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Abstract— Self-adaptivity is a solution to give decision
intelligence to embedded systems in order to dynamically
adapt HW / SW architectures to environment variations, data
changes and user requirements according for instance to
energy efficiency. In our approach, this choice is done at
run-time and based on a set of embedded configurations.
This choice offers fast reconfiguration but can also mean a
restricted configuration space regarding multiple application
systems. However usual network capabilities can enlarge
this configuration space, so we propose a solution based
on a hierarchy of configuration servers from which config-
uration, based on predefined architecture models, can be
downloaded. In this paper we present a combination of two
techniques to propose a global configuration management.

Keywords: Self-adaptivity, network, reconfigurable architectures

1. Introduction
The key argument for reconfigurable architecture is prob-

ably ”obtaining a more effective architecture by means of
specialization”. This idea is not new if we refer to Estrin
paper in 1963 [1], where it was already described as such,
however we are now reaching borders, where it can become
an on-chip reality. Many multiprocessor, heterogeneous and
configurable machines have already been developed in the
90’s, they were for instance based on transputers, DSP and
FPGAs. Obviously, things have changed with the integration
progress on a single chip providing fast communication
capabilities that were the main limits of previous attempts.
The second aspect of evolution is the possibility to access,
at run-time, to configuration memories and consequently to
reconfigure architectures dynamically. Combined with the
first goal of reconfigurable computing, it enables to consider
the question of hardware specialization as one new dimen-
sion of programming. Thus, as it is today for compilation
and scheduling, the management of configurations may also
result from a balance between static (design time) and
dynamic (run-time) decisions.
If we look back again in the past, Von Neumann brought

the concept of instruction stream in the 40’s, then Harvard
architecture has been proposed in order to parallelize both
streams. Finally in the 60’s, the concept of the cache memory
has been introduced to speed up stream outputs.
A configuration stream as specified in Fig.1 can now be

considered as the third kind of stream in the context of

reconfigurable architectures. Consequently, this new stream
should now go with data and instruction ones and must be
also speed up with a cache hierarchy considering voluminous
files but moderate update frequencies.
On the application side of embedded systems, we can

observe the same evolution in terms of complexity. Multiple
and heterogeneous applications can share resources and
stress hardware in different ways such as typical networking,
signal/image processing, encryption functions. In case of
personal devices, 3D graphics, display and GUI can be
added. An OS can then become a necessity for hardware
abstraction and resource allocation.
Both architecture and application evolutions lead to highly

dynamic and data or context dependent behaviors of embed-
ded systems. In these changing conditions, the problem of
optimization, regarding for instance energy efficiency, can
hardly be handled without any configuration considerations.
Finally, any design methodology targeting embedded sys-

tems is strongly constrained by development cost. The use
of IPs and standard API are tracks to reduce the effort cost,
this option must also be considered in the domain of recon-
figurable architectures. This approach makes sense in the
domain of mass market products and ambient intelligence,
based on standard set of application and basic functions.
In this context, self-adaptivity applied on well-defined

architecture models, is a promising way to solve the ques-
tion of optimization at run-time. The first condition is the
availability of dynamically reconfigurable architectures. We
can reasonably make the assumption that such architectures,
which already exist, will be more efficient in a near future
in terms of power and reconfiguration time. The second
condition is decision capability.
Given this situation and the assumption that a majority

of embedded systems will be somehow connected to a
network, we propose in this paper an overview of a global
approach for the design of self-adaptive systems targeting
effective architectures according to applications demands.
The methodology is first locally based on a combination of
static and dynamic configuration decisions for both hardware
and software aspects, the objective is to get a trade-off
between decision complexity and configuration storage cost.
Secondly, the idea is to increase the local configuration
space by means of a shared and distributed hierarchy of
configuration caches. The approach is based on two as-
sumptions. First some generic architecture models have been



previously defined and secondly applications are based on an
intensive use of an evolutionary library of API and standard
coprocessors or IPs. Section 2 presents the global approach.
Section 3 illustrates local self-adaptivity with a smartcam
demonstrator and section 4 introduces global-self adaptivity
with a MP3 example. Finally we conclude.
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Fig. 1: R-MPSoC: Data, Instruction, Configuration Streams

2. Global Methodology
The basic problem addressed is the partitioning of a set

of tasks over a given architecture model, the aim is to
specialize at run-time the architecture according to appli-
cation needs. As for the domain of embedded systems, we
consider today an architecture meta-model based on a master
processor (MP) and a set of hardware accelerators (IPs) or
slave processors (SP) connected to a hierarchy of bus as
depicted in Fig.10. Depending on the application domain and
performances requirements, different models can be selected.
The main idea is to reduce the design space to be explored

at run-time in order to introduce short and low cost decision
overheads. Thus, the approach consists first in loading a
reduced pre-defined set of configurations used for fast local
adaptations according to context and data variations. Then,
this set can be updated at run-time through a network
connection if better configurations are necessary or if new
applications, requiring new configurations, are started.
Therefore, we have adopted a methodology that can now

be decomposed in five steps. The first one is the specification
step during which the designer should think in terms of self-
adaptivity at functional level. The second one consists in an
offline design space exploration (DSE) step, which provides
a set of possible configurations to be selected at run-time by
the next two online steps. These two online steps address
algorithmic and architectural configurations implemented
by local and global configuration managers respectively.
Finally the last step is also handled online by the global
manager, that can update available configurations in the local
configuration memory. It is based on a hierarchy of caches
(Fig.2) and has two objectives. The first one is to extend
the accessible configuration space for a given application
regarding on-chip / on-board space storage restrictions. The
second one is the update of software and hardware versions.
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Self-adaptivity Methodology:  

1.  Offline Self-adaptivity oriented specification 

2. Offline Design-Space Exploration (On-chip / On-board Configuration Space) 

3. Online Algorithmic Configuration (Local Manager) 

4. Online Architecture Configuration (Global Manager) 

5. Online Configuration Update (Hierarchy of Configuration Caches: chip, board, network)     

Reconfigurable 

Architecture Model: 

Fig. 2: Global Framework

3. Local Self-adaptivity
3.1 Introduction
Actually, another challenging issue is the embedding de-

cision within embedded systems to perform hardware (HW)
/ software (SW) partitioning at run-time. Today, there is no
really efficient solution, which can be applied to the design
of general embedded systems. This is precisely the point we
are addressing in this section.
We consider an architecture meta-model, which fits with

a large set of embedded systems. Then, considering the
smartcam example, we select a model based on a GPP with
dedicated accelerators that can be dynamically configured
(M01 on Fig.10). The GPP implements a RTOS managing a
set of tasks. Tasks communicate through messages passing
for synchronization and shared memories for data, and they
can have various possible implementations in HW and / or
in SW, which corresponds to different cost / performance
trade-offs.

3.2 Objectives and contributions
Considering the previously described architectural model,

the main objective of this work is the implementation
of a configuration manager with run-time decision and
configuration control capabilities. We focus our work on
the following issues, which are the main relevant points from
a research perspective:
1) Separation between decisions at design and at run-time;
2) Transparent use of various HW and SW implementations;
3) Separation between application-specific and application-
independent configuration decisions;
4) Online decision: algorithms and implementation;
5) Reconfiguration control, transition reliability;
6) System stability, avoidance of configuration oscillations;
7) Negligible self-adaptativity overhead (power, area, time).
Our contributions focus on these items, with the objective

to remain, as much as possible, independent from hardware



platforms since we consider that current dynamically re-
configurable devices and tools (e.g. Xilinx), are temporary
solutions that may strongly evolve in the near future. We
propose a design methodology regarding the issue 1) and we
introduce the concepts of UCCI (unified configuration and
control interface) and LR (legal representant) to cope with
issue 2). Question 3) is solved by means of a hierarchy of
local and global configuration managers (LCM/GCM). Our
choice for addressing problem 4), regarding self-adaptivity,
is based on a close-loop approach and a Borda vote. We use
data-granularity checking and configuration ID broadcasting
to deal with problem 4). A PI (proportional integrator)
regulator, enhanced with LMS (least mean square) observer,
is implemented as a solution to question 5). Conditions on
control parameters have been derived to guide designers
regarding issue 6). Finally, point 7) has been our constant
optimization criteria. In this paper we give an overview,
however some details can be found in [2] regarding points
1), 3), 5), 6) and 7); details of items 2) and 4) can be found
in [3] and [4] respectively.

3.3 Related work
In this section, we focus on the previously quoted contri-

butions. They are not related to reconfigurable architectures
in general, but to question of configuration decision from a
global perspective including hardware and software aspects.
A lot of work has been produced in the domain of adaptive
architectures and different techniques have been introduced
for clock and voltage scaling [5], cache control [6] or
functional unit [7] allocation. However, these approaches can
be classified in the category of local configurations based
on specific aspects whereas our aim is to provide a global
solution to the question of configuration management. In [8],
the association between algorithmic and architectural views
is relevant for H-264 implementation, however the hardware
controller remains specific and local. Recently, we observed
some first proposals about reconfiguration decisions in em-
bedded systems. In [9] a three-level manager is presented,
this manager and the associated design space exploration
are specific and dedicated to cognitive radio applications
based on blind waveform detection. A single decision layer
is described and simulated with Matlab in [10]; it is based
on an evolutionary algorithm and limited to a single task
application and very simple architecture transformations.
Our approach has been driven by the separation between
application specific and system level decisions, by the choice
of a generic methodology and an architecture compliant
with energy-limited embedded systems. Finally, from a SW
point of view, feedback control has been introduced in the
area of soft RTOS to handle the uncertainty of worst case
execution time (WCET). In [11], authors present a complete
model for feedback control real-time scheduling. In [12], a
relevant two-step approach is proposed. However, this kind
of technique does not fit for embedded low cost systems and
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Fig. 3: Configuration Space

reconfigurable hardware, but the approach of system stability
remains interesting.
In conclusion, even if dynamically reconfigurable coarse-

grain architectures have been already proposed, the decision
issue for the whole system, including inherent transitions
between configurations and stability conditions are usually
ignored in the domain of embedded systems.

3.4 Offline steps: specification and DSE
Self-adaptivity aware specification First, we consider

that self-adaptativity starts at application design and software
designers are asked to specify the conditions under which an
algorithmic configuration must be selected or not by means
of application metrics that must be clearly specified and
computed if necessary. In practice, the software designer
will follow a methodology in which he will specify lists
of algorithmic configurations, and transition rules based
on metrics. We believe that our approach is a good way
to impose an adaptivity-oriented design discipline on the
designer. Moreover, this is not a real design constraint since
this information is usually known by designers at design
time, but not explicitly specified.
HW/SW design space exploration As previously

claimed, characteristics of solutions (e.g. power, perfor-
mances, area) change with data, environment and archi-
tecture hazards. Thus, a selection of promising candidates
must be done offline while considering an uncertainty space
around each solution as depicted in Fig.3.

3.5 Online steps: configuration management
Separation of concerns The aim is to implement config-

uration management for online algorithmic and architectural
adaptation. Fig.3 presents the configuration space, where a
point means a configuration identifier (CID), and a plan
corresponds to an algorithmic choice. Thus, a move within
a plan is an algorithmic reconfiguration (e.g. CID1 →
CID2) and a move between plans means an architectural
reconfiguration (e.g. CID2 → CID3).



The challenge, when it comes to the configuration decision
of embedded systems, is to find a low cost, but efficient
solution. Our solution, regarding these objectives, relies on
a couple of local (LCM) and global (GCM) managers,
that can be implemented as software or hardware tasks.
In the smartcam demonstrator (§3.8), GCM and LCM are
implemented as SW tasks using some wired instructions
(coprocessors).
LCM: algorithmic adaptation Basically, the local con-

figuration manager (LCM) is a set of rules specified with
simple API by the software designer and efficiently im-
plemented by means of masks, e.g. if F{mi} true then
apply Maskm[] to Configuration list where Maskm is
an array of bits with a length equal to the number of possible
configurations, such as Maskm[i] = 1 if CIDi is valid
and 0 otherwise. A rule is a simple logic function based on
metrics issued from tasks.
GCM: architecture adaptation The global configuration

manager (GCM) is in charge of architectural implementation
decisions. It receives data from sensors (gas gauge, cpu
load from the OS, LCM requirements) and from estimators
when no measures are available. The GCM decides the
new system configuration according to user requirements
(e.g. QoS, Power, Performance references) and configuration
solutions issued from the LCM design space restrictions. The
decision process is detailed in section 3.7.

3.6 Configuration management
Concept This point is not the main concern of this paper,

however to make it easier to understand we briefly give an
overview of the main concepts. The reconfiguration of the
system at run-time raises two questions. The first one is
the synchronization of tasks after a reconfiguration has been
performed, the second one is the problem of interfaces. Both
aspects are solved in the context of RTOS, more details can
be found in [4].
UCCI interfaces and Legal representative We consider

applications specified as acyclic task graphs and an architec-
tural model based on message passing and shared memories.
This means that a task indicates to its successors, through
mailbox or queuebox mechanisms, the address of data in a
shared memory protected with Semaphore or Mutex. From a
communication point of view, the interface must be unique
no matter the implementation of tasks. For this reason, we
have developed a Unified Configuration and Communication
Interface (UCCI). It is implemented by means of API when
the task is running on the processor and as a HDL code
container when the task is mapped on a hardware accelerator.
The interface is in charge of synchronization mechanisms
(e.g. mailbox), transfer of metrics to the LCM, configuration
mechanism and memory accesses (DMA in case of HW
implementation). When a task is moving from SW to HW, it
still remains alive in the RTOS as a sleeping task in charge
of RTOS / HW accelerator communications, this concept

is called the Legal Representative (LR). Communications
between HW accelerators are direct and, therefore, do not
solicitate the RTOS (RTOS communication services are
distributed in such a case since implemented in HW UCCI).
Configuration control mechanisms We solve the syn-

chronization issue by means of diffusion mechanisms. Our
method reuses existing communication channels, which can
be direct for HW to HW communications or based on RTOS
services for HW/SW and SW/SW communications. We,
therefore, have developed the following strategy. Firstly, the
configuration manager, namely the LCM, sends the CID to
all source tasks through a multi-cast diffusion. Secondly, the
CID is propagated gradually from the source to the sink tasks
over data channels, after granularity control to avoid data
starving and inconsistency. With such diffusion principles,
we guarantee that all tasks will be configured starting with
the source tasks.

3.7 Configuration Decision
Introduction We propose an original approach based on

a close-loop model that consists in considering a reconfig-
urable embedded system as a process to be controlled by
means of configurations choices. In the following we present
the model we have adopted and relative issues concerning
stability and convergence.
Close-loop configuration Control Control theory

methodology first requires settling an analytical model
close to the real system to be controlled. In our case, the
system is composed of a reconfigurable SoC running a set
of tasks, that can be implemented with various versions on
different HW/SW resources, and control, estimation and
configuration tasks. Our model, depicted in Fig.4 is based
on three elements. S is the controlled system composed of
configuration managers, a task set and some sensors that
provide access to the controlled magnitude y(t).
R is the control function. O is the system observer, which

provides estimates for the next time slot. The observer
implements a system model that is updated when measures
are available.

u(t) is the user reference, depending on priorities a
designer can consider. It can be, for instance, application
QoS constraint that will be compared to the QoS value
provided by the LCM related to the application. It could
also be a lifetime threshold that will be compared to a
value derived by the GCM from battery level and power
consumption or even a time constant that will be compared
to real execution times provided by the OS.
Thus:

e(t) = u(t) − ŷ(t)

is the difference between the reference and the observer
prediction output, namely the expected average power con-
sumption of the system in the next time slot based on the



value provided by the battery controller.

ŷ(t + 1) = a0y(t) + a1y(t − 1) + a2y(t − 2)

produces an estimate of the next average power consump-
tion.
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Fig. 4: Generic Close Loop System

Observor design The observer regularly updates coeffi-
cients {ai}, this is a model that estimates the system be-
havior. The aim is firstly to predict the magnitude evolution
in order to anticipate the right decision for reconfiguration.
Secondly, sensor acquisition introduces delay and power
overheads when a model-based approach enables rapid es-
timates of the system behavior even when new measures
are not available. Considering the algorithm complexity for
adaptation and estimation and the filter length we have opted
for a 3-tap LMS for the observer implementation.
Configuration decision The aim of the decision is to

select, regarding a regulated error, the best configuration
from the configuration table, which is regularly updated with
real measures. Our approach has been driven by a tradeoff
between efficiency and complexity compliant with embedded
systems.
Model. The problem can be formalized as follows, given

i the considered magnitude (Power, QoS, T) and j the
CID, Tab(i, j) is the value stored in the configuration table.
X(i, j|k) is the estimated controlled error for magnitude i
in configuration j, knowing value for current configuration
k. For instance, if i represents power, the following linear
approximation is used:

X(i, j|k) = X(i, k)
Tab(i, k)
Tab(i, j)

Th(i) is a possible tolerance regarding reference. All mag-
nitudes are defined in such a way that a configuration meets
the constraints if V (i, j) > 0.

V (i, j) = U(i) + Th(i) − (Tab(i, j) + X(i, j|k)) (1)

Decision Algorithm. The main steps of the decision algo-
rithm are given in Fig.5. The frequency of metric transfers is

controlled by the configuration period. It means that metrics
are transmitted to the LCM after Ne consecutive executions
of the application, it means k.Ne executions of the task if k
is the number of task iterations within the application period.
Secondly, the GCM is also pending on a mail box,

waiting for data issued from LCMs regarding algorithmic
configurations, meaning that a first decision reduction is
obtained through LCM selection. Then, a second restric-
tion is introduced based on a paying off delay tk during
which costly hardware reconfiguration is not authorized.
Tk corresponds to the minimum delay required to accept
the reconfiguration overhead compared to expected benefits.
Tk = max

(
TR
GT

; ER
GE

)
. Where TR is the reconfiguration

delay, GT the performance gain between the new and the
previous configuration, ER the energy required for a recon-
figuration and GE the energy gain. Finally, all considered
magnitudes are assessed for the final selection regarding a
given priority order (e.g. T, QoS, P).
The algorithm runs as follows. First, note that only the first

constraint is regulated (e.g. T) and considered for selection.
Secondly, other constraints are considered when more than
one solution respect the first one (namely V (1, j) > 0), oth-
erwise the candidate providing the smallest error is selected
regarding only the first constraint. Then a vote based on
Borda’s method [13] is processed among survivor solutions,
each magnitude sorts remaining configurations and gives
a vote corresponding to the rank. A negative vote means
that the constraint is not respected. The closest solution
respecting the constraint gets the highest vote. Different
weights can be assigned to the different magnitudes. If
multiple candidates obtain the same score then a Hamming
distance with current configuration is used to select minimal
SW → HW moves.

LCM Validation

Configuration space reduced to

SW ! SW or HW ! SW

Reconfigurations

No Yes

Borda vote based on W(i,j)

Tk > 0

Sort V(i,j) (decreasing order)
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Reduce Config. Space to V(1,j) > 0
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Fig. 5: Decision algorithm
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3.8 Object tracking test-bed
The best way to prove the efficiency of our approach,

in the absence of equivalent and available approaches to
compare with, is the validation of our method on a real-life
application, in which self-adaptivity makes sense. Hereafter
we present an FPGA-based smart camera implementing an
object tracking application. In the following, we present how
the different design steps of our methodology are applied.
a) Application specification, metric selection The appli-

cation is composed of 10 tasks (T1 ... T10) described in Fig.6,
which can be implemented in HW or in SW, these tasks are
controlled by a LCM implemented as a SW task. The dotted
arrows from tasks to the LCM ”tracking” indicate metrics
to be used for algorithmic configuration. For instance, the
number of isolated white points after tasks 2, 3 and 4,
the numbers of iterations of object reconstructions (T 10) or
the number of detected objects (T5). The selection of the
task metrics is based on the application-designer experience
and simulation analysis. For instance, we present in Fig.7
the evolution of T4 and T5 execution times according to
T4 metrics: the number of reconstruction iterations and the
number of isolated white pixels.
b) Environment sensors The architecture is implemented

on a NIOS soft core within an Altera Stratix II 2S60ES
FPGA board with a VGA daughter board. In addition we
have plugged in a camera and a battery gauge, providing
power consumption features, on FPGA GPIOs. The image
acquisition rate is controlled by the GCM and follows up the
application rate to avoid useless image storage. The extended
RTOS is built around µCos II and provides the information
about task and application execution time. The QoS sensor is
realized by Task T10, that provides the LCM with a metric,
which is the difference between object position based on
labeling results and an estimation of object positions based
on a LMS algorithm. A value close to 0, but lower than the
reference (e.g. 10%) means a very high tracking quality that
can be relaxed if the application speed is reduced. However,
a value higher than the reference means that the application
rate must be increased with a faster configuration.

c) Design Space Exploration The extended RTOS is
built with new previously explained capabilities for com-
munication, synchronization and configuration of HW and
SW tasks. Hardware task modules are connected to the
Avalon bus and clocked only when used. A co-processor has
been added as a coarse grain instruction acceded through
processor registers for an efficient implementation of the
LMS and PI regulator. It is also used for application QoS
computation (error between prediction and object position).
Initially a generic C code of the application was available
and various hardware modules were designed after a short
design space analysis. In this case study, the algorithmic
configuration is the complete application with a fixed thresh-
old (T9 off), and a gravity center is approximated as the
center of the bounded box (T7). After this stage, we have
limited the search space to 22 significant configurations
with the following algorithmic choices: 1) Deep sleep mode:
T3,4,5,6,7 are inactive; 2) Sleep mode: T4,5,6,7 are inactive;
3) Reconstruction T4: on or inactive; 4) filter inactive or
based on two or four images; 5) T9: on or inactive (fixed
threshold).
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Fig. 7: T4 metric selection based on designer experience

d) UCCI encapsulation Hardware and software tasks are
implemented using UCCI services. Due to length constraint,
code details cannot be presented here, but the implementa-
tion can be shortly summarized as follows. A software task is
enhanced with three additional stages based on API library.
The first one tests if the application is implemented in HW
and, if it is true, pends on its control mailbox as the legal
representative of the HW task. If the CID corresponds to a
software version, then task parameters are updated according
to the selected algorithmic configuration. The second stage
is implemented after the standard SW task code, this is the
metric computation based on task variables. Finally, the third
stage is the emission of metric towards the LCM mailbox
queues.
A hardware task is encapsulated within a HDL container,
including communication and configuration supports. The
generic shell is adapted with the appropriated number of
output and input ports and mailboxes for the control of com-
munication with the OS and other tasks. Data transfers are
based on shared memory, dedicated registers are specified
within the UCCI shell to indicate their base address.
e) LCM implementation The next step is the LCM

specification, in this case a single LCM is required and a



software version is chosen. Let’s first consider I/Os. The
right number of mailbox queue instances is defined for the
capture of metrics. The number of output mailbox instances
is equal to the number of sink tasks, which in this case is one.
The second point relies on the LCM strategies. Actually, it
is currently implemented as rules defined by the application
designer according to simulation results. The object tracking
application requires six rules. For instance, rule 1 relies on
the selection of fixed or adaptive threshold computation and
the number of frames in T1 according to the number of
isolated white points after T2 and T4.
Note that the frame acquisition (T1) is not a periodic task,

it is launched only when a frame is required and so is directly
dependent on other task configurations. This means that the
acquisition rate is controlled and regulated by the GCM.
f) GCM implementation In this section, we focus on

the main GCM parameters, which are the PI regulator
coefficients: ki, kp and the LMS observer gain kL. Various
experiments have been conducted with the smart camera
prototype implemented on FPGA. The GCM is implemented
as a software task, so the choice of the coefficients results
from a simple variable initialization within the associated C
code.
The following sections show how a software designer can
rapidly decide on the correct control parameters as a trade
off between response time and accuracy. This method is
equivalent to the way it can be conducted in usual regulated
systems.
g) PI and LMS parameter specification Fig.8 presents

some pulse, step and slope responses for different choices
of R ({kp, ki} ) and LMS parameters (kL). In this case
the regulated magnitude is the execution time, the X axis
is the time represented as the image number. For each
parameter choice {kp, ki}, we can observe the reference, the
execution time (y(t)) and difference between the reference
and the regulated error (x(t)); the configuration selection is
given on a separate figure. The increase of the integration
factor ki slows down the adaptation, while the increase of
the proportional factor of kp increases the regulator gain.
Since stability constraints are respected, the system returns
to the initial configuration in all cases, but the delay and
the number of transitional configurations vary according
to parameter choices. The LMS implementation is based
on a co-processor, namely a custom instruction, which is
initialized with software instructions. The reduction of the
LMS coefficient (kL) slows down the update of the linear
model and we observe a better adaptation with a reduced
number of reconfigurations. Both used values for (kL) are
compliant with the LMS stability constraints. These example
show, how the software designer can set the right parameters
according to application requirements.

3.9 Train tracking application
a) Scenario To illustrate the self-adaptivity abilities of the
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 20

 40

 60

 80

 100

 120

 140

 160

 0  5  10  15  20  25  30  35  40

Te
m

ps
 d

’e
xé

cu
tio

n

Image Number

Reference
Execution Time

Reference − RegulatedError

 20

 40

 60

 80

 100

 120

 140

 160

 0  5  10  15  20  25  30  35  40

Ex
ec

ut
io

n 
Ti

m
e

Image Number

Reference
Execution Time

Execution PredictedTime
Reference − RegulatedError

c) Slope Response: No LMS With LMS: kL = 2−21

Fig. 8: Exec. time regulation

prototype, we propose tracking an electric toy train with a
scenario punctuated with various events inducing different
configuration decisions. Fig.9 shows the configuration deci-
sions along the execution of this scenario. In this scenario,
the regulated magnitude is no longer the execution time but
the QoS, namely the tracking accuracy. It means that Borda’s
vote is applied to power and execution time values.
After some experiments and simulations, as is usually done
in real automation implementation, we have finally set the
following regulator parameters: {kp = 0, 25; ki = 0, 25},
which provide a good tradeoff between stability and re-
activity. In the same way, the LMS gain has been set to
kL = 2−21. The adaptation rate is set to one, which means
that a new configuration is evaluated after each application
iteration.
The QoS reference, namely the tracking maximum error, is
set to 10 % and reduced to 2% within the critical area. This
scenario is based on a succession of events that highlight
self-adaptation capabilities. After several images without any
movement, the train enters the scene at low speed for two
circuit rounds. Then, during the stretch of the track, the train
speeds up for two others rounds, stops and goes backwards.
It then enters a Critical Zone, runs into and leaves the area.
Finally, the train continues its path at low speed.
b) Result analysis The CPU time devoted to LCM and

GCM task (0.33% in a pure SW solution) and the HW
overhead due to the co-processor (1%) are negligible in such
an applicative context where reconfigurable architectures
make sense.
With different algorithm and architectural configurations,



we obtain tracking system performances. Tab.1 provides,
for different configuration examples, performance values,
FPGA area ratio provided and power consumption measures
obtained with the battery gauge (TI Bq2084). Execution time
results correspond to a tracking process with a standard
input frame. Execution time variation is due first to system
architecture (e.g. cache miss, bus collision...) and secondly to
data features. Tab.7 shows examples of such data-dependent
performances that can justify the generalization of self-
adaptive systems in the future. The reconstruction task, for
instance, is a recursive task depending on object complexity;
during each iteration, execution time depends on the number
of white pixels. In the same way, erosion and labeling
execution times depend on the number of white pixels and
the number of objects, as well as the number of white pixels
and object complexity, respectively.
Some architecture configurations may involve significant

time overheads (HW and SW tasks switch), however it is
also clear that hardware tasks may be considered when
computing parallelism is available and relevant speeding up
achievable. Such performances can be found in domains
such as image processing, encryption, 3D graphics, video
encoders. In our case study, for instance, we observe that
message passing represents a very low percentage of the
entire whole communication.

T1,2-T3-T4-T5-T6,7,8 all sw sw-hw-hw-sw-hw all hw

Avg. Exec. Time (cy.) 245.650.000 80.800.000 1.820.000

Frames / sec. 0,20 0,62 26

Area StratixII S60 19 % 59 % 92 %

Power 137 mW 228 mW 285 mW

Table 1: Design results with a 50 MHz clock

4. Global Self-Adaptivity
4.1 Introduction
Embedded systems require fast and low cost self-

adaptivity, we reach this objective by reducing the configu-
ration space based on a set of promising solutions around an
average configuration. However such a solution may be too
limited if the variations of application conditions lead to very
large configuration space or if multiple complex applications
are running concurrently. For cost and technology reasons,
the answer cannot be limited to the increase of embedded
memories even if RAM and Flash resources enable to
store large amounts of configuration files. The question of
firmware update is another important issue with a great
impact on development cost. However, most of embedded
systems can access to the network and so to huge and shared
configuration (bitstream, binaries) repositories. Thus we can
extend the available reconfiguration space by means of
hierarchy of caches as depicted in Fig.2, which for instance
can be composed upper the configuration memory of an
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Fig. 9: Self-Adaptivity scenario with LMS

on-board DDR memory, a local W/LAN server and some
Internet Servers providing new releases and applications.
Such an approach raises two additional questions. First,
architectures must be defined as instances of a registered
model, in order to classify configurations available to a
set of identical reconfigurable embedded systems. It also
means a new flexible programming model based on standard
interfaces and API compliant with the architecture model.
The second main point relies to the cache policy, namely
the way configurations are stored and updated at each level
of the hierarchy.

4.2 Networked reconfigurable systems
A lot of future applications, based on distributed embed-

ded systems, are expected in the domain of intelligent en-
vironment (smart cameras) or transportation (smart sensors)
and in the context of nomadic devices (software defined ra-
dio, computing). It means that wired and wireless local area
networks can be considered as an available solution. Given
this assumption, we have implemented different architectures
providing a networked-reconfiguration service for Xilinx
FPGA. Note that the objective was to implement partial and
dynamic reconfiguration directly from a remote and local
server. In other words, we bypass the DDR level of the cache



hierarchy when the requested configuration is not available
on board. Previous work have considered such a network
approach, William and al. [14] have developed a µClinux
device driver on top of ICAP, enabling bitstreams down-
loading. The system is based on a Microblaze implemented
on Virtex2p. As no measures are provided, estimations done
in a similar context, lead to a transfer speed ranging from
1.6 Mb/s to 3.2 Mb/s. Lagger et al. [15] also propose a
solution based on µClinux for cryptographic application in
the context of pervasive applications, authors indicate data-
rate ranged from 240 Kb/s for HTTP and 480 Kb/s for
FTP. This shows that ”TCP + µClinux” is very flexible
and widely accepted as a universal platform, however it
also means an overhead that can be an issue in case of
real-time applications. Not strictly dedicated to DPR, the
XAPP433 [16] application note from Xilinx, describes a
HTTP server performing 4Mb/s built around a Microblaze
implemented on a Virtex4 FX12 running at 100 MHz and
based on the lwIP [17] protocol stack and the Xilinx XMK
OS. We have implemented different stand-alone solutions
tested with different kind of bitstreams, A1 is a customized
IP protocol implemented on a PowerPC, A2 is an enhanced
version based on A1 and improved with a DMA [18].
Considering the use of standard protocols and very low
error rates observed in usual W/LAN implementations, we
have also implemented solutions based on UDP [19] in case
of wired (A3) and wireless (A4) networks. Table 2 shows
the throughputs and memory footprint we obtained. These
results and recent experiences based on Virtex V indicate
that we can expect to reach the maximum LAN bandwidth
with FPGA, namely 100Mb/s and more in a near future.
We can conclude that LAN capacities will fix L1 cache
bandwidth. Regarding L0 in the case of FPGA, it is bounded
by ICAP bandwidth that can theoretically raise up to 3,2Gb/s
on Virtex V, which corresponds to a DDR range.

Lagger Williams Xilinx A1 (ad A2 (A1 + A3 (wired A4 (Wifi
[15] [14] [16] hoc IP) DMA) UDP) UDP)

Throughput
(Mb/s) 1.7 3.2 4 40 80 60 30
Memory
(bytes) > 1M > 1M < 100K < 100K < 100K 200K 200K

Table 2: Throughputs and memory footprints

4.3 Modeling and standards
If we consider now that an embedded reconfigurable

system can efficiently download a set of configurations from
global servers, it means that open source programs extended
to hardware components can provide designers with infinite
possibilities of (re)configuration and upgrade, it also means
very exciting future prospects. Depending on technologies
and devices families, different solutions can be proposed. If
we consider for instance R-MPSoC based on Xilinx FPGA

and Microblaze cores, we can propose a meta-model from
which can be derived various architecture models. In this
context, Model Driven Engineering tools can usefully help
designers to generate codes and compilation or synthesis
scripts automatically, in [20] we present such an approach,
based on MARTE/UML meta-model.
Fig.10 shows how a meta-model is progressively spe-

cialized in order to provide a given reconfigurable archi-
tecture. We start from a meta-model (M01) of a general
architecture composed of a manager processor controlling
some slave processors with a given number of co-processors,
and various other components such as shared memories,
IP and peripherals. Then an instance of the selected model
is specified by the designer. In this case M11 corresponds
to the previous smartcam architecture, M10 is the model
we adopted for the second example for audio coding. It is
composed of a manager processor and two slave processors
that can then be dynamically configured by means of two co-
processors. Thus, servers of configuration can host database
where configurations are identified and classified according
to instances of architecture models.
The programming model is another important issue for

the design of applications over a given model of reconfig-
urable architectures. Our approach, depicted in Fig.11, is
an extension of the model we developed for self-adaptivity,
where the granularity level is a task (namely a thread).
Each application is composed of a set of tasks and a
local configuration manager (algorithmic configurations), a
descriptor file provides the configuration manager (GCM)
with meta-data including the list of used standard functions.
A unique GCM, implemented on the master processor (MP),
decides the global architectural configuration, it is also
in charge of configuration downloading through the cache
hierarchy. Each task is specified with a UCCI interface,
which is in charge of configuration test, synchronization and
communications mapping. A task can be mapped as software
task on a slave with or without specific co-processors or as
hardware task as a specific IP. As explained in introduction,
we observe that applications in embedded systems share a
large set of common basic functions, we believe that these
functions can be called through common API adapted to
the different architecture models. The hardware or software
implementation of these functions don’t need be redesigned
but could available on configuration servers.

4.4 MP3 Case study
To illustrate the global configuration concept, we have

built networked self-adaptive architectures based on avail-
able dynamically configurable processors on FPGA. The
XPSoC-V2 architecture, for instance, is based on model M11
in Fig.10 and implements, on a Xilinx ML410 board (Virtex4
FX60), two microblazes. The first one (MP) is the manager
and the second one (SP) is a slave with configurable co-
processors connected to FSL interfaces. MP runs a petalinux
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[21] operating system. In this case study, SP runs an MP3
decoder application. Two types of coprocessors can be
downloaded from remote configuration server, a IMDCT
coprocessor and a MUL16 coprocessor. Table 3 presents
performances and area for the different versions.

Software HW-MUL16 HW-IMDCT

Slice used for coprocessor 0 161/ 25280 482/25280

DSP used for coprocessor 0 4/128 4/128

LUT used for coprocessor 0 86/50560 521/50560

Execution TimeS 307.2 232.9 (24%) 167.7 (45%)

Table 3: Mp3 decoding on XPSoC-V2

5. Conclusion
In this paper we have presented a global methodology

for the design of self-adaptive systems. It is first based on
a close-loop approach for deciding, at run-time, among a
finite set of configurations the best one according to user
references. Then we extend this solution by implementing
a hierarchy of remote configuration servers providing an
access to a huge configuration space. Finally, we propose

to open the design of standard configurable multiprocessor
architectures, by means of model specification that enables
to a large set of hardware and software engineers to share
applications and standard function designs.
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