
Hardware implementation of a multi-mode hash 
architecture for MD5, SHA-1 and SHA-2 

 

Sylvain Ducloyer, Romain Vaslin, Guy Gogniat, Eduardo Wanderley 
LESTER CNRS FRE 2734 

Lorient, FRANCE 
name@univ-ubs.fr 

 
 

Abstract— In this paper, we propose a unified architecture 
adapted to the field of embedded systems which combines com-
monly used hash algorithms in a single design in order to reduce 
area requirements and optimize the maximum frequency.  We 
present an implementation of three hash functions: MD5 [8], 
SHA-1 [9] and SHA-2 [10]. Many similarities exist between these 
algorithms which help us to move towards a unique architecture. 
The design was implemented on an Altera Stratix II device. It only 
requires 3311 ALUTs and operates at a frequency of 93 MHz 
which provides a throughput of 567 Mbps for MD5/SHA-2 and a 
476 Mbps throughput for SHA-1 (including padding operations). 
 

I. INTRODUCTION 

 
Cryptography field has been strongly active these last years, 

essentially in consequence of an increasing need for security 
issues. For example, most of the digital communications in 
mobile or network applications require some protections 
against potential threats (virus, worms and hackers).  

 
Hash functions are well known cryptographic solutions used 

to guarantee message integrity (see Figure 1). Several hash 
algorithms exist, however MD5 and SHA-1 are currently the 
most used. Many processor-based solutions have already been 
proposed but they are not adapted to the specific constraints of 
embedded systems (efficiency, area, power consumption).  

 
There are different ways to implement those kinds of protec-

tion in a system. The first one is using a coprocessor for each 
algorithm. In this case the area overhead will be significant. 
The second solution would be to use a reconfigurable hardware 
device like FPGA and to dynamically reconfigure the FPGA 
for switching from one algorithm to another. It means that the 
system will need extra memory to store the different configura-
tions for the FPGA.  

 
The last alternative is a configurable coprocessor which pro-

vides a few different configurations for those algorithms. This 
solution provides a trade-off with the two previous solutions 
presented. Due to the common features of MD5, SHA-1 and 
SHA-2, it is possible to minimize the area required to imple-
ment these algorithms, to limit the storage (one FPGA context 

instead of three) and to provide flexibility.  For SHA-2 we fo-
cus our work on SHA-224/256 version because they are based 
on a 32 bits datapath. 

 
In this paper, we present the first hardware architecture for 

integrity checking based on three hash functions MD5, SHA-1 
and SHA-2. The paper is organised as follows: in section II, 
hash functions are presented with hash algorithm descriptions. 
The proposed architecture is detailed in section III. Section IV 
focuses on throughput, area results and maximum frequency. 
Finally, related work is presented in order to compare our ar-
chitecture with previous works in section V. 

II. HASH FUNCTIONS 

 
Hash functions are designed to obtain a signature depending 

on an initial message. In addition, the functions are one-way-
function in order to generate a unique fixed-length bit vector as 
an output. This signature is then sent with the message. The 
addressee will check the message integrity by comparing the 
received signature with the one he will compute based on the 
received message (Figure 1).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1. Hash Function 

 
 

Hash Functions: 
MD5,  

SHA-1 or SHA-256  

Comparing 

Hash Functions: 
MD5,  

SHA-1 or SHA-256  

OK NOT OK Addressee 

Sender 

Message 

Signature 



In our case, we combine three hash functions MD5, SHA-1 
and SHA-224/256 in a configurable global architecture. In or-
der to obtain a signature corresponding to a message, we per-
form several steps: a pre-processing of the message and then 
the hash computation. The 3 selected algorithms rely on the 
same way to obtain the signature. The pre-processing phase is 
the same for all of them. The hash computation differs for each 
algorithm. 

 

A. Pre-processing of the message 

 
The first step is padding. The goal of padding is to obtain a 

message that will have a size modulo 512 bits. It needs be 
modulo 512 bits because it is the size of the input of these algo-
rithms. The last 64 bits of the padded message are reserved to 
store the size of the initial message. Figure 2 shows an example 
of a padded message. To fill the gap between the end of the 
original message and the last 64 bits, a bit set to 1 is inserted 
with a succession of bits set to 0. 

 
 
 
 
 

 
Fig.2 Padding 

The second step is to fill the last 64 bits with the size of the 
message. In some cases, there are not enough bits left to store 
the length (an example is a message of 1008 bits). Then a new 
512 bits word will be created. This word will be filled with 
some 0 until the space reserved to store the size is reached. 

 
As soon as the pre-processing ends, the message is ready to 

be hashed. As it is said previously, the pre-processing phase is 
the same for MD5, SHA-1 and SHA-2. 

 
 
 
 
 
 

 
 

 
 
 

Fig.3 Initialization of buffers values 

 

B. Hashing of the message 

 
It is the heart of a hash algorithm. During this step, the com-

putation part of the algorithm will be done. This module con-
sists of four processing rounds of 16 steps each for MD5 and 
SHA-2; 20 steps each for SHA-1. In this section, we detail the 
different ways the signatures are computed. It will help to ex-
tract the similarities between the 3 algorithms in order to move 
towards a unified hardware architecture. 

 
Each 512 bits word composing the message will pass 

through the algorithm. At the beginning some buffers are ini-
tialized (see Figure 3 for values). When the first 512 bits word 
is hashed, the second word is hashed but the buffers are not 
reset to the initial values. The result from the previous 512 bits 
word is used. The process is iterated until all the 512 bits 
words have been hashed. In all the following text the letter W 
will mean a 32 bits word from a 512 bits word. If an index ap-
pears, it means for example the second word of the 512 bits 
word (W2). K is a different constant for every step t. The val-
ues of K can be found in the official algorithm RFC [8] [9] or 
FIPS [10].  

 
Concerning the SHA-2, as said previously we have focused 

our work only on the SHA-224/256 version in order to simplify 
the architecture. Indeed, the SHA-512 will require a 64 bits 
architecture.  

 

1)  MD5 

MD5 (Message Digest) was developed by Rivest in 1991 
[8]. It is a hash function which produces a digital signature of 
128 bits for an arbitrary-length message. Each round the opera-
tions of Equation 1 are performed. Table 1 summarizes all the 
values of the parameters. 

 
T =B + ( [A + Fmd5 (B, C, D) + Wt + Kt] << S ) 
A = D 
B = T 
C = B 
D = C 

Eq.1 Hash operations of MD5 

0 < t < 15 � Round 1 
Fmd5 (B,C,D) = (B and C) or ((not B) and D) 
S = 7, 12, 17, 22 
 

16 < t < 31� Round 2  
Fmd5 (B,C,D) = (B and D) or (C and (not D)) 
S = 5, 9, 14, 20 
 

32 < t < 47 � Round 3  
Fmd5 (B,C,D) = B xor C xor D 
S = 4, 11, 16, 23 
 

48 < t < 63 � Round 4   
Fmd5 (B,C,D) = C xor (B or (not D))  
S = 6, 10, 15, 21 

Tab.1: Parameters for MD5 

110101101010.......11101
0 

10000….000 000100 

Original message Add 1 bit and 0 
bits for padding 

64 bits reserved to 
store the original 
message length  

N × 512 bits 

MD5 

A = 
67452301 
B = efcdba89 
C = 98badcfe 
D = 
10325476 

E = 00000000 

F = 00000000 

G = 
00000000 

H = 

SHA-2 

A = 6a09e667 
B = bb67ae85 
C = 3c6ef372 
D = a54ff53a 

E = 510e527f 

F = 9b05388c 

G = 1f83d9ab 

H = 5be0cd19 

SHA-1 

A = 
67452301 
B = efcdba89 
C = 98badcfe 
D = 
10325476 

E = c3d2e1f0 

F = 00000000 

G = 
00000000 

H = 



2)  SHA-1 

SHA-1 (Secure Hash Algorithm) was developed by NSA 
(National Security Agency) in 1993 [9]. It is a hash function 
which produces a digital signature of 160 bits for an arbitrary-
length message. 

 
T = ( A << 5 ) + Fsha1 (B,C,D) + E + Wt + Kt      
A = T 
B = A 
C = left rotation of 30 bits on B 
D = C 
E = D 

Eq.2: Hash operations of SHA-1 

 
0 < t < 19 � Round 1 
Fsha1 (B,C,D) = (B and C) xor ((not B) and D)  
 

20 < t < 39 � Round 2  
Fsha1 (B,C,D) = B xor C xor D  
  

40 < t < 59 � Round 3   
Fsha1 (B,C,D ) = (B and C) xor (B and D) xor (C and D) 

  

60 < t < 79 � Round 4 
Fsha1 (B,C,D) = B xor C xor D    

Tab. 2: Parameters for SHA-1 

Wt is a 32-bits word of the message. However if t < 16, Wt 
is the t th 32-bits word of the message block, else if t � 16, Wt is 
calculated according to Equation 3. 

 
       Wt =  (Wt-3  xor Wt-8 xor Wt-14 xor Wt-16 ) << 1 

Eq.3: Computation of Wt for t > 16 

3)  SHA-2 
SHA-2 (Secure Hash Algorithm) was developed by NSA in 

2000 [10] because collisions have been found in SHA-1 which 
means that the algorithm is not secured enough. The SHA-
224/256 version provides a digital signature of 224/256 bits for 
an arbitrary-length message. SHA-2 uses different shifts and 
constants, but its structure is almost identical to SHA-1.  

 
T1 = H + �1(E) + Ch(E, F, G) + Wt + Kt       
T2 = �0(A) + Maj(A, B, C)  
A = T1 + T2 
B = A   
C = B 
D = C 
E = D +T1 
F = E  
G = F 
H = G    

Eq.4: Hash operations of SHA-2 

 
 
 

Ch(E, F, G) = (E and F) xor ( (not E) and G ) 

Maj(A,B,C) = (A and B) xor (A and C) xor (B and C) 

�0 (A) = ( A >> 2 ) xor ( A >> 13 ) xor ( A >> 22 ) 

�1 (E) = ( E >> 6 ) xor ( E >> 11) xor ( E >> 25 ) 

Eq.5: Logical operations of SHA-2 

Like in SHA-1, there are some operations to obtain Wt. If     
t < 16, Wt is the t th 32 bits word of the message block. Else if  t 
� 16, Wt is computed according to Equation 6. 

 
Wt = �1(Wt-2) + Wt-7 + �0(Wt-15) + Wt-16 

�0 (Wt) = (W >> 17) xor (W >> 19) xor SHR10 (W) 

�1 (Wt) = (W >> 7) xor (W >> 18) xor SHR3 (W) 

Eq.6: Computation of Wt for t > 16 SHR stands for shift right 

III. HARDWARE ARCHITECTURE 
 
There are many algorithmic similarities between MD5, 

SHA-1 and SHA-2. We have attempted to study the algorithms 
in order to implement them in a single design while minimizing 
the required resources and optimizing the throughput.  

 
Figure 4 shows the unified architecture we propose. The ar-

chitecture is divided in 6 blocks. The PADDING and FIFO 
blocks are not configurable because for all the algorithms the 
execution will be the same (see II-1). Concerning the BUFFER 
SCHEDULER, MESSAGE SCHEDULER and 
MACROFUNCTION, those blocks can be configured depend-
ing on the selected algorithm. The ROM stores all the constants 
used by the algorithms. With our solution we should limit the 
logic amount necessary to implement the 3 algorithms due to 
the architectural recovery between these algorithms.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

PADDING Out_padding 

32 

Sel_Algo 

Data_ok 

MESSAGE 
SCHEDULER 

FIFO_512 

MACRO FUNCTION 

ROM 

Message (W) 

CTS (K) 

MESSAGE 

512 bits 
Ctrl_Mux 
Enable 
Se-

Ctrl_Mess 

Ctrl_S1, S2 

 

 

Ctrl_I…N 

 

 

Fig.4: Global architecture 

 

Ctrl_BF 

 

 

Sel_Algo 

IN_ IN_
BUFFER SCHEDULER 

INITIALIZATION 

BUFF_A 
Sel_Algo 

Controle 

Mux 

OUT_T 

OUT_C 

OUT_E 

Control signals 

SIGNATURE 

256 Bits 

RAZ START NB_MESS MESS_IN Clock Sel_Algo 

32 

32 
32 

32 

32 

 

FSM1 Start_padding 

ENABLE 

32 

64 
load 

2 

FSM2 



A. Padding and storage 
 
Padding enables to prepare the message for the hash as pre-

sented in section II – 1. After the pre-processing step, the 
words are stored in a 512 bits FIFO. The architecture of pad-
ding and storage is designed according to Figure 5. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5: Details about PADDING and FIFO blocks 

 

B. Message scheduler 

 
This structure enables to select a 32 bits word in the word of 

512-bits according to hash algorithms and the current executed 
round.  

 
As presented in section II – 2, for MD5 no computation is 

required to get the 32 bits message to send for hashing. For 
SHA-1 and SHA-2, Equations 3 and 6 are implemented in the 
MESSAGE COMPUTATION block to obtain the computed 
value of the message. Figure 6 gives an overview of the 
MESSAGE SCHEDULER architecture. There is a large need 
of logic to control the system inputs. It helps to manage the 
configuration depending on the current algorithm running and 
the current round being executed. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.6. Message Scheduler 

C. Buffer scheduler 
 
This function only enables a simple shift according to the al-

gorithm selected. These buffers are used in all the computation 
process of the algorithm. At the beginning they will be initial-
ized by the values presented in Figure 3. 

 
 
 
 
 
 
 
 
 

 

 

Fig.7. Shift registers for the BUFFER SCHEDULER 

 

D. Macro function 
 
It is the heart of the architecture; indeed all calculations ac-

cording to the algorithms (MD5, SHA-1 and SHA-2) are done 
by this architectural block. In this part we have extended the 
proposition of [6]. As the authors had limited their work to 
MD5 and SHA-1. Our proposition gives us the possibility to 
choose between three algorithms. The first step is to extract the 
computation similarities. In section II – 2, the logic equations 
to be performed with the different buffers (Table 1 and 2, 
Equation 5) are detailed. 

 
 MD5 SHA-1 SHA-2 

X xor Y xor Z x x  
(X and Y) xor ((not X) and Z) x x x 
(X and Z) xor (Y and not(Z)) x   

Y xor (X or not(Z)) x   
(X and Y) xor (X and Z) xor (Y and 

Z)  x x 

 
Tab.3: Logical equations recovery between algorithms 

Based on Table 3, we can extract the combinational function 
Fcomb (Equation 7) which contains all the logical equations 
required to be able to perform the computation for the 3 algo-
rithms. 

 
  
    (X and Z) or (Y and (not Z))  
    X xor Y xor Z  
Fcomb (X,Y,Z) =  Y xor (X or (not Z)) 
    (X and Y) xor ((not X) and Z) 
    (X and Y) xor (X and Z) xor (Y and Z) 
 

Eq.7: combinational function 

 

 

 

PADDING 

 MESS_IN 

Sel_Algo 

Start_padding 

Out pad-
ding 

Data_ok 

NB_MESS 
32 

Load 

32 

64 

Clock RAZ Clock RAZ 

FIFO  

MESSAGE 

512 bits 

                
1 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

MESSAGE COMPUTATION   

2 3 4 5 6 7  9 10 11 12 13 14 15 16 

Sel_Algo 

Select_op 

Ctrl_Mess 

message 

1 

128 

32 

32 32 32 32 

16 × 32 

Ctrl_Mux 

Enable 

MESSAGE 512 BITS (16 × 32 BITS ) 

 

 

BUFF_A 

 

BUFF_C BUFF_E BUFF_G 

OUT_T OUT_C 
IN_B IN_C IN_D 

 

IN_E 

 

IN_F      IN_G         IN_H IN_A 

OUT_E 

Sel_Algo 

IN_A IN_B IN_C IN_D IN_E IN_F IN_G IN_H 

       

Enable 

32 32 32 32 32 32 32  

32 

 

32 



The second step toward a unified architecture is to propose a 
macro function (Tcomb) based on the Fcomb. Equation 8 
shows the macro function. Table 4 summarizes the values of 
the function parameters depending on the algorithm running. 

 
 
Tcomb = I + [ (( J << S1 ) + Fcomb(X, Y, Z) + �1 (N) + W +  K ) <<S2 ] 
 

Eq.8: Macro function 

For SHA-2, we need to have a second dedicated combina-
tional function (Equation 9) in order to have a result for T2 in 
Equation 4. 

 
     Tcomb2 = �0(A) + Maj(A, B, C ) 

Eq.9: Dedicated SHA-2 function 

 
 MD5 SHA-1 SHA-2 

I B E H 
J A A 0 

S1 0 5 0 
Fcomb (X,Y,Z) (B,C,D) (B,C,D) (E,F,G) 

�1(N) 0 0 E 
W Wt Wt Wt 
K Kt      Kt      Kt      
S2 S 0 0 

Tab.4: Parameters values depending on the algorithm 

Figure 8 gives an overview of the macro function architec-
ture. The main output is OUT_T which is the Tcomb value. 
OUT_C is the result for BUFFER C with SHA-1. OUT_E pro-
vides the result of Tcomb2.  

 

E. Unified architecture features 

 
All architectural blocks described previously need to be as-

sociated with state machines to manage all the internal signals. 
FSM2 (see Figure 4) manages the signal for the hash part. 
FSM1 manages the activation of the PADDING and FIFO_512 
blocks. Thus, in this top-level architecture, we can realize three 
hash functions MD5, SHA-1 and SHA-2 thanks to the 
Sel_Algo signal. Moreover, the proposed architecture allows a 
pipelined implementation. Indeed, during hash computation, 
the system can achieve padding for the next 512 bits word. The 
latency of the pre-processing is saved for each 512 bits word. 
Note that, this padding penalty will always be present at the 
beginning of the message hashing. 

 
The total latency to hash a 512 bits word depends on the 

chosen algorithm. 66 cycles are required for MD5 and SHA-2. 
With these 2 algorithms, the architecture performs one round 
per clock cycle. It is the same with SHA-1 but it requires 82 
cycles as there are about 80 rounds to be performed. 18 more 
cycles are necessary to do the pre-processing on a 512 bits 

word before starting to compute the hash. As said before, this 
latency can be overlapped by the hash computation in the case 
of a message with a size bigger than 512 bits. 

 
The last point to notice concerns the potential weakness of 

our proposition. Due to the specificity of our proposition which 
mainly relies on the recovery between the 3 algorithms; we 
might expect to have a longer critical path. Indeed, the solution 
implements 3 algorithms. It means that if we compare the criti-
cal path with a dedicated application, the critical path should 
be longer and the design may operate at a lower frequency. It 
may limit the throughput of the architecture. The next section 
presents further details concerning this last point.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig.8: Architecture of the macro function  

IV. RESULTS 

 
The proposed architecture has been synthesized and imple-

mented on an Altera Stratix II - EP2S60F672C3 device. We 
obtained a maximum achieved operating frequency of 93 MHz 
for our architecture. The throughputs are 567 Mbps for MD5 
and SHA-2, and 476 Mbps for SHA-1. The throughput is cal-
culated with Equation 10. All the throughput values presented 
in Table 5, have been obtained for 512 bits messages. It means 
that the time to perform padding and so on is included in the 
Number of clock cycles per block value. So the throughput 
value would be higher if the values were calculated for a 1024 
bits word. In this case due to the way we have designed our 
architecture the pre-processing of the second 512 bits word 
would have been overlapped by the hashing operations of the 
first 512 bits word.   

OUT_T OUT_C 
OUT_E 

IN_B       IN_H 
IN_E 

IN_E IN_A 

 

 �1 
MESSAGE (W) 

CTS  (K) 

 
ADDER 1 

ADDER 2 

Ctrl_S1 

 
Ctrl_BF 

Ctrl_J 

IN_B   

 

IN_E 
IN_C   

IN_F 
IN_D  

IN_G 

 Fcomb 

Ctrl_I 

 

Ctrl_K 

 

Ctrl_L 

 

Ctrl_M Ctrl_N 

Ctrl_S2 

ADDER 4 

ADDER 3 

 �0 MAJ 

IN_A IN_B 

 

IN_C 

<<30 

IN_D 

<<S1 

<<S2 

Sel_Algo 

Sel_Algo 

32 

32 32 32 



 
 

 
 

 

   

 

Eq.10: Equation to obtain the throughput of architecture 

 
The first part of Table 5 gives a summary of relevant figures 

about our work. The optimized multi-hash core is the architec-
ture which was presented in the previous sections. It clearly 
appears that the work done on the recovery of the algorithm 
gives very good results for the area of the design. The area is 
about 2 times less important than the non optimized architec-
ture with 3 hash cores. Furthermore, we also provide figures of 
dedicated cores we developed in order to compare the gain of 
our proposition. The MD5 core is a quite small core compared 
to the SHA-1 and SHA-2 ones. The overhead added by the 
possibility to manage 3 algorithms with our architecture seems 
to be negligible as the size of a SHA-2 core is around 1380 
slices.  

 
As discussed in section III – 5, due to the longer critical 

path, the frequency results are not always in favour of our 
proposition. There are some losses compare to SHA-1 and 
SHA-2 dedicated cores. But this loss is balanced by the gain in 
area. Some differences may also come from the technological 
difference between FPGA (ALTERA, Xilinx). 

 
 
 
 

 
 
Moreover, the loss concerning the throughput is very negli-

gible. In the worst case (SHA-1), the throughput goes from 695 
Mbps to 565Mbps (-20%). This loss was expected because the 
throughput is linked to the frequency of the system. 

 
Indeed, the number of cycles required to obtain the result is 

still 66 cycles but as the frequency of the optimised core is 
lower than the dedicated core, the throughput decreases. Con-
cerning the throughput with MD5 and SHA-2 the values are 
noticeably the same. In addition, the performances of our solu-
tion are better than the non optimised version. This difference 
comes from the fact that the maximum frequency of the non 
optimised design is limited by the critical path of MD5. 

 

V. RELATED WOTK 

 
In [6], the authors propose an architecture for MD5 and 

SHA-1 based on the idea of the study recovery between the two 
algorithms. The extensions we propose to their work improve 
the results they have obtained. Our solution provides an effi-
ciency of 0.43 and 0.34 compared to the 0.31 and 0.25 of [6]. 
In addition our solution is able to manage the SHA-224/256.  

 
Another paper references a multi-hash core. In [11], authors 

implemented all the SHA-2 versions (224, 256, 384 and 512). 
Again our proposition provides a better efficiency even if we 
consume a little more area space. This difference mainly comes 
from the logic required for MD5 and SHA-1. Indeed, MD5 and 
SHA-1 architectures are very close and the amount of logic 
necessary to add SHA-2 to those 2 algorithms is important (es-
pecially T2 in equation 9 which does not have any recovery 
with other algorithms).  

 

Target Device Hash  Area Max Freq  Throughput  Efficiency 

   Functions  (MHz) (Mbps) Mbps/area unit 

Dedicated MD5 core MD5 676  90,6 702.83 1.03 
Dedicated SHA-1 core SHA-1 1034 111.33 695.13 0.662 
Dedicated SHA-2 core  SHA-2 1380 99.53 772.11 0.516 
Non optimized Three hash core MD5, SHA-1,  SHA-2 3090 90.6 702  MD5, SHA-2, 565 SHA-1 0.22/0.22/0.18 
Optimized Multi-hash core MD5,SHA-1, SHA-2 1662 93.04 721 MD5, SHA-2, 580 SHA-1 0.43/0.43/0.34 
Multi-hash cores: 
Virtex-II 2V2000-6 [6] MD5, SHA-1 1882 77 602 MD5, 485 SHA-1 0.31/0.25 
Virtex-II XC2V400 [11] SHA-224/256 1260 69 276 0.21 
Dedicated cores: 
EP1K100QC208 [3] SHA-1 1622 43.08 268.99 0.165 
Virtex-II XC2V4000-6 [4] MD5 647 75.5 586 0.9 
Virtex-II 2V3000 [5] MD5 1369 60.2 467.3 0.34 
Virtex-II 2V3000 [5] SHA-1 1550 144.1 899.8 0.58 
ASIC 0.18 µm [7] MD5 16.000 gates 145 1140 - 
ASIC 0.13 µm [7] MD5 10.332 gates 133.3 1004 - 

Tab.5: Relevant figures about our architecture and other existing solution (For xilinx area unit is slice and ALUT for Altera) 

Throughput = 
Block size × Max frequency 

Number of clock cycles per block 



If we have a look at the proposition done in [3], [4] and [5], 
it appears that the efficiency of our solution is similar or better 
than those solutions. The fact that we are able to manage 3 al-
gorithms makes up for the little area overhead or the through-
put loss. 

 
In [7], an ASIC solution is proposed in 0.18µm and 0.13µm. 

Thus, these architectures propose the best performances. How-
ever the price of such architecture is really high and does not 
provide any flexibility.  

 
The last comparison to do is with an architecture which uses 

dynamic reconfiguration. An advantage of such solution is the 
flexibility and the reduce needs for logic. Throughout this pa-
per, we show how we provide flexibility for the algorithm. Fur-
thermore, in Table 5, it is shown that the area required to 
gather the 3 algorithms is not important. It means that our solu-
tion can be considered to be a very good alternative to the solu-
tion with dynamic reconfiguration. Last important point, our 
solution does not need more memory. Indeed, with the dynamic 
reconfiguration, extra memory is necessary to store all the bit-
streams for the 3 algorithms. 

 

VI. CONCLUSIONS 

 
In this paper, we have presented an architecture which gath-

ers three hash functions MD5, SHA-1 and SHA-2. The large 
similarities between them lead us to study the algorithms in 
order to implement them in a single design.  

 
The architecture which was implemented on an Altera 

Stratix II device only requires 1662 slices and operates at 93 
MHz. Moreover, we obtained throughput of 721 Mbps for 
MD5 and SHA-2 and 580 Mbps for SHA-1. 

 
The comparison with previous works shows that our imple-

mentation is a good compromise for flexibility, area and 
throughput. It also confirms that the recovery between algo-
rithms might lead to an optimized architecture. This point is 
essential due to the specific field of embedded systems with 
limited resources.  

REFERENCES 

 
[1] R.L. Rivest. The MD5 Message-Digest Algorithm. 

RFC1321, MIT Laboratory for Computer Science and 
RSA Data Security, Inc., April 1992. 

 

[2] Federal Information Processing Standards. Secure Hash 
Standard. FIPS PUB 180-2, August 1, 2002. 

 

[3] Dai Zibin, Zhou Ning. FPGA Implementation of SHA-1 
Algorithm. Inst. of Electron. Technol., Inf. Eng. Univ., 
Zhengzhou, China, October 2003. 

 

[4] K. Järvinen, M. Tommiska, and J. Skyttä. Hardware Im-
plementation Analysis of the MD5 Hash Algorithm. Pro-
ceedings the 38th Annual Hawai’i International Confer-
ence on System Sciences, HICSS’38, Big Island, Hawaii, 
USA, page 298 (abstract), January 3 – 6, 2005. 

 

[5] J.M. Diez, S. Bojani´c, Lj. Stanimirovi´c, C. Carreras, and 
O. Nieto-Taladriz. Hash Algorithms for Cryptographic 
Protocols: FPGA Implementations. Proceedings of the 
10th Telecommunications Forum TELFOR’2002, 
Belgrade, Yugoslavia, November 26 – 28, 2002. 

 

[6] Kimmo Järvinen. A Compact MD5 and SHA-1 Co Imple-
mentation Utilizing Algorithm Similarities. Helsinki Uni-
versity of Technology Signal Processing Laboratory Ota-
kaari 5 A, FIN-02150, Finland 2005. 

 

[7]  Akashi Satoh, Tadanobu Inoue IBM Research, ASIC-
Hardware-Focused Comparison for Hash Functions MD5, 
RIPEMD-160, and SHS, Tokyo Research Laboratorya 
April 2005. 

 

[8] MD5 rfc1321 http://www.faqs.org/rfcs/rfc1321.html 

 

[9]   SHA-1 rfc3174 

        http://www.faqs.org/rfcs/rfc3174.html 

 

[10]  SHA-2 fips 180-2 

        http://csrc.nist.gov/publications/fips/fips180-2/fips180-
2.pdf 

 

[11] Ryan Glabbn Laurent Imbert, Graham Jullien, Arnaud 
Tisserand and Nicolas Veryat-Charvillon, Multi-mode operator 
for SHA-2 hash functions, Journal of Systems Architecture, 
2007 

 
. 
 

 


