Closed-Loop—Based Self-Adaptive Hardware/Software-Embedded
Systems: Design Methodology and Smart Cam Case Study

JEAN-PHILIPPE DIGUET, YVAN EUSTACHE, and GUY GOGNIAT, Lab-STICC, CNRS/

Université Européenne de Bretagne - UBS

This article presents our methodology for implementing self-adaptivness within an OS-based and re-
configurable embedded system according to objectives such as quality of service, performance, or power
consumption. We detail our approach to separate application-specific decisions and hardware/software-
implementation decisions at system level. The former are related to the efficiency control of applications
and based on the knowledge of application engineers. The latter are generic and address the choice between
various hardware and software implementations according to user objectives. The decision management
is implemented as an adaptive closed-loop model. We describe how each design step may be implemented
and especially how we solved the issue of stability. Finally, we present a video-tracking application imple-
mented on a FPGA to demonstrate the effectiveness of our solution, results are given for a system built
around a NIOS soft-core with £COS II RTOS and new services for managing hardware and software tasks
transparently.

Categories and Subject Descriptors: C.3 [Real-time and embedded systems]: Miscellaneous

General Terms: Design

Additional Key Words and Phrases: Self-adaptive embedded systems, HW/SW codesign, control-theory, QoS,
RTOS, image processing

ACM Reference Format:

Diguet, J.-P., Eustache, Y., and Gogniat, G. 2011. Closed-loop-based self-adaptive Hardware/Software-
embedded systems: Design methodology and smart cam case study. ACM Trans. Embedd. Comput. Syst.
10, 3, Article 38 (April 2011), 28 pages.

DOI = 10.1145/1952522.1952531 http://doi.acm.org/10.1145/1952522.1952531

1. INTRODUCTION
1.1. Context

The design of embedded systems usually results from a trade-off between antagonist
constraints, which are related to design cost (man.months), chip area, power con-
sumption, and real-time or high QoS! considerations. The use of a RTOS has become
widespread for services it offers in terms of management and implementation of concur-
rent applications, real-time constraints, and network accesses. When high computing
demands are required for application domains, such as image processing, cryptography,
source, and channel coding for instance, the final architecture is usually heterogeneous
and based on a general, purpose processor (GPP) enhanced with coprocessors dedicated
to specific tasks. Some design methodologies, based on design space exploration and

1Quality of service.

Authors’ address: Jean-Philippe DIGUET, Lab-STICC: UMR 3192 CNRS/Univ. Europenne de Bretagne -
UBS BP 92116, F-56321 Lorient Cedex - France.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org

© 2011 ACM 1539-9087/2011/04- ART38 $10.00

DOI 10.1145/1952522.1952531 http://doi.acm.org/10.1145/1952522.1952531

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 3, Article 38, Publication date: April 2011.

38:2 J. P. Diguet et al.

power, performance, cost estimation, and tools have been proposed Dave et al. [1999]
to solve this issue.

However, the observed trends show that embedded systems tend to have very variable
features. The question of unpredictability is first related to the evolution of applications,
the optimizations of which are usually based on adaptations to data, leading to strongly
data-dependent resource use. The second source of uncertainty is the concurrency of
applications sharing resources such a caches, peripherals, and communication media.
The traditional approach consists in considering worst cases that lead to overestima-
tions in contradiction to design constraints. With efficient reconfigurable architectures,
we can implement the minimum architecture needed to provide the requested perfor-
mances without excess hardware. This means a minimization of memory accesses and
activated hardware, so a reduction of wasted computation.

In this context, self-adaptivity is a promising way to solve the question of optimiza-
tion at runtime. The first condition is the availability of dynamically reconfigurable
architectures. We can reasonably make the assumption that such architectures, which
already exist, will be more efficient in the near future in terms of power and reconfigura-
tion time. The second condition is decision capability. This decision can be implemented
remotely and provides interesting opportunities for reducing design cost, while offering
new services, such as hardware bug fixing or version upgrade. Actually, another chal-
lenging issue is the embedding decision within embedded systems to perform hardware
(HW)/software (SW) partitioning at runtime. Today, there is no really efficient solution,
which can be applied to the design of general embedded systems. This is precisely the
point we are addressing in this article.

We consider an architecture model, which fits with a large set of embedded systems.
It is based on a GPP with dedicated accelerators that can be dynamically configured.
The GPP implements a RTOS managing a set of tasks. Tasks communicate through
messages passing for synchronization and shared memories for data, and they can have
various possible implementations in HW and/or in SW, which corresponds to different
cost/performance trade-offs.

1.2. Objectives and Contributions

Considering the previously described architectural model, the main objective of this
work is the implementation of a configuration manager with runtime decision and
configuration control capabilities. We focus our work on the following issues, which are
the main relevant points from a research perspective.

(1) Separation between decisions to be done at design and at runtime, namely between
traditional HW/SW partitioning and online self-adaptivity;

(2) Transparent use of various HW and SW implementations for a given task;

(3) Separation between application-specific and application-independent configuration
decisions;

(4) Online decision algorithms and implementation;

(5) Reconfiguration control that must guarantee a safe transition between subsequent
configurations;

(6) System stability and avoidance of reconfiguration;

(7) Negligible self-adaptativity cost: no power, area, and performance overhead.

We have concentrated our work on the previous points with the aim to remain, as
much as possible, independent from HW platforms and consequently from current par-
tial and dynamic reconfiguration techniques. From a research perspective, our aim is
to propose a solution for self-adaptivity based on the assumption that efficient reconfig-
urable devices are available. Approaches relying on coarse-grain reconfigurable archi-
tectures and multiple-context fast switching are some examples of such solutions. So,

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 3, Article 38, Publication date: April 2011.

Closed-Loop—Based Self-Adaptive Hardware/Software-Embedded Systems 38:3

we did not base our work on the specific Xilinx framework for partial and dynamic re-
configuration, but we simulate fast reconfiguration with preimplemented HW modules
that are clock-gated when unused. We experiment Xilinx solutions in other projects,
one of them is for instance dedicated to the domain of networked reconfigurable devices
[Bomel et al. 2008].

Our contributions focus on the seven previous items. We propose a design method-
ology regarding issue 1, we introduce the concepts of unified configuration and control
interface (UCCI) and legal representant (LR) to cope with issue 2. Question 3 is solved
by means of a hierarchy of local and global configuration managers (LCM/GCM). Our
choice for addressing problem 4, regarding self-adaptivity, is based on a closed-loop
approach and a Borda vote. We use data-granularity checking and configuration ID
broadcasting to deal with problem 5. A proportional integrator (PI) regulator, enhanced
with least mean square (LMS) observer, is implemented as a solution to question 6.
Finally, point 7 has been our constant optimization criteria.

In this article, we mainly focus on points 1, 3, 4, 6, and 7; details of items 2, 5
can be found in Eustache and Diguet [2008]. First, the whole methodology is presented
in Section 3 and a brief description of the configuration management is given in Section
4. Section 5 presents, in detail, the decision concept implementing self-adaptivity. In
Section 6, we demonstrate our approach and show how our methodology has been
successfully applied for implementing an object tracking application on an FPGA-
based smart-cam. The next section first presents the state of the art—the objective is
not an overview of the large domain of reconfigurable architectures but how the online
reconfiguration decision has been addressed.

2. RELATED WORK

In this section, we focus on the previously quoted contributions. They are not related to
reconfigurable architectures in general, but to question of configuration decision from a
global perspective including HW and SW aspects. In the domain of adaptive embedded
systems, three issues are related to our project: online hardware configuration decision,
control-theory for implementing configuration decision, and RTOS for HW and SW task
management. This article targets the two first points.

First, a lot of work has been produced in the domain of adaptive architectures. Dif-
ferent techniques have been introduced for clock and voltage scaling (DVS) Wong et al.
[2003], pipeline control Manne et al. [1998], cache resource Albonesi [1999], or func-
tional unit Maro et al. [2000] allocation. However, these approaches can be classified
in the category of local configurations based on specific aspects, whereas our aim is to
provide a global solution to the question of configuration management including both
algorithmic and architectural aspects. In Liang et al. [2004], the association between
algorithmic and architectural views is relevant for H-264 implementation; however,
the hardware controller remains specific and local.

Recently, we observed some first proposals about reconfiguration decisions in em-
bedded systems. In Goddard et al. [2006] a three-level manager is presented. This
manager and the associated design space exploration are specific and dedicated to cog-
nitive radio applications based on blind waveform detection. A single decision layer is
described and simulated with Matlab in Kaufmann and Platzner [2008]; it is based
on an evolutionary algorithm and limited to a single task application and very simple
architecture transformations (adder, hash function). Our approach has been driven by
the separation between application-specific and system-level decisions, by the choice of
a generic methodology and an architecture compliant with energy-limited embedded
systems.

Second, controltheory has been used for online decision mainly from a SW point of
view. Feedback control has been introduced in the area of soft RTOS to handle the

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 3, Article 38, Publication date: April 2011.

38:4 J. P. Diguet et al.

uncertainty of worst-case execution time (WCET). In Lu et al. [2002], the au-
thors present a complete model for feedback control real-time scheduling. In Li and
Nahrstedt [1999], a relevant two-step approach is proposed. However, this kind of
technique does not fit for embedded low-cost systems and reconfigurable HW, but the
approach of system stability remains interesting. Recently, Gu and Chakraborty [2008]
have proposed an efficient DVS technique based on control-theory for PDA power man-
agement. The approach, implemented on a Xscale processor running Windows mobile,
provides accurate workload predictions in the context of 3D game applications. The
PID predictor is then used to decide the voltage/frequency configuration. In this work,
control theory is dedicated to a given application and a single system-level knob (DVS).

Our approach has been driven by the necessity of associating application and system-
level decisions in a hierarchical, but global, framework with a decision algorithm com-
pliant with embedded system constraints. Contrary to previous work, we consider the
whole system as an entity to be controlled.

Finally, the configuration decision and management can be considered as new OS
services that rely on other features such as the ability to manage both HW and SW
tasks. This aspect has been explored in several projects such as OS4RS [Mignolet et al.
2003], which abstracts task implementations in HW or SW. Bergmann et al. Bergmann
et al. [2006] present a solution based on a ucLinux platform implemented on the Xil-
inx Micro-Blaze soft-core processor, where hardware modules are considered as usual
processes with their own address space. This work mainly focuses on HW/SW interpro-
cess communications (IPCs) and provides a transparent use of UNIX pipes, which are
efficiently implemented with MicroBlaze FIFO (FSL). The BORPH project [So et al.
2006] introduces a unified interface for SW and HW threads that extend a standard
Linux environment, and it is based on the use of Linux pipes for implementing IPC no
matter their HW or SW implementation. Another approach proposed in Andrews et al.
[2006] is also based on a standard POSIX interface; SW threads and HW threads are
managed through a common API called Hthread and some time-consuming OS services
are implemented into HW. Finally, in RECONOS [Liibbers and Platzner 2007], eCos is
selected for the same reasons we have chosen £ COS II, both are low footprint real-time
OS. They also propose a common HW interface for HW modules, which are present in
the OS task table through SW delegates that seems to be equivalent to what we call
legal representatives and to the concept of ghost processes in Bergmann et al. [2006].

We propose a solution that aims at unifying HW and SW task management within
an extended OS. In this context, our main contribution is precisely related to the
configuration decision process that automatically manages system configuration ac-
cording to user requirements. This decision process is closely linked to enhanced OS
services that are adapted, in our case, to configuration modeling including resource
allocation and modified communication and synchronization schemes. From a pure
OS point of view, we did not only consider IPC for HW/SW process, our aim is to of-
fer HW tasks access to all OS services. Contrary to Liibbers and Platzner [2007] we
distribute IPCs in order to speed up and benefit from concurrency for HW/HW task
communications.

In conclusion, even if dynamically reconfigurable coarse-grain architectures have
been already proposed, the decision issue for the whole system, including inherent
transitions between configurations and stability conditions are usually ignored in the
domain of embedded systems. In this area, another strong constraint is cost, which
means that implementation of the decision and configuration mechanism must be
negligible compared to expected gains in terms of performances and power (and area
when partial reconfiguration is available). The stability issue is related to the question
of cost and must be jointly considered in order to avoid a repetition of useless and
unexpected reconfigurations.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 3, Article 38, Publication date: April 2011.

Closed-Loop—Based Self-Adaptive Hardware/Software-Embedded Systems 38:5

933 = Shared SRAM
W4 8 (Data)
@ Processor §
RTOS + g
,. New services a
BUS hierarchy
S SDRAM
! : (PGM, RTOS)
: HW n Pengl;eral Pn

I -

Fig. 1. RTOS-based heterogeneous architecture model for online HW/SW partitioning.

3. METHODOLOGY
3.1. Introduction

The basic problem addressed is the partitioning of a set of tasks over a given architec-
ture model. As for the domain of embedded systems, we consider a model based on a
single processor, which can be enhanced with coarse-grain instructions (coprocessors)
and hardware accelerators connected to a hierarchy of bus, as shown in Figure 1. The
processor implements a RTOS with new services for reconfiguration management, and
communications are implemented with shared memories and synchronization signals.

Design space exploration and partitioning decision, especially with heterogeneous
HW platforms, form a very complex problem usually solved with heuristics, such as
genetic algorithms or simulated annealing. But our objective consists in doing this at
runtime. Note that this issue is very different from task migration based on platform-
independent SW and homogeneous architecture models, since the point, in this work,
is precisely the choice of the HW platform.

Therefore, we have adopted a four-step methodology. The first step is the specification
step during which the designer should think in terms of self-adaptivity at functional
level. The second step consists in an offline design space exploration (DSE) step, which
provides a set of configurations to be selected at runtime by the next two online steps.
These two online steps address algorithmic and architectural configurations imple-
mented by local and global configuration managers, respectively.

Note that this approach is compatible with a fully reconfigurable scenario, actually
bitstreams stored on chip may be dynamically loaded through a connection to a server
providing a remote reconfiguration service as considered in Bomel et al. [2008].

Then, the main objective consists in designing an embedded system able to respect
a constraint (namely a reference) specified at runtime by the user, while optimizing
secondary magnitudes. In the smart camera example, the constraint can be the QoS
and the optimized magnitudes: power and execution time.

Our approach aims to explicitly define roles of SW and HW designers within the whole
methodology. The idea is to keep a clear separation, but with a design methodology that
provides the HW designer with unambiguous information about application needs in
terms of resources.

3.2. Offline Steps: Specification and DSE

3.2.1. Self-Adaptivity Aware Specification. First, we consider that self-adaptativity starts
at application design and SW designers are asked to specify the conditions under which

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 3, Article 38, Publication date: April 2011.

38:6 J. P. Diguet et al.

4 Algorithms Uncertainty area

Power / Area l Algorithmic choice 1
X s° 7

-

X «_ Offline
X X X _-f- —,’) Candidate
X XCID3I~, _----"" L+ Selection
X X .
%; X
Execution Time

/fh;nic choice 3
7’

-
\ .- onlinelcm
f_ /-" decision

\ x,7

Online GCM
decision — ——

Execution Time

Fig. 2. Configuration space.

Global Parameters Local Parameters
Config. ID LCM e (Algo. Config)
9-0 Selection | Measures Data Data HWI/SW Partitioning go. 9
Qos|p | T | rate | Resolution To|T| .. |N[TOo|[TI].. |~
Ci 4 Qi |Pi(Ti |Di Ri SW [HW SW [n0i npti InNi
Cj v Qj |Pj|Tj |Dj Rj SW|HW HW | n0j |n1j InNj

Fig. 3. Configuration table.

an algorithmic configuration must be selected or not by means of application metrics
that must be clearly specified and computed if necessary. In practice, the SW designer
will follow a methodology in which he will specify lists of algorithmic configurations and
transition rules based on metrics. This step is strongly linked to the online adaptation
of algorithmic configurations, so an overview of the methodology steps are given in
Section 3.3.2.

We believe that our approach is a good way to impose an adaptivity-oriented design
discipline on the designer. Moreover, this is not a real design constraint, since this
information is usually known by designers at design time, but not explicitly specified.

3.2.2. HW/SW Design Space Exploration. As previously claimed, characteristics of solu-
tions (e.g., power, performances, area) change with data, environment, and architecture
hazards. Thus, a selection of promising candidates must be done offline while consider-
ing an uncertainty space around each solution, as shown in Figure 2. The description of
relevant solutions available on chip is then stored in the configuration table described
in Figure 3.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 3, Article 38, Publication date: April 2011.

Closed-Loop—Based Self-Adaptive Hardware/Software-Embedded Systems 38:7

This step can be performed manually or by means of design space exploration tools,
providing power, area, and performances estimations that can help to prune the search
space. As self-adaptive systems are data-dependent, it is also essential to get test-
benches representing data variations or data ranges issued from functional simu-
lations. Moreover, the choice of algorithms by the application designer are usually
resource naive, so feedbacks to the specification step can be necessary if SW imple-
mentations are too slow and HW implementation too costly. Regarding the smart
camera case study, all tasks have been implemented in various HW and SW ver-
sions. Consequently, selected solutions presented in the configuration table rely on real
measures.

3.3. Online Steps: Configuration Management

3.3.1. Separation of Concerns. The aim is to implement configuration management for
online algorithmic and architectural adaptations. Figure 2 presents the configuration
space, where a point means a configuration identifier (CID), and a plan corresponds to
an algorithmic choice. Thus, a move within a plan is an architectural reconfiguration
(CID1 — CID2), and a move between plans means an algorithmic reconfiguration
(CID2 — CID3). Each line of the configuration table represents a configuration as
shown in Figure 3, where global parameters provide the architectural configuration
regarding HW/SW partitioning for each task and where local parameters correspond
to the algorithmic configuration. The first challenge, when it comes to the configuration
decision of embedded systems, is to find a low cost, but efficient solution. The second one
is to propose an approach that clearly separate algorithmic configurations, which are
intrinsically application specific, and architectural configuration, which mainly deal
with trade-offs at system level (e.g., QoS, Performances, and Power).

Our solution, regarding these objectives, relies on a couple of local (LCM) and global
(GCM) configuration managers, that can be implemented as SW or HW tasks. There
is one LCM for each application and one GCM for the whole architecture. Each LCM
is in charge of algorithmic configurations and consequently specified by an application
designer. Thus, the LCM first selects the algorithmic configuration without consid-
ering implementation issues. The GCM, in charge of architectural configurations, is
to be designed by the system designer. Given LCM algorithmic requirements speci-
fied notified in the configuration table, the GCM selects the HW/SW implementation
that meet specified constraints (QoS, power, performances). Figure 1 shows the smart
camera solution, in which LCM and GCM are implemented as SW tasks. The latter
is enhanced with wired instructions (coprocessor) implementing basic controller and
observer coarse-grain operations.

3.3.2. LCM: Algorithmic Adaptation. The self-adaptivity aware methodology, for applica-
tion designers, can be organized in five steps.

(1) Task decomposition and specification of possible algorithmic alternatives (plans in
the configuration space);

(2) Definition of relevant tasks metrics m; in the perspective of algorithmic configura-
tion selection;

(8) Functional simulation and specification of algorithmic configurations to be selected
according to metric values (LCM rules);

(4) Definition of a global metric providing the GCM with the QoS of the application;

(5) Task and LCM implementation based on communication API for metric delivery.

Thus, the LCM is by definition application specific. It is coded in C as a set of simple
logic rules specified by the application designer who knows which are relevant metrics
and conditions for algorithmic selection. Here, the worst case corresponds to conditions

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 3, Article 38, Publication date: April 2011.

38:8 J. P. Diguet et al.

T10: Object Motion, | T1: Frame Acq. |—l
LMS Modelling ¢
QoS Computation T9: Adaptive
7 " 12 Avg/Sub/Threshold] Threshold
QoS/ White points
1 4
,’, ,,‘I T3 : Erosion / Dilation | _______
T'1 lé}LCM ,:: L 7s;latedpoi £s i |', Variation sources
Object - . due to data : 1
Tracking ﬁ:\: \# Rounds T4:Reconstr\uct1ib i - :Objects i
N - Area
I N N #’*Qb\jecrs : - Position :
NP NN ' - A Light '
¢ "\4”\”\ ‘l T5:Object Labelling | - Obj.gShape '
o euush | NN S, |
- QOS \\ 1 T6: Bounded Box | I\ - |ma§e noise ;
- Algo. Selection AN 1 P ’
Position ~
1 T7: Gravity Center |

—'} T8: Display |

Fig. 4. Object tracking application flow.

where complex algorithms are necessary. For instance, in image processing, the main
variables, which drive the algorithmic choices, are the noise levels at different stages of
the application flow. These rules are based on metric collected through a set of message
passing API, which are used by tasks through a uniform interface described in Section
4. The LCM uses the same API to transmit the QoS metric to the GCM.

The choice of the LCM is then delivered to the GCM though another message passing
API: Apply(). The selection of the LCM is efficiently implemented by means of masks,
which means that the list of valid algorithmic configuration is represented by an array
of bits.

Let us consider an example from the smart camera application described in Figure 4.
A simple rule consists in activating the adaptive threshold task (T9) when the noise
level is larger then a given threshold (7T hg) specified by the SW designer after a set of
PC-based experiments. The noise can be modeled as the difference between two metrics,
the first is the number of isolated white pixels (im3) measured after Erosion/Dilation
T3 and the second is the number of white pixels (mg) after thresholding (7). It will be
specified as:

if mg — mg > Thg, then Apply(Mask,[...]),

where Mask,, is an array of bits with a length equal to the number of possible
algorithmic configurations corresponding to the columns Local Parameters of the
configuration table, such as Mask,,[i]l = 1if CID; is valid and 0 otherwise.

3.3.3. GCM: Architecture Adaptation. The GCM is in charge of architectural implementa-
tion decisions. It receives data from sensors (gas gauge, CPU load from the OS, LCM
requirements) and from estimators when no measures are available. The GCM decides
the new system configuration according to user requirements (e.g., QoS, power, per-
formance references) and configuration solutions issued from the LCM design space
restrictions. The decision process is detailed in Section 5.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 3, Article 38, Publication date: April 2011.

Closed-Loop—Based Self-Adaptive Hardware/Software-Embedded Systems 38:9

(
(s oonie —— |

/ \ Wiaits Config.
Hardwired I Slave Port | | IRQ I
uccl
Reg.
bank FSM
HW core SW HW

Legal

process
Representative

Local
HAL @

\ J

Evaluates Metric
\l Sends Metric I uccl API)

Fig. 5. HW and SW UCCL

4. CONFIGURATION MANAGEMENT
4.1. Motivations

The reconfiguration of the system at runtime raises two questions. The first is the
synchronization of tasks after a reconfiguration has been performed, the second is the
problem of interfaces. Both aspects are solved in the context of RTOS, more details can
be found in Eustache and Diguet [2008]

4.2. UCCI Interfaces and Legal Representative

We consider applications specified as acyclic task graphs and an architectural model
based on message passing and shared memories. This means that a task must indicate
to its successors, though mailbox or queuebox mechanisms, the address of data in a
shared memory protected with a Semaphore or a Mutex. From a communication point
of view, the interface must be unique no matter the implementation of tasks. For this
reason, we have developed a UCCI. It is implemented by means of API when the task is
running on the processor and as a HDL code container, with hardwired services, when
the task is mapped on a HW accelerator. An overview of the UCCI is given in Figure 5
for HW and SW implementations. The interface has to its disposal different API (or
equivalent hardwired services), which can be classified in four categories.

—Synchronization mechanisms: Abstracted post and pend messages based on mailbox
and queue box.

—Transfer of metrics to the LCM

—Configuration mechanisms: Requests to HAL to get physical addresses, analysis of
CID, pending on configuration events, propagation of CID.

—Memory Accesses: Update of I/O addresses (SW: variables, HW: registers), soft Mutex
for SW tasks and DMA services in case of HW implementation.

The second tedious question is the place of a task from the RTOS point of view. When
a task is moving from SW to HW), it still remains alive in the RTOS in a very simple
version as a task in charge of RTOS/HW accelerator communications. This concept
is called the LR, which is close the ghost process mechanism presented in Bergmann
et al. [2006]. Most of the time, a LR is an inactive task pending requests issued from
the HW task when a RTOS service is required.

Communications between HW accelerators are direct and, therefore, do not solicit
the RTOS. Actually, RTOS communication services are distributed in such a case, since
they are implemented in HW within the UCCI.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 3, Article 38, Publication date: April 2011.

38:10 J. P. Diguet et al.

LCM
Multicast CID

Cluster 1 \ /— Cluster 2 \

Source Tasks Source Task

Sink task °

6 J \ Sink tasly

Fig. 6. Configuration synchronization.

4.3. Configuration Control Mechanisms

We solve the synchronization issue by means of diffusion mechanisms as illustrated
in Figure 6. Our method reuses existing communication channels, which can be direct
for HW to HW communications or based on RTOS services (Pend/Post) for HW/SW and
SW/SW communications. These communications are implemented with HW or SW API
provided by UCCI.

We, therefore, have developed the following strategy. First, the configuration man-
ager, namely the LCM, sends the CID to all source tasks through a multicast diffusion.
Second, the CID is propagated gradually from the source to the sink tasks over data
channels, after granularity control to avoid data starving and inconsistency.

The configuration flow, for each tasks is then ordered as follows.

(1) When receiving a new CID, a task runs until it has produced a given amount of
data specified offline;

(2) A simple, mask-based CID analysis provides information about the new configura-
tion. Without going in details, four main cases can be distinguished.

—Task configuration and I/0 addresses unchanged: Nothing to do;

—Task configuration unchanged but new I/0O addresses: A request is sent to the
HAL using UCCI API to get new I/O information,;

—New task configuration HW — SW and CID received from a HW task: A recon-
figuration message, using UCCI, is sent by the HW task to its LR. Then, the LR
activates the SW task, that first initializes its I/O configuration using UCCI API;

—New task configuration HW — SW and CID received from a SW task: The LR
directly intercepts the new CID and activates the SW task, that first initializes
its I/O configuration using UCCI APL.

(3) The new CID is propagated to the task successors.

With such diffusion principles, we guarantee that all tasks will be configured starting
with the source tasks.

4.4. Reconfigurable Task FSM

Finally, the combination of traditional FSM and UCCI services offers a simple method
to implement new task states by means of substates, as shown in Figure 7. Thus, a task
can wait on data or on configuration parameters and the run state can be decomposed
in three levels. First, we add a substate, where a task computes and transmits metrics

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 3, Article 38, Publication date: April 2011.

Closed-Loop—Based Self-Adaptive Hardware/Software-Embedded Systems 38:11

Run stoppable
Run nonstoppable

Run

Compute/Send Metrics

Fig. 7. Configurable task states.

S: Controlled System

Sensors y(t)
Life-Span (Battery), >
Exec.Time (OS), QoS (LCM)
u®) . A e(t) o x(t) . .
> > R 4 GCM :
Reference : + Ol (P) —I l
00 A ClDsidiaic i
-l(s)?(esc: Time 1 - Select:so_n_t_ o _u_ _ _dc:cl:::ﬁn
-Lifetime : LCMS E
Metn;s_ -ﬁ ______ u_ i -CI[D
N Tasks
y(t+1) Ay
——— 0 -

Fig. 8. Generic closed-loop system.

to the LCM. Then, while data are being processed, a task can be in a stoppable substate
if enough data have been produced or in a nonstoppable substate otherwise.

5. CONFIGURATION DECISION
5.1. Introduction

We propose an original approach based on a closed-loop model that consists of con-
sidering a reconfigurable embedded system as a process to be controlled by means of
configurations choices. In the following, we present the model we have adopted and
relative issues concerning stability and convergence.

5.2. Closed-Loop Configuration Control

Control theory methodology first requires settling an analytical model close to the real
system to be controlled. In our case, the system is composed of a reconfigurable SoC
(RSoC) running a set of tasks, which can be implemented with various versions on
different HW/SW resources, as well as control, estimation, and configuration tasks.
Our model, depicted in Figure 8 is based on three elements. S is the controlled system
composed of configuration managers, a task set, and some sensors that provide access
to the controlled magnitude y(z).

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 3, Article 38, Publication date: April 2011.

38:12 J. P. Diguet et al.

R is the control function. O is the system observer, which provides estimates for
the next time slot. The observer implements a system model that is updated when
measures are available.

u(t) is the user reference, depending on priorities a designer can consider. It can
be, for instance, application QoS constraint that will be compared to the QoS value
provided by the LCM related to the application. It could also be a lifetime threshold
that will be compared to a value derived by the GCM from battery level and power
consumption or even a time constant that will be compared to real execution times
provided by the OS.

In the following, we consider the power P as the controlled magnitude y(¢) for the
sake of clarity.

Thus,

e(t) = u) — @)

is the difference between the reference and the observer prediction output, namely the
expected average power consumption of the system in the next time slot based on the
value provided by the battery controller.

Y+ 1) = apy@) + a1y — 1) + agy(t — 2)

produces an estimate of the next average power consumption. In Section 5.5, we detail
the estimation model, that is, how the coefficients {a;} are updated.

5.3. Ideal System

In a perfect reconfigurable system, as shown in Figure 8, an infinite configuration space
is available, which means that a configuration canceling the error can always be found.
In such a case, we could consider the following solution, where x(t) is the output of the
proportional regulator R(P).

x(t) = kpe(t)

We do not use the derivative effect, which can lead to sudden output variations with
this kind of very fluctuating input, nor the integral effect, since it appears in the system
modeling as explained hereafter.

y(t) is the output, namely the power consumption, of the system after the reconfigu-
ration adaptation (S). This function introduces an integrator effect that can, in theory,
annihilate the steady state error.

yE+1) =y@)+x@)

5.4. Model for Implementation

In reality, the number of configurations, of course, is limited, which means that a gap
will always exist between the controlled magnitude and the user reference. So, we
consider the model depicted in Figure 9 for implementation with two modifications
regarding the previous ideal view.

The first point is relative to system control. The objective is then to find the closest
solution below the user reference. This reference will be py., since lifespan is the
considered constraint in the following. The reference would be the maximum execution
time in case of hard or soft real-time applications and the maximum prediction error,
namely the QoS, in the context of object tracking.

We, therefore, consider a modified proportional and integrator regulator (PI) with
the following definition.

x(t) = kpe(t) + kix(t — 1) (1)

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 3, Article 38, Publication date: April 2011.

Closed-Loop—Based Self-Adaptive Hardware/Software-Embedded Systems 38:13

&(t) = u(t)y+eo(t) +ep(t) + ep(t)

u(t) e(t) x(t), y@t) +
+ A9 A | S
— > 4L —— R(PI) —> § — | >

Reference : . — i . i
-QoS - " S 1
-Exec. Time | A y 4 t ccccccccccecciccsceceEcEcd
-Lifetime y(t+1)

0 =

Fig. 9. Implemented closed-loop model.

A classical PI model? is not adapted for three reasons. First, the objective is not to
annihilate the steady state error but to obtain a gain close, but lower than one. Second,
reconfiguration is costly in the domain of embedded systems, so we target a stable
configuration that absolutely avoids ceaseless reconfigurations around a magnitude
that cannot be reached, since no configuration can be associated. Actually, our solution
avoids error accumulation contrary to usual form. Third, this solution is very simple
in terms of computing and storage resources.

The second modification is related to the way we model the controlled system S.
Basically, the system decides a new configuration with a CID equal to j such that:

yit+1) = m}?x(yk(t + 1) |yt +1) < u@)+x@). (2)

Ideally, we should obtain y(¢+1) = w(t)+x(¢), where the reference is a constant regarding
the decision procedure. Thus, we can first assume that the system model is trivial with
a continuous configuration space and a reference normalized to zero. In this case, we
obtain y(¢ + 1) = x(¢). Second, we can consider that the difference between %(¢) and y(¢)
is finally obtained, and can be modeled as a random perturbation €(2).

€(t) is composed of a constant value, which is u(¢), and three error signals. The first
error source g is the quantification effect of the finite configuration table. The second
error source, €7 is the load of noncontrolled sporadic tasks that can run on the processor
simultaneously and affect performance and power values. The third error source is the
data dependency ¢p, which implies that the execution delay and power consumption
fluctuate with the data values. This aspect is particulary true with applications based
on video frame analysis or 3D graphics. Thus, in practice, we obtain

y(@) = () + (@), 3)

where €(t) = u(t) + €g(t) + ep(t) + er (?).

Closed-loop feedback approaches work well for controlling such a changeable en-
vironment. If we compute the ratio between the input gain G(¢) = j(¢)/u(t) and the
perturbation gain G.(¢) = j(¢)/e(t), we obtain a value independent from the observer
design

G&) ky
G(t) 1-Fk

This ratio can be tuned to reduce the sensitivity of the system to perturbation effects,
that is, to the system imperfections.

4)

?Usual PI form: z() = 2(¢ — 1) + &, (e(¢) — e(¢t — 1)) + ke(t — 1).

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 3, Article 38, Publication date: April 2011.

38:14 J. P. Diguet et al.

5.5. Observer Design

The observer regularly updates a model that estimates the system behavior. Frist, the
aim is to predict the magnitude evolution in order to anticipate the right decision for
reconfiguration. Second, sensor acquisition introduces delay and power overheads when
a model-based approach enables rapid estimates of the system behavior even when new
measures are not available. Basically, it enables the trade-off between accuracy and
cost to be adjusted. y(¢) can be considered as a noisy signal. The model objective is
to predict y(¢ + n) representing, for instance, the average power consumption of the
system at time ¢ 4 n. Various digital signal processing techniques have been defined to
solve this kind of problem. However, in the context of embedded systems, the aim is to
save power, so the control technique overhead must be lower than the expected gains.
It means that only low-cost solutions can be implemented. For these reasons, methods
like adaptive least square or Kalman filter are prohibited. Considering the algorithm
complexity for adaptation and estimation and the filter length, we have opted for a 3-
tap LMS for the observer implementation. Under the assumption that ¢ is a gaussian
noise, the stability of the algorithm is guaranteed if K is such as given in Equation (6).

ep(t) = y(t) — 3(t)
Vi €{0,1,2) ait+1) = a(t)+ 1yt —ieylt)

2
IE+1) = Y @yt —i) (5)
=0

0<u<; (6)

3 * NTaps * 062

5.6. Stability Analysis

Equation (6) indicates a classical condition ensuring the stability of the dynamics of
the mean of the LMS estimator described in Section 5.5. However, the closed-loop
system remains potentially unstable. Conditions of stability must be guaranteed for
all a; possible values; hereafter, we develop the closed-loop function in the Z domain
and set the conditions of stability for the feedback control.

Bloc functions

kp
1- kl‘Zﬁl
S'(z) =zt
0(z) = ap + a1zt + agz™

R(z) =

2

Closed-loop function

G(2)
H& = 170060 “
— kP
G(z2) = o (8)

From Equation (7), we can derive necessary conditions for stability. Results are sum-
marized in the first column of Table I for two kinds of observers, the first one is the
identity function, and the second one is a LMS described in the next section. We also
provide, in the second table column, the condition for obtaining a gain H(oco) lower than
one in order to maintain the controlled magnitude under the reference, as explained in
Section 5.4.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 3, Article 38, Publication date: April 2011.

Closed-Loop—Based Self-Adaptive Hardware/Software-Embedded Systems 38:15

Table I. Closed-Loop Model Stability Conditions

Observer {a;} Stability Gain H(o0) < 1

{1,0,0} b —kpl <1 lkpl < [1+ &y — ki

LMS ki —kp(} o a) < 1 kpl < 1kp(3_; 0i) +1— kil
\agkp| <1
ki —kplag — a1 +ag) > —1
l(agkp)? — 1| > lagky(aoky — ki) — arky|

5.7. Decision Implementation

The aim of the decision is to select, regarding a regulated error, the best configuration
from the configuration table, which is regularly updated with real measures. Our
approach has been driven by a trade-off between efficiency and complexity compliant
with embedded systems.

5.7.1. Model. The problem can be formalized as follows: Given i the considered mag-
nitude (Power, QoS, T) and j the CID, T ab(i, j) is the value stored in the configuration
table. X(i, j|k) is the estimated controlled error for magnitude i in configuration j,
knowing value X(i, k) for current configuration k. For instance, if i represents power,
the following linear approximation is used

Tab(i, k)
Tab(i, j)

T h(i) is a possible tolerance regarding reference and U (i) is the reference set for the
magnitude i. All magnitudes are defined in such a way that a configuration meets the
constraints if V(i, j) > 0.

V@, j)=U@ + ThG) — (TabG, j) + X, jlk) 9

5.7.2. Decision Algorithm. The main steps of the decision algorithm are given in Fig-
ure 10. The frequency of metric transfers is controlled by the configuration period. It
means that metrics are transmitted to the LCM after N, consecutive executions of the
application, it means k.N, executions of the task if £ is the number of task iterations
within the application period.

Second, the GCM is also pending on a mailbox, waiting for data issued from LCMs
regarding algorithmic configurations, meaning that a first decision reduction is ob-
tained through LCM selection. Then, a second restriction is introduced based on a
paying off delay t, during which costly hardware reconfiguration is not authorized.
T}, corresponds to the minimum delay required to accept the reconfigration overhead

compared to expected benefits. T}, = max (g—j, g—g) Where Tg is the reconfiguration

X@, jlk) = X(, k)

delay, Gr the performance gain between the new and the previous configuration, Er
the energy required for a reconfiguration, and Gg the energy gain. Like other config-
uration parameters, expected gains are estimated, since they are based on fluctuating
variables. Time and power consumption are updated in the configuration table but the
reconfiguration time may also vary depending the architecture, if for instance a con-
figuration cache is used. Finally, all considered magnitudes are assessed for the final
selection regarding a given priority order (e.g., T, QoS, P).

Then, the algorithm runs as follows. First, note that only the first constraint is
regulated (e.g., QoS) and considered for selection based on the following condition:
V (1, j) > 0. Second, other constraints are considered when more than one solution
respects the first condition. Otherwise, the candidate providing the smallest error
is selected regarding only the first constraint. An important point here is that our
objective is to respect user references. It means that in case of multiple solutions, we
can relax the constraint on the first reference in order to globally optimize all system

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 3, Article 38, Publication date: April 2011.

38:16 J. P. Diguet et al.

LCM Validation

Yes

Configuration space reduced to
SW =» SW or HW =» SW
Reconfigurations

| Sort V(1,j) (decreasing order) |

Reduce Config. Space to V(1,j)>0 ‘

| Select 1st solution | (Fori=1.3)
v

Rank based weight
allocation: W(i,j)

Borda vote based on W(i,j)

Fig. 10. Decision algorithm.

magnitudes. This optimization is implemented with a simple but efficient vote based on
De Borda’s method [De Borda 1781], which is processed among survivor solutions. Each
magnitude sorts remaining configurations and gives a vote corresponding to the rank. A
negative vote means that the constraint is not respected. The closest solution respecting
the constraint gets the highest vote. Different weights can be assigned to the different
magnitudes if the designer wants to introduce priorities. If multiple candidates obtain
the same score, then a Hamming distance with current configuration is used to select
minimal SW — HW moves. At the end, the GCM selects the configuration with the
highest rank and transmits the corresponding CID to the LCM.

5.7.3. Configuration Period. The issue of a sampling period is a critical aspect of con-
trolled systems. In our case, we consider models linear with application iterations;
it means that the sampling period is equal to N, application iterations as depicted
in Figure 11, where N, is an integer and global configuration parameter. It means
that metrics are collected every N, iterations by LCM and GCM that then decide the
next configuration. When necessary, this approach can help to minimize the control
overhead in terms of communication and computation.

6. OBJECT TRACKING TEST-BED

Before getting into details, let us briefly go back over our objective according to Sec-
tion 1.2. The goal is to formalize and implement a stable, safe, and nonoscillating
self-adaptation mechanism that does not introduce any significant area, power, or per-
formance overhead. Moreover, this mechanism must be easy to implement for both HW

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 3, Article 38, Publication date: April 2011.

Closed-Loop—Based Self-Adaptive Hardware/Software-Embedded Systems 38:17
GCM CID (...Ne,..) LCM CID (..,Ne,..) TaSk_y
Write Write
LCM_MB_xc Ty_MB/_x
_ , | Iteration
A 1
Decision | Selection | writ LN
P 1l Write P LCMx_MB_y (5}
(wait on data) : GCM MB x (wait on data) NB Read :
1| Read Ty MB_c)
] LCM_MB_xe Read Ty MB | 4 Metrics
— -—
Fig. 11. Control sampling and task period.
%\ 1 -fe"‘gg T T T T T T e ;m: 2.9e+06 T T T T T
Q@ e+ - - Q@
% 16408 |- N] % 2.85e+06 -
< 9e+07 |- . T [t} 2.8e+06 T
% 8e+07 [. e %
K 7e+07 - X + 4 & 2.75e+06 - i .
2 6e+07 o . £ 27e+06 | 8
= 5e+07 | *g E =
5 4e+07 +¢¢* 4 5 265e+06 - -
5 3e+07 [¥ E E i
é 2e+07 —++++ i fp; 2.6e+06 T
w 1e+07 1 1 1 1 1 1 1 w 2.55e+06 1 1 1 1 1
0 5 10 15 20 25 30 35 40 0 500 1,000 1,500 2,000 2,500 3,000

Number of iterations, Task 4 Number of white pixels after Task 4

Fig. 12. Example, T4 metric selection based on application-designer experience and simulation.

and SW designers. The goal of self-adaptation is to converge towards a configuration
that respects ordered user references (e.g., QoS, Power, or Performances). The best
way to prove the efficiency of our approach, in the absence of equivalent and available
approaches to compare with, was the validation of our method on a real-life applica-
tion, in which self-adaptivity makes sense. In our case, this is an FPGA-based smart
camera implementing an object tracking application. In the following, we present how
the different design steps of our methodology are applied.

6.1. Application Specification, Metric Selection

The application is composed of 10 tasks (T4 ... Tho) described in Figure 4, which can
be implemented in HW or in SW, these tasks are controlled by a LCM implemented
as a SW task. The dotted arrows from tasks to the LCM “tracking” indicate metrics
to be used for algorithmic configuration. For instance, the number of isolated white
points after tasks 2, 3, and 4 the numbers of iterations of object reconstructions (74¢)
or the number of detected objects (T5). The selection of the task metrics is based on
the application-designer experience and simulation analysis. For instance, we present
in Figure 12, the evolution of T4 and T5 execution times according to 7y metrics: the
number of reconstruction iterations and the number of isolated white pixels.

6.2. Environment Sensors

The architecture is implemented on a NIOS soft core within an Altera Stratix II 2S60ES
FPGA board with a VGA daughter board. In addition, we have plugged in a camera
and a battery gauge, providing power consumption features, on FPGA GPIOs.

An important point is to be noticed: The image acquisition rate is controlled by the
GCM and follows up the application rate. It means that we avoid useless image storage
and costly off-chip memory accesses. The extended RTOS, based on a set of API and
an adapted HAL, is built around ©Cos II and provides the information about task and

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 3, Article 38, Publication date: April 2011.

38:18 J. P. Diguet et al.

T2/T3/T4/T5/T7: HH or SWimplementations
Algo. Config: Fixed Threshold (T9) and Simple gravity center (T7)

””” HﬁHHt‘Sw;mHsss&HH
HSHHS sSips

T e
HHgHS HesHH SHSHH

Area

OE+00 2E+07 4E+07 BE+07 8E+07 1E+08

Execution time

Fig. 13. Smart camera design space exploration.

application execution time. The QoS sensor is realized by Task T4y that provides the
LCM with a metric, which is the difference between object position based on labeling
results and an estimation of object positions based on a LMS algorithm. A value close to
0 but lower than the reference (e.g., 10%) means a very high tracking quality that can be
relaxed if the application speed is reduced. However, a value higher than the reference
means that the application rate must be increased with a faster configuration.

6.3. Design Space Exploration

The extended RTOS is built with new previously explained capabilities for commu-
nication, synchronization, and configuration of HW and SW tasks. HW task modules
are connected to the Avalon bus and clocked only when used. A co-processor has been
added as a coarse-grain instruction acceded through processor registers for an effi-
cient implementation of the LMS and PI regulator. It is also used for application QoS
computation (error between prediction and object position).

Initially, a generic C code of the application was available and various HW modules
were designed after a short design space analysis. Major results of real implemented
alternatives are given in Figure 13 for a given algorithmic configuration, which is, in
this case, the complete application with a fixed threshold (7T off) and a gravity center
approximated as the center of the bounded box (7). As explained in Section 3, measures
are fluctuating within a uncertainty area. Thus, data given in Figure 13 correspond
to one photography that may vary in time. Thus, the set of selected configurations
can include some configurations that don’t appear to be Pareto optimal. To illustrate
such cases, red arrows indicate the fluctuation of the execution time for two specific
configurations.

After this stage, 22 significant configurations are selected with the following algo-
rithmic choices.

—Deep sleep mode: T’5 4 56,7 are inactive;

—Sleep mode: T4 56,7 are inactive;
—Reconstruction 74: on or inactive;

—Ts: filter inactive or based on two or four images;
—Tg: on or inactive (fixed threshold).

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 3, Article 38, Publication date: April 2011.

Closed-Loop—Based Self-Adaptive Hardware/Software-Embedded Systems 38:19

a) Improve filtering

if m4 — mo > Tho_noise_1
NB_Frames+ =1

end if

if NB_Frames > 4
Adaptive_Threshold = OK for 1 iteration
NB_Frame =0

end if

b) Reduce filtering

if m4 — mgo < Tha_noise_2 during N_Frames
NB_Frames— =1

end if

if NB_Frames <0
NB_Frames =0

end if

Fig. 14. Algorithmic configuration, average filtering (7).

6.4. UCCI Encapsulation

HW and SW tasks are implemented using UCCI services. Due to length constraint, code
details cannot be presented here, but the implementation can be shortly summarized
as follows. A SW task is enhanced with three additional stages based on API library.
The first one tests if the application is implemented in HW and, if it is true, pends on
its control mailbox as the legal representative of the HW task. If the CID corresponds to
a SW version, then task parameters are updated according to the selected algorithmic
configuration. The second stage is implemented after the standard SW task code, this is
the metric computation based on task variables. Finally, the third stage is the emission
of metric towards the LCM mailbox queues.

A HW task is encapsulated within a HDL container, including communication and
configuration supports. The generic shell is adapted with the appropriated number of
output and input ports and mailboxes for the control of communication with the OS
and other tasks. Data transfers are based on shared memories and dedicated registers
are specified, within the UCCI shell, to provide base addresses.

6.5. LCM Implementation

The next step is the LCM specification; in this case, a single LCM is required and
a SW version is chosen. Let’s first consider I/Os. The right number of mailbox queue
instances is defined for the capture of metrics. The number of output mailbox instances
is equal to the number of sink tasks, which in this case is 1.

The second point relies on the LCM strategies. Actually, it is currently implemented
as rules defined by the application designer according to simulation results. The object
tracking application requires six rules. Hereafter, is given, rule 14 for the average
filter (T%), where m; is the number of isolated white points after task j, T ho_noise_1, 2
represents accepted noise levels defined by the SW designer.

Note that the frame acquisition (71) is not a periodic task, it is launched only when a
frame is required and so is directly dependent on other task configurations. This means
that the acquisition rate is controlled and regulated by the GCM.

6.6. GCM Implementation

6.6.1. Introduction. In this section, we focus on the main GCM parameters, which are
the PI regulator coefficients: %;, k,, and the LMS observer coefficient k7. A small copro-
cessor, acceded though processor registers (NIOS custom instruction), has been added
to provide basic coarse-grain instructions of PI and LMS algorithms. The cost of the
coprocessor is 352 LUT representing 0, 6% of the whole area. Regarding performances,
PI and LMS require 55 and 62 cycles, respectively.

Various experiments have been conducted with the smart camera prototype im-
plemented on FPGA. The GCM is implemented as a SW task, so the choice of the
coefficients results from a simple variable initialization within the associated C code.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 3, Article 38, Publication date: April 2011.

38:20 J. P. Diguet et al.

200 | ' ' ' " Execlition Time — - 200 + ' ' ' " Execution Time — i
Reference ------- Reference -------
Reference - Error -------- i Reference - Error --------
150 1 150 o
) BN (0]
= 100 T h I 100 pessssesacasanziuag 37T TR el s
c { c H
S i 5 i
3 3
g s0r 1y 18 s0Ff 1
X s X
i]
0r 1 0r B
-50 |- . -50 - i -
1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Image Number Image Number
T T T T T T T T T T T T T T
20 Configurations b 20 | Configurations b
15 N 1 156 B
1] [%2]
c =
i< o
s IS
S5 10 4 5 10 B
2 2
€ €
o o
(&) (&)
5 E 5 g
O C 1 1 1 1 1 1 1 1 0 C 1 1 1 1 1 1 1]
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Image Number Image Number
a) k, =0,25; k; =0,75 b) k, =0,75; k; = 0,5

Fig. 15. Execution time regulation: pulse response.

The following sections show how a SW designer can rapidly decide on the correct
control parameters as a trade-off between response time and accuracy. This method is
equivalent to the way it can be conducted in usual regulated systems.

6.6.2. Observers. Three kinds of observers, corresponding to system magnitudes, are
required by the GCM in order to make its choices based on LCM requirements. The
first one is the application QoS, which is transmitted by the LCM. In our case study,
the QoS is the object tracking error provided by task Tio to the LCM as a task metric.
The second observer, dealing with execution time, is provided by the RTOS as a simple
timer. The GCM starts the application timer when a configuration is decided and the
associated CID transmitted and stopped when the QoS metric is received. The third
observer is the power consumption delivered by the gas gauge component. The GCM
can request data and update the configuration table when a given configuration is
running.

6.6.3. Pl Specification: Pulse Response Analysis. Figure 15 presents pulse responses for
different {k,, k;} choices, the regulated magnitude is the execution time and the X axis
is the time represented as the image number. The reference is initially set to 100 for the
first 15 frames, then set to 0 during one frame and set again to 100. For each parameter
choice {&, k;}, we can observe the reference, the execution time (y(¢)) and difference
between the reference and the regulated error (x(¢)); the configuration selection is given
on a separate figure. The increase of the integration factor %; slows down the adaptation,
while the increase of the proportional factor of %, increases the regulator gain. Since
stability constraints are respected, the system returns to the initial configuration in
all cases, but the delay and the number of transitional configurations vary according
to parameter choices.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 3, Article 38, Publication date: April 2011.

Closed-Loop—Based Self-Adaptive Hardware/Software-Embedded Systems 38:21

120 T T T

120 T T T

l EXeCllJtiOI'l Tilme I Exectljtion Tilme
100 Reference ------- h 100 Reference ------- g
\ Reference - Error -------- Reference - Error --------
80 | B 80 B

g 1g = :

P S 42 40 T ,

8 e 2 v

3 20t ; V+ 3 20F L_/J A

Q . 5} !

g oF i 485 of]
-20 e -20 | E
-40 B -40 - B
_60 L L L 1 1 L L _60 1 1 L L L 1 1

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Image Number Image Number
T T T T T il T T T T T T T T
20 - Configurations 1 20 - Configurations b
15 F R 15 F R

(2] [%2]

c c

S o

I ©

S 10 4 3 10 F B

> k=

€ €

Q Q

[¢] [¢]

5 B 5 B
or 1 I I 1 I 1 I] 0r I 1 I 1 1 I 1]
0 5 10 16 20 25 30 35 40 0 5 10 16 20 25 30 35 40
Image Number Image Number
a) kp, =0,5;k =0,5 b) k, =0,75; k; = 0,5

Fig. 16. Execution time regulation (R): step response.

6.6.4. Pl Specification: Step Response Analysis. Figure 16 presents step responses with
the same experiment conditions described in the previous section. In this set of exper-
iments, the execution time reference is set to 100 until image 15, and then set to 20.
Once again, we observe that the transitional phase varies with the parameter choices.
Given these features, which can be tested quite easily during the tuning phase, this is
a designer decision to specify the PI parameters according to application constraints.

6.6.5. LMS Specification. The third coefficient to be set is the LMS coefficient k7. The
LMS objective is to provide a linear model of the regulated magnitude in order to inte-
grate its evolution within the decision process. The LMS implementation is based on a
co-processor, namely a custom instruction, which is initialized with SW instructions.

Figure 17 presents slope responses in the context of execution time regulation and
illustrates the LMS effect. The reduction of the LMS coefficient (k1) slows down the
update of the linear model, and we observe a better adaptation with a reduced number
of reconfigurations. Both used values for (%;) are compliant with the LMS stability
constraints.

7. TRAIN TRACKING SCENARIOS

7.1. Experiment Conditions

To illustrate the self-adaptivity abilities of the prototype, we propose tracking an elec-
tric toy train with a scenario punctuated with various events inducing different config-
uration decisions. Figure 18 gives the scene captured by the camera. Figure 20 and 19
show the configuration decisions along the execution of this scenario with and without
LMS, respectively.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 3, Article 38, Publication date: April 2011.

38:22

J. P. Diguet et al.

Image Number
b) with LMS, ki, = 2~ 2!

Image Number

(configurations)

Fig. 17. Execution time regulation: LMS effect.

160 T T T T T T T T T
Reference 20 Configurations b
140 L Execution Time B
Reference — RegulatedError ---
c 15 4
-2 %)
3 §
®
3 5 10 1
© >
g 5
5 [$)
= 5 .
0 1 1 1 1 1 1 1 i
0 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
Image Number Image Number
a) without LMS (exec. time) (configurations)
160 T T T T T T
Reference 20 Configurations 1
Execution Time
140 Execution PredictedTime --- 7
‘L Reference — RegulatedError - 15
@ ‘\\ n
£ } 8
S o
o S 10 B
3 &
bl C
& 8
5 -
20 Il Il 1 1 Il "" Il »l 0 Il 1 Il 1 1 Il 1]
0 10 15 20 25 30 35 40 5 10 16 20 25 30 35 40

Straight rail line
Low sample rate : High QoS
High sample rate : High QoS

Curve rail line
Low sample rate : Low QoS
High sample rate : High QoS

Curve rail line
Low sample rate : Low QoS
High sample rate : High QoS

Critical Zone : High QoS requested

Low sample rate : High QoS
High sample rate : High QoS

Fig. 18. Train platform camera visual angle.

In this scenario, the regulated magnitude is no longer the execution time but the
QoS, namely the tracking accuracy. It means that De Borda’s vote is applied to power
and execution time values.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 3, Article 38, Publication date: April 2011.

Closed-Loop—Based Self-Adaptive Hardware/Software-Embedded Systems

Configurations QoS Exec. Time

white pixels

2S000

20000

1S000

10000

So00o0

No Low High Critical Luminosity
Otriect speed speed area _1 Very low speed
- =1 e o il |
' T . i
1
—: 1 i N
1 1 1
| 1 h]
| [1
i 1 1
ul 1 i]
1 1
W [
| o
i L !Il !
of i120 Tio0
i AR
i i 1
i 1! 1
i =]
L —
¥
i i 1
H it | -
i i 1
L i .
(N
! N P :
il NG i
i L
o so0 lgo 7o , 89,120 '100
i | (L :
i I' 1 ! it i
L) 1! il i
T T Tt T -
¥ N
| 1 1 0 ! 1
B :| 1 I: : 1]
| 1 W 1
1 1 i ! | :_
i 4 ! (N 1
" ! (. i .
1 b R R '
| 1 ! 1! i1 i
Al _*_ : i L
o: -R) 20 301la0 SO :30 70 | 80 120 :oo
! h) ! ' X I
i 1 * ! |l 1 \
[l L 1 (L
o i ' I e
| Hi T |= 'y 'I 1
B i ' 1 I i 1
i 1 ' 1y 1 | i
o] ll i 1 1 1
! ' 1 Yy 1 :
| t 1 1 i 1
K I 1 Yy 1 ']
| t T 1y . 1
H :: 1 y 1 1
1] — —
i NN L

o -0 --30 - -46--S56--'60---Fe -
Image number

Fig. 19. Self-adaptivity scenario with LMS.

38:23

After some experiments and simulations, as is usually done in real automation im-
plementation, we have finally set the following regulator parameters: {£, = 0, 25;k; =
0, 25}, which provide a good trade-off between stability and reactivity. In the same way,
the LMS gain has been set to k;, = 272!. The adaptation rate N, is set to 1, which means
that a new configuration is evaluated after each application iteration.

The QoS reference, namely the tracking maximum error, is set to 10% and reduced
to 2% within the critical area.

7.2. Result Analysis

7.2.1. Test Scenario. This scenario is based on a succession of events that highlight
self-adaptation capabilities. After several images without any movement, the train

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 3, Article 38, Publication date: April 2011.

38:24 J. P. Diguet et al.

No Low High Critical Luminosity
Object Speed Speed Area Very low speed
)
i aei el L e By B - rr==-"-
2so00
) L T 1 [+——1
o SR i ¥ I |
£ 2000 [! |} ! I —
= i 0y 1! ‘: l: !
Ly 1 [, |
I—. 1so0 —: 0 :I i :, |
1) \ lu 1! 0! 0!]
o 1000 H :. 1 ! w
X \ | ! ! !
w soo d_ ! i] i
i {1 | ' 1
[} : L, 1 1 1 L 1 1 +
o, 19 =20 30 ,rl a0 SO | 160 r| 20 | 100
[1! 1
Vo h X noo
=200 ! Ly ! ! ! |
L M T T
1t " AR
1S0 H 0y 1! i) {)05+|Emr R Rl B
\ Ty 1 i) 1 1 \
7)) 100 0y) ! 1 :l 1 -
o Vot ! H A R
e} so H i 1 [[
| 1 |
i '
\ . ! \ |
O 1= S : 5= L:‘ ——F=
\ h 1! Ly 1 ! [
—S0 | [y ! H ! ! [
3 by 1 1 11 1 L 1 11 1 i
oy 1¢ =20 30,140 SO I:SO 7d|7|a 120 100
{ 1
: 0 :: Ll (I " |
i 1 !
! th ! L ! ! !
» 20 LA T T 7T T T I‘l A T -
- \ 1 1 — \ 1 1 |
] i { 1 ! 1
= 1s K ! o P . =
© : : |: 1) |
= 10 % th 1 i 1 ! 1 -
(=] i { 1 1) L 1 1
= \ i\ i ! ! 0 !
c s K 4, ! o R 1
[e] | 1! I‘I \ 1 |: |
© o \ ' i N
oi i0 20 30,/lao0 so ileo 7q 's :'90 ' 100
\ i ! 1! ! ! 1
i Uy 0! 0! . ! |
Pl il i! Vo |
25000 4 T —+ + 'y
% \ 0 i N N !
X =0o000 [H h ! H ! ! -
i o 1 1 I .
1s000 | 1y " i ! ! |
[0 1 \ 1
= \ 0y 1! 1! 1 |
=) Ty 1 1! ! \
£ 10000 { 1 'y \ 1 -
| | 1! | 1 |
= sooo . :' ': I‘: : ' l
| -
* — ! II Ii 1 : N :
|
o

1 —rl 1 1 1
© - =20 . 30.'ao0__so.!'so__za LlLaao._-soc_-l100
Image number

Fig. 20. Self-adaptivity scenario without LMS.

enters the scene at low speed for two circuit rounds. Then, during the stretch of the
track, the train speeds up for two others rounds, stops, and goes backward. It then
enters a Critical Zone, runs into and leaves the area. Finally, the train continues its
path at low speed. All scenario steps are described hereafter and notified in Figure 19
with the LMS support.

Starting point. Initially, no object crosses the scene, the system selects CID #0, where
only task 1 is running in SW, the camera frame rate is tuned according to the appli-
cation execution delay, which is 2 frames/second. This configuration is a “monitoring
configuration,” where only the first task is active. The regulated magnitude is QoS with
a reference set to 10% to guaranty good reactivity.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 3, Article 38, Publication date: April 2011.

Closed-Loop—Based Self-Adaptive Hardware/Software-Embedded Systems 38:25

Table Il. Communication Performance Results

SW - SW SW« HW HW o HW
MB Post 517 cy. 2035 cy. 15 cy.
MB Pend 425 cy. 3087 cy. 11 cy.

Object arrival. Then, an object enters the scene at low speed, the system selects CID
#12. Due to the initialization phase of the tracking model, a more efficient configuration
is selected (CID #19). With all tasks implemented in HW, the tracking computation is
running at more than 20 frames/second and the QoS decreases until it goes under
the threshold of 10%. Then, De Borda’s vote selects the less expensive configuration
from CID #16 to CID #9, implementing the last two tasks in SW and all tasks in SW,
respectively. Due to curved rail line, the tracking computation is deteriorated and a
reconfiguration is requested. At low train speed and low image rate, the damage on
QoS has less impact. Moreover, the distance from the camera impacts the tracking
efficiency.

Object speed-up. In this example, the train speed is suddenly increased and we observe
that the tracking system follows the train during the stretch. However, during the
curved lines, the QoS metric skyrockets (error > 100%). The system reacts but no
configuration is efficient enough. The CID #19 (all tasks in HW) is nevertheless the
best one in such a situation and therefore is selected. The error is reduced until the
prediction model is adapted, then a less expensive configuration can be selected.

Critical Zone. We assume that a Critical Zone is defined as where the QoS is increased
for security reasons, consequently the reference is set to a lower value, namely 2%.
Thus, when the train enters this area we notice that the CID #18 is selected. Due
to the decreasing of the QoS reference, only two configurations remain eligible (CID
#18 et #19), even if the train stops and QoS converges to zero. As the less expensive,
the first one is prefered. When the train leaves the area, the system selects the best
configuration from the complete configuration space.

Sudden luminosity change. When the luminosity changes, the threshold no longer fits.
For this reason, we notice that the number of white pixels, after the threshold (task T47)
suddenly grows, leads to an increase of the execution time. When such an event appears,
an algorithm modification has to be made. A special configuration implements the
adaptive computation of a new threshold value, such as a new task based on histogram
gradient computation. To readapt the tracking model, the high efficient configuration
(CID #19) is selected until the tracking is correct. Then, other configurations may be
elected according to De Borda’s votes.

Low-speed moving. The scenario ends with a low-speed run around the circuit with
CID #12.

7.3. Power and Performance

The CPU time devoted to LCM and GCM task (0.33% in a pure SW solution and
14% when all greedy tasks are implemented in HW) and the HW overhead due to
the co-processor (1%) are negligible in such an applicative context where the task
granularity is important and reconfigurable architectures make sense. Table II shows
the communication performances. The overhead of HW < SW communication is due
to context switch and control. One can also observe that we drastically reduce the
HW to HW communication time with shared memories directly implemented in UCCI
interfaces (shell for HW tasks).

Some architecture configurations may involve significant time overheads (HW and
SW tasks switch); however, it is also clear that HW tasks may be considered when
computing parallelism is available and relevant speeding up achievable. Such perfor-
mances can be found in domains such as image processing, encryption, 3D graphics,

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 3, Article 38, Publication date: April 2011.

38:26 J. P. Diguet et al.

Table III. Design Results with a 50MHz Clock

T1,2-T3-T4 SW-SW-SW sw-hw-hw hw-hw-hw
T5-T6,7,8 SW-SW sw-hw hw-hw
Exec. Time 245.650.000 cy| 80.800.000 cy| 1.820.000 cy.
+0,01% +0, 04% +0, 2%
Frames / sec. 0, 20 0,62 26
Area 19 % 59 % 92 %
StratixII S60
Power 137 mW 228 mW 285 mW

Table IV. Fluctuating Execution Time Due to Data

Task Variation Exec. Time

Erosion 1 pixel 14.240.816 cy.
320%240 pixels 146.197.242 cy.

Reconstruction 1 iteration 15.641.863 cy.
2 iterations 162.476.520 cy.
3 iterations 172.675.410 cy.

and video encoders. In our case study, for instance, we observe that message passing
represents a very low percentage of the entire whole communication.

With different algorithm and architectural configurations, we obtain tracking system
performances. Table III provides, for different configuration examples, performance
values, FPGA area ratio provided and power consumption measures obtained with the
battery gauge (TI Bq2084). Execution time results correspond to a tracking process
with a standard input frame. Execution time variation is due first to system architec-
ture (e.g., cache miss, bus collision...) and secondly to data features. Table IV shows
examples of such data-dependent performances that can justify the generalization of
self-adaptive systems in the future. The reconstruction task, for instance, is a recursive
task depending on object complexity; during each iteration, execution time depends on
the number of white pixels. In the same way, erosion and labeling execution times
depend on the number of white pixels and the number of objects, as well as the number
of white pixels and object complexity, respectively.

8. CONCLUSION

Self-reconfiguration is a promising way to improve the efficiency of SoC of MIPS/Watt
metric. It also appears to be an economically viable solution for upgrading systems in re-
action to HW bugs and fault detection. FPGAs are not yet the sought-after good solution
for implementing such systems; however, they propose already available frameworks
to study and implement new concepts that need to be designed so that such systems
become a reality in the future. Considering the availability of such architectures, in
this work, we have proposed a methodology and design solutions to provide embed-
ded system designers with a framework for implementing self-adaptivity when it is
necessary for efficiency reasons.

First, we extend the RTOS classical task model in such a way that a given task can
be executed transparently with different HW and SW implementations. This evolution
also offers HW task access to usual task communication and synchronization schemes.
Moreover, its implementation is straightforward because it is based on HW and SW
shells that are independent from original C or HDL code, respectively.

Second, we propose an original and lightweight solution for online reconfiguration
decisions that can be implemented as a new OS service composed of LCM and GCM
managers. This is a learning-based method implemented as a control loop with a sim-
ple selection stage. To the best of our knowledge, this is the first time that observer
and regulator concepts are applied in the context of RSoC self-adaptation including

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 3, Article 38, Publication date: April 2011.

Closed-Loop—Based Self-Adaptive Hardware/Software-Embedded Systems 38:27

both algorithmic and architectural configurations. This study has been conducted in
depth including stability and oscillation issues inherent to self-reconfigurable systems.
Nevertheless, it is clear that self-adaptivity has cost and gains are obtained if the over-
head is negligible compared to the application complexity. Such favorable conditions
can be found in domains where task granularity is large enough and parallelism avail-
able. This is for instance the case in the domain of smart camera, which has chosen to
demonstrate our approach. Finally, a complete proof of concept has been designed with
an object tracking application implemented on a FPGA with camera, VGA, and battery
peripherals. Self-reconfiguration, according to a QoS reference, has been validated with
this demonstrator.

Our model fits with typical architectures of embedded based on a master GPP pro-
cessor enhanced with (configurable) specific processor and (configurable) hardware
accelerators. A possible future work would consist in considering a RSoC with multiple
masters competing for system resources.

REFERENCES

AvLBONEsI, D. 1999. Selective cache ways: On-demand cache resource allocation. In Proceedings of the 32nd
Annual International Symposium on Micro-Architecture. IEEE, Los Alamitos, CA.

ANDREWS, D., Sass, R., ANDERSON, E., AGRON, J., PEck, W., STEVENS, J., Bawjor, F., aND Komp, E. 2006. The case
for high-level programming models for reconfigurable computers. In Proceedings of the International
Conference on Engineering of Reconfigurable Systems & Algorithms. CSREA Press, Irvine, CA.

BeraMANN, N., WiLLIAMS, J., HAN, J., AND CHEN, Y. 2006. A process model for hardware modules in reconfigurable
system-on-chip. In Proceedings of the International Symposium on Applied Reconfigurable Computing.
Springer, Berlin, 205-214.

BoMEL, P., GogNiat, G., AND DiGUET, J-PH. 2008. A networked, lightweight and partially reconfigurable plat-
form. In Proceedings of the International Symposium on Applied Reconfigurable Computing. Springer,
Berlin.

DavE, B., LAKSHMINARAYANA, G., AND JHA, N. 1999. Cosyn: Hardware-software co-synthesis of heterogeneous
distributed embedded systems. IEEE Trans. Softw. Engin. 7, 1.

DE Borpa, J.-C. 1781. Mémoire sur les élections au scrutin (in French). Histoire de ’Académie Royale des
Sciences, Paris.

EusracHE, Y. aND DicuET, J.-P. 2008. Reconfiguration management in the context of RTOS-based HW/SW
embedded systems. EURASIP J. Embedded Syst. (Special Issue on Operating System Support for Em-
bedded Real-Time Applications.)

GoDpDARD, L., Moy, C., AND PaLicoT, J. 2006. From a configuration management to a cognitive radio management
system of SDR systems. In Proceedings of the International Conference on Cognitive Oriented Wireless
Networks and Communication Radio. IEEE, Los Alamitos, CA.

Gu, Y. AND CHAKRABORTY, S. 2008. Control theory-based DVS for interactive 3D games. In Proceedings of the
Design Automation Conference. ACM, New York, 740-745.

KaurmanN, P. aND Pratzner, M. 2008. Towards self-adaptive embedded systems: Multi-objective hardware
solution. In Proceedings of the International Workshop on Applied Reconfigurable Computing. Springer,
Berlin.

Liang, J., LAFFELY, A., SRINIVASAN, S., AND TESSIER, R. 2004. An architecture and compiler for scalable on-chip
communication. IEEE Trans. VLSI Syst. 12,7, 711-726.

Ly, C., Stankovic, J., Tao, G., AND Son, S. 2002. Feedback control real-time scheduling: Framework, modeling
and algorithm. J. Control Theor. Approaches Real-Time Comput. (Special issue of RT Systems.) 23, 1/2,
85-126.

LuBBERS, E. AND PLATZNER, M. 2007. Reconos: An RTOS supporting hard and software threads. In Proceedings
of the International Conference on Field Programmable Logic and Applications. IEEE, Los Alamitos, Ca.

MANNE, S., KLAUSER, A., AND GRUNWALD, D. 1998. Pipeline gating: Speculation control for energy reduction. In
Proceedings of the 25th International Symposium on Computer Architecture. ACM, New York, 132-141.

Maro, R., Bai, Y., anD Banag, R. 2000. Dynamically reconfiguring processor resources to reduce power con-
sumption in high-performance processors. In Proceedings of the Workshop on Power-Aware Computer
Systems. Springer, Berlin.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 3, Article 38, Publication date: April 2011.

38:28 J. P. Diguet et al.

MigNOLET, J.-Y., NoLLET, V., CoENE, P., VERKEST, D., VERNALDE, S., AND LAUWEREINS, R. 2003. Infrastructure
for design and management of relocatable tasks in a heterogeneous reconfigurable system-on-chip. In
Proceedings of the Design, Automation, and Test in Europe Conference. IEEE, Los Alamitos, CA.

So, H., TKACHENKO, A., AND BRODERSEN, R. 2006. A unified hardware/-software runtime environment for fpga-
based reconfigurable computers using borph. In Proceedings of the 4th International Conference on
HW-SW Co-Design and System Synthesis. ACM, New York.

Wong, J., Qu, G., AND PoTkONJAK, M. 2003. An online approach for power minimization in qos sensitive systems.
In Proceedings of the Asia and South Pacific Design Automation Conference. IEEE, Los Alamitos, CA.

Received April 2009; revised August 2009; accepted October 2009

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 3, Article 38, Publication date: April 2011.

