi ID:standard function ID potentially available on
target architectures.

• N : number of calls i.e. function instances.

3.2 Architecture model

A SP can be interpreted as an abstraction of a processor
with a reconfigurable and multi-granular instruction set.
A SP is composed of basic SANEs that can collaborate to
create a SVP or a coarse grain function. A basic SANE
can be a reconfigurable functional unit or a processor
core depending on implementation.

The instruction set is mapped onto SANEs that can
be more or less specialized for executing different classes
of computation. At an abstraction layer above the SVP,
each SP can provide a set of coarse-grain instructions im-
plementing specific functions (Fi ID). The configuration
granularity may vary depending on the degree of special-
ization of the target architectures. For instance, in the
case of 4G telecom applications, the function could be a
Log-Map, a SISO decoder or a complete turbo-decoder.
Characteristics (power, execution time) of coarse-grain
instructions depend on SANE allocations. The charac-
teristics are provided as estimates based on linear func-
tions of the number of SANEs.

Finally, the architecture specification can be adapted
in two ways. First, function characteristics can be up-
dated according to observations. Second, in the ambient

computing context, configurations for new functions (e.g.
partial bit-streams) can be downloaded from a network
data-base using a coarse grained instruction cache policy,
in a way that is similar to firmware updates in current
portable devices.

4 Metrics

4.1 Motivations

Metrics have already been used in the domain of co-
design for selecting architectural models according to ap-
plication characteristics [4], [5]. However, these metrics
are used off-line because they requires a lot of comput-
ing resources; they are defined for specific architectures
such as GPP, DSP or FPGA, and thus cannot be reused
for on-line matching with any type of architecture. Two
types of metrics are defined: energy efficiency metrics
(EA

H) and resource matching metric(U). Efficiency met-
rics estimate the efficiency of an architecture for an ap-
plication based on the architecture specialization of cer-
tain functions and categories of instructions while the re-
source matching metrics determine the possibility of ap-
plication execution on an architecture and depict the ar-
chitectural free and used amount of computing resources
during application execution.

4.2 Efficiency metrics

The goal of the efficiency metrics is to quantify the suit-
ability of application execution on architectures; this al-
lows the use of policies like ”architectures execute ap-
plications for which they are specialized”. This ap-
proach differs from minimizing total application energy
consumption and so, low power architectures are not fa-
vored. The overall goal is not to minimize the total en-
ergy needed to execute an application as for portable sys-
tems but rather to select architectures that are efficient
in application execution. Efficiency and total energy op-
timization do not necessarily have the same goals.

Consider for instance a low power portable DSP ar-
chitecture (H1: for hardware number one) and a legacy
DSP (H2). The two may satisfy application objectives
(performance needs), but the legacy DSP may be more
efficient than the low power portable DSP although the
latter consumes less. Efficiency maximization will favor
H2, while total energy minimization will favor H1

4.2.1 Efficiency Metric Definition

The same energy efficiency metric is used to match hard-
ware (H) energy efficiency to execute different size of op-
erations. An operation could be an application, a func-
tion (coarse grain instructions) or an individual instruc-
tion. All operations are noted here by A for simplicity.
The efficiency metric EA

H is the proportion of energy EAH

P
used by A’s operations on hardware H divided by the
total amount of energy EAH

T consumed while executing
A on H. The proper amount of energy EAH

P is the energy
used by the hardware operator that executes the opera-
tion A during one execution. While the total amount of
energy EAH

T includes in addition to that: 1) the energy
used to decode application instructions in processor case
(or to configure a dedicated accelerator) in order to exe-
cute the operation on the hardware operator and 2) The

3

1-4244-1517-9/07/$25.00 (C)2007 IEEE

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on July 28, 2009 at 08:38 from IEEE Xplore. Restrictions apply.

memory access needed by the operation. EA
H must be be-

tween zero and one. If EA
H is close to one the architecture

H is better suited to execute A.

EA
H = E

AH

P /E
AH

T (1)

4.2.2 Architecture Parameters

The relationship between application and architecture
can be resumed as the application executes its instruc-
tions on architecture. An application can compose an
architecture’s basic instructions into a function. This
function can be implemented as a coarse grain instruc-
tion in an accelerator on another architecture. Thus,
instructions have different performance and energy con-
sumption on different hardware. This concept motivates
variable instruction set and variable granularity architec-
tures.

We categorize all instructions that an architecture can
execute. Instructions in each category k have nearly the
same performance and energy weights. For example we
group +,−,max and min in the same instruction cat-
egory. We denote the set of all instruction categories
by C. It is assumed that all instructions of category k
have almost the same amount of energy EkH

P and EkH

T ,
even-though, in the absolute, this assumption may not fit
exactly real-world implementation. Instruction that ex-
ecute on a processor may have different execution time
and consume different energy depending on whether its
arguments are in a cache or not, even for basic opera-
tors such as addition for instance, the consumed energy
depends on the instruction operands values. However
this kind of abstraction is correct for two reasons: 1) a
high level of abstraction is required for system level light
weight decision and 2) the system is intrinsically adaptive
which means that metrics can be dynamically updated.
So, from now on we denote by EkH

P and EkH

T the mean

value E
kH

P and the mean total energy E
kH

T consumed by
instructions of category k.

Architecture signature

The architectural efficiency achieved by executing an
instruction of category k is noted by Ek

H . It is the ratio of
energy consumed by the executed instruction Ek

P and the
overall energy consumed while executing this instruction
Ek

T . The signature of an architecture is defined by the
graph of Ek

H over the set of all instruction categories C.
Fig.3 shows the energy signature of two architectures.

Ek
H = EkH

P /EkH

T (2)

Let’s define another architectural parameter Rk
H that

indicates the weight ratio of an instruction or the energy
it consumes relative to other instructions.

Rk
H = Ek

T /ER (3)

Here ER is a reference consumed energy that can be
defined as

∑
k∈C EkH

T , ET , min(Ek
T) or a constant energy

value. In our case ER = min(Ek
T). There is no need to

communicate this parameter since EA
H is computed by the

SP that knows its parameters.

4.2.3 Application parameters

In order to calculate EA
H for application A’s instructions,

we assume that A has Nk
A instructions of category k.

Thus, (1) can be written as:

EA
H =

EAH

P

EAH

T

=

∑
k∈C Nk

A EkH

P∑
k∈C Nk

A EkH

T

EA
H can be represented as a function of application pa-

rameter Nk
A and architectural parameters Ek

H and Rk
H

as:

EA
H =

EA
P

EA
T

=

∑
k∈C Nk

A Rk
H Ek

H∑
k∈C Nk

A Rk
H

Global algorithm

Since architecture H may implement certain functions
that application A uses, the histogram Nk

A depends on
the architecture H where the application executes. Fig.3
shows the energy signature and the histogram of an ap-
plication on two different architectures, the first one im-
plements two coarse grain function in addition to basic
instructions. The application specification section de-
fines the application as a hierarchical task graph. If the
function k exists in the architecture then that level of
the hierarchy can be used by considering the function
meta-data N as Nk

A. If not, it is necessary to enter the
function definition to reach instructions known by the
architecture H. In the worst case these could be basic
instructions.

The extension of instruction efficiency matching met-
rics to take into consideration coarse grain instructions
requires a traversal of the application description with
a depth first recursive algorithm. This algorithm uses
application and architecture description models:

Function [EA
H , RA

H] calcMatch(App A, Archi H)
MN ⇐ 0
MD ⇐ 0
Set children = A.getChlidren() //get the directly first
level children
For each element F in children
If F ∈ H // F is implemented as an instruction
// read EF

H and RF
H from architecture specification

Else
[EF

H , RF
H] ⇐ calcMatch(F,H)

End if
MN ⇐ MN + EF

H RF
H F.N

MD ⇐ MD + RF
H F.N

End for
M = MN/MD
R = MD
Return [M, R]
End function

4.3 Performance Metrics

Today’s increasingly complex applications require more
and more computing resources. In the following section

4

1-4244-1517-9/07/$25.00 (C)2007 IEEE

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on July 28, 2009 at 08:38 from IEEE Xplore. Restrictions apply.

we will qualify computing resource needs of one category
of instructions applications and generalize the concept
for multi-categories applications. Generalization for any
type of application will be addressed in future work. The
defined performance metric allows us to online match an
application’s objectives with an architecture’s capabili-
ties.

4.3.1 Application Specification

For clarity we consider the following assumptions:1) all
instructions are of the same temporal weight, so any in-
struction can execute on the architecture in one cycle. 2)
the architecture is characterized by it’s clock speed νH

i.e. the number of cycles that the architecture executes
every second and pH the number of instructions that it
executes every cycle. 3) application is characterized by
static execution graph generated form its dynamic graph
and the application objective states that it should exe-
cutes in not more than dA seconds. The total number
of instructions in the application is NA and the critical
path length is λA. We characterize the application by
the following parameters:

• pA, p̂A : respectively, the mean and maximum ap-
plication parallelism considering execution on an in-
finitely big architecture. The application will exe-
cute in a time (or number of cycles) equivalent to
the length of its critical path. So, pA (resp. p̂A) is
the mean (resp. the maximum) number of instruc-
tions per cycle that can execute during application
execution along its critical path. So, pA = NA/λA.
One could argue that pA and p̂A cannot be calcu-
lated exactly since determining the optimal number
of processors that execute the application on its crit-
ical path is an NP-complex problem due to applica-
tion dependency. But the values can be estimated
off-line using fast ALAP scheduling for instance. pA
and p̂A characterize the dependency of application
operations statistically.

• PA, P̂A: respectively, the least acceptable mean and

maximum application parallelism: PA (resp. P̂A) is
the mean (resp. the maximum) number of executed
instructions during the life time of the application
per time unit (seconds) considering the slowest ap-
plication execution that meets performance objec-
tives.
So, PA = NA/dA and P̂A = NA p̂A/pA dA. P̂A

is calculated by increasing the number of instruc-
tions to p̂A for each cycle of application execution.
This is the same as assuming an application having
p̂A λA = p̂A NA/PA instructions.

Notice that pA and p̂A are measured in instructions

per cycle while PA and P̂A are measured in instructions
per second.

If the architecture instruction set can take advantage
of all architectural parallelism the maximum number of
instructions that the architecture can execute during one
second is PH = pH νH .

Metric Definition

We define the mean and the minimum unused ratio of
the architecture while executing the application as U

dA

H

and ǓdA

H respectively. The architecture can execute the

application when this ratio is positive and the ratio in-
dicates the unused or the still available percentage of
resources. Otherwise, the ratio is negative and the archi-
tecture capabilities are smaller than application require-
ments. The value of the ratio in this case indicates the
percentage of the resources that we still have to acquire
relative to the total application required resources.

U
dA

H =
PH − PA

max(PH ;PA)
=

PH − NA/dA

max(PH ;NA/dA)
(4)

ǓdA

H =
PH − P̂A

max(PH ; P̂A)
=

PH − NA p̂A/pA dA

max(PH ;NA p̂A/pA dA)
(5)

U
dA

H and ǓdA

H are between -1 and 1. We say that the
architecture is able to satisfy the application objectives

in average if U
dA

H is positive and we can prove that it will

satisfy them if ǓdA

H is positive. In fact ǓdA

H corresponds
to an upper bound of application instruction number.
This corresponds to a maximum p̂A for every application
cycle.

It can be said that the architecture is infinitely big
relative to an application if it is capable of executing it
within λA cycles the critical path length. This condition
will happen when pH ≥ p̂A.

The above definitions correspond to the most relaxed
execution of the application respecting application objec-
tives i.e. dA. An acceptable execution of the application
TAH should be smaller than dA and bigger than T

m

AH

(or bigger than T̂m
AH if viewed pessimistically). Where

T
m

AH (T̂m
AH) is the minimum possible execution time of

application A on architecture H considering its mean
value characteristics (resp. pessimistic scenario). T

m

AH

and T̂m
AH correspond to maximum possible resource uti-

lization during application execution. This maximum is
100% if the architecture is not infinitely bigger than the
application. They are given by:

T
m

AH = NA/pH νH (6)

T̂m
AH = NA p̂A/pApH νH (7)

For any application of acceptable execution time TAH

the unused ratio of the architecture H while executing A
is:

U
TAH

H = PH−P A

max(PH ;P A)
= PH−NA/TAH

max(PH ;NA/TAH) (8)

ǓTAH

H = PH−P̂A

max(PH ;P̂A)
= PH−NA p̂A/p

A
TAH

max(PH ;NA p̂A/p
A

TAH)
(9)

An application execution profile can be defined as

a couplet (TAH ;U
TAH

H) (or (TAH ; ǓTAH

H)). (TAH ;U
TAH

H)

(resp. (TAH ; ǓTAH

H)) varies from (T
m

AH ;U
T

m

AH

H) to

(dA;U
dA

H) (resp. from (T̂m
AH ; Ǔ

T̂ m

AH

H)) to (dA; ǓdA

H))

These metrics allow the OE to evaluate whether an ap-
plication or a part of the application can be executed on
the architecture. They restrict the solution domain. The
selection of final solution depends on other OE objectives
social dept for instance.

5

1-4244-1517-9/07/$25.00 (C)2007 IEEE

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on July 28, 2009 at 08:38 from IEEE Xplore. Restrictions apply.

U
TAH

H can be used for soft real-time application match-

ing while ǓTAH

H can be used for hard real-time applica-
tions matching.

4.3.2 Categories of Instructions

It is possible to distinguish k categories of instructions.
Architecture H can execute an instruction Ik of type k
in T k

H cycles. It has pk
H accelerators of type k that run

at νk
H cycles per second. So, the number of operations of

type k that the architecture can execute in one second is

pk
H [

νk

H

T k

H

]

The integer value [νk
H/T k

H] can be approximated by
νk

H/T k
H

So, the architecture H can approximately execute
pk

H νk
H/T k

H operations of type k per second.

Application A has Nk
A instructions of type k that

should be executed before dk
A. pk

A, p̂k
A, P

k

A, P̂ k
A the equiv-

alent applicative parameters as defined above for opera-
tions of type k. We define the unused amount of resources
of type k as:

U
dk

A

kH =
P k

H
−P

k

A

max(P k

H
;P

k

A
)

=
pk

H
νk

H
/T k

H
−Nk

A
/dk

A

max(pk

H
νk

H
/T k

H
−Nk

A
/dk

A
)

(10)

Ǔ
dk

A

kH =
P k

H
−P̂ k

A

max(P k

H
;P̂ k

A
)

=
pk

H
νk

H
/T k

H
−Nk

A
p̂k

A
/pk

A
dk

A

max(pk

H
νk

H
;Nk

A
p̂k

A
/pk

A
dk

A
)

(11)

If U
dk

A

kH is smaller than zero we should consider partition-
ing the application.

4.4 Illustrative Example of Metrics

To illustrate on-line application architecture matching
with our metrics, consider the execution of a multimedia
codec application on: H1, a basic GPP like processor,
H2, a PC with DSP capabilities (like OMAP), H3, a PC
with DSP and DCT accelerator (like OMAP 2), H4, an
efficient DSP (like Tensilica processor) and H5 an ASIC
that directly implements the codec application.

The application and architecture characteristics along
with the matching results for H1, H2, H3, H4 are shown
in Table 1. The first column describes the codec on H1,
H2 and H4. The codec has a different histogram on H3

because it has a different instruction set (implements a
DCT).The application deadline dA is the application pe-
riod. Following raws describe instruction properties. H1

runs at the same frequency as H3 which is ten times
smaller than the frequency of H2 and H4. H2, H3 and
H4 have the same architectural parallelism for basic in-
structions while H3 has an accelerator for DCT. The last
line in the table concerns H3 only. H2 and H3 have the
same efficiency Ek, while H4 is more efficient for major
codec instructions. We consider the same Ek

T for all ar-
chitectures.

H1 would not meet the objectives of lot of the instruc-
tion set categories so we cannot consider executing the

application on it. H2, H3 and H4 all have positive U
dk

A

k ,
thus they can execute the application. Notice that H3

meets the application objective and runs at the same
frequency as H1 because it has a DCT accelerator. H3

APP H1 H2 H3 H4 H2H3H4 H1 H2H4 H3

H1H2H4 H3 pk

H
pk

H
E

k

H
pk

H
E

k

H
pk

H
E

k

H
E

kH

T
U

d
k

A

k

Freq 107108 108 107

Period 0,041 0,041
DSP32 3894400 12800 1 2 0,3 2 0,3 2 0,6 100 -0,89 0,53 0,98
ALU32 36406401233280 1 4 0,2 4 0,2 4 0,5 100 1,00 0,78 0,25
Bit 640 1280 1 6 0,04 6 0,04 6 0,04 1 -0,11 1,00 1,00
STR 460480 473920 1 32 0,001 32 0,001 32 0,001 1 -0,05 1,00 0,96
CJMP 430720 849920 1 8 0,5 8 0,5 8 0,5 1 -0,57 0,99 0,74
Loop 963520 520000 1 8 0,5 8 0,5 8 0,5 1 -0,88 0,97 0,84
M Acc 35497601147520 1 4 0,45 4 0,45 4 0,6 1000 -0,61 0,78 0,30
@ 10598401031681 1 4 0,5 4 0,5 4 0,5 1 1,00 0,94 0,37
DCT H3 21600 2 0,9 10000 0,97

Table 1: Application Characteristics

has a larger performance metric (unused amount of re-
sources) than H4 for DSP operations even though it runs
at a lower frequency because a big part of the DSP op-
erations are performed in the DCT core. This is not
the case for the ALU. H5 performance metric would be
slightly larger than zero since it is an ASIC which is spe-
cific for this application. All resources will be used when
executing the application.

The Efficiency metric would not be calculated for H1
due to incompatibility. It gives 0.42 for H2, 0.49 for H3

and 0.59 for H4. The efficiency of H5 would be above
0.85. If the crediting system is used, H5 will be the most
loaned in the group since it will often ask other SPs to ex-
ecute its applications (other than the codec application).
So, the OE will decide to execute the codec application
on H5.

5 Conclusion

The efficiency and performance metrics presented in this
paper allows an operating environment (OE) to dynam-
ically determine system capacities relative to real-time
applications objectives. The performance metric matches
spacial and temporal computing resources capacities with
application objectives, while the efficiency metric favors
the execution of application on specialized architectures.
We generalized these metrics to tune along the applica-
tion hierarchy. A credit based negotiation protocol was
also introduced, it enables OE to partition the applica-
tion over SPs in the environment. Future publications
will present already defined equivalent memory and com-
munication metrics and validation results from the Sys-
temC simulator under development.

References
[1] The Real-Time Specification for Java Copyright 1994-2007 Sun Mi-

crosystems Inc, “http://java.sun.com/docs/books/realtime,” .

[2] R.G.Smith, “The contract net protocol : High level communica-
tion and control in a distributed problem solver,” Ieee Trans. on
computers, vol. c-29, no. 12, pp. 1104–1113, dec 1980.

[3] M.Auguin F.Muhammad, F.Muller, “Contentions-conscious dy-
namic but deterministic scheduling of computational and commu-
nication tasks,” in ACM Symp. on Applied Computing (SAC),
Dijon, France, 2006.

[4] Y.Le Moullec, N.Ben Amor, J-Ph.Diguet, J-L.Philippe, and
M.Abid, “Multi-granularity Metrics For The Era Of Strongly Per-
sonalized SOCs,” in DATE, Munich, Germany, Mar. 2003.

[5] D.Sciuto, F.Salice, L.Pomante, and W.Fornaciari, “Metrics for de-
sign space exploration of heterogeneous multiprocessor embedded

systems,” in 10th Int. Symp. on h/s Codesign, Estes Park, USA,
May 2002.

6

1-4244-1517-9/07/$25.00 (C)2007 IEEE

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on July 28, 2009 at 08:38 from IEEE Xplore. Restrictions apply.

