
UDP Partial Bitstreams Diffusion Through WLAN
Jeremie Crenne, Pierre Bomel, Guy Gogniat, Jean-Philippe Diguet

LabSTICC Laboratory CNRS UMR 3192 Universite de Bretagne Sud UEB Lorient, France
{jeremie.crenne, pierre.bomel, guy.gogniat, jean-philippe.diguet}@univ-ubs.fr

Abstract—In this paper we present the use of UDP through
WLAN to perform partial bitstreams downloading based on
a Xilinx Virtex V2p30 FPGA. Introducing a simple, standard,
with a low software and hardware memory footprint, as well
as a good transfer rate protocol, is a great way to promote
dynamic reconfiguration on a large field of embedded equipments
where real time constraint is a bottleneck. Our approach targets
low cost embedded handled systems, robotics devices, or even
at a more large scale, spacecraft applications because of the
reduction in terms of price, weight and power consumption. Real
implementations measures bring our design up to a sustained
30 Mb/s rate on a WIFI link. Minimal architecture leads both
software and hardware to a low memory cost, respectively 200 KB
and 2524 slices, be a total utilization of 8% of the programmable
chip.

Index Terms—Dynamic partial reconfiguration, FPGA, LAN,
WLAN, Ethernet, WIFI, UDP,

I. INTRODUCTION

In telecommunication industry, reconfigurable wireless Uni-
versal Terminal is now a well known idea which first appeared
in military area and became civilly popular in the 90s. This
growing topic is a direct consequence of increasing perfor-
mances of FPGAs (Field-Programmable Gate Array). This
technology enables massive parallelism, has enough compu-
tational power to realize DFE (Digital Front End) and the
capability to be reconfigured at moderate power consumption.
Assuming that a device will support several digital mobile
telephony services, digital broadcasting services, and/or digital
data transfer services, it can take advantage of the partial re-
configurability. Current devices impose severe limited services
due to inflexibility of their analog technology parts but tend to
be bypassed by Software Defined Radio. SDR is a set of tech-
niques that allows reconfiguration of a communication system
without the need to physically change any hardware element.
Underlying goal is to produce devices capable of supporting
different services (multi-standard) with an adaptation of their
hardware components in function of the wireless network such
as GSM, GPRS, UMTS and WIMAX. In addition, they should
be able to deal with wireless LAN standards like IEEE 802.11,
known as WIFI. Delahaye and al. [DGRB04] prove the fea-
sibility of dynamic partial reconfiguration on a heterogeneous
SDR platform which provides a flexible way to build highly
reusable systems on demand. Such devices are requiring to
dynamically adapting a subset of their functions in order to
take all the variations in ”real-time”. Thus these systems can
take advantage of the dynamic partial reconfiguration (DPR)
by swapping hardware resources on demand.

When talking about partial reconfiguration, additional re-
sources are required to store an increasing number of partial
bitstreams. Flash and external RAM memories are mainly
proposed by researchers as repositories. Where the first one is
clearly dedicated when non-volatile configurations are consid-
ered, the second can be only interesting for volatile ones. We
are facing the migration of silicon from FPGAs to memories.
Their low cost compared to FPGA is in favor of such change
but raises some drawbacks:

1) Memory reuse rate can be low, and could be used only
at boot time.

2) For a single function to implement, the space of possible
bitstreams is large and can become bigger than local
memories. This is due to FPGAs types (numerous de-
vices, families, sizes, packages), possible configurations
depending on IP’ shapes/placements and the natural
commercial life of IPs that regularly introduces new
versions and updates.

In this context, we have previously addressed this issue
by introducing a three-level server’s hierarchy where a LAN
remote server is presented for storing FPGA’s configuration
[BDGC08]. The server could be directly wired to offer best
performances over the market. For nomadic devices, it is
not very advisable nor conceivable as it is considered as
a hard physical constraint. A better approach is to remove
this restriction and thanks to popular wireless connection
networking WIFI as known as IEEE 802.11 standard, it is
possible at low cost.

In the following we describe in Section 2 previous works
on standard protocols and partial reconfiguration related im-
plementations into a LAN. Then in Section 3, we detail our
choices for optimum bitstream diffusion through a local net-
work. In addition, in Section 4 we describe our contributions
in terms of software and hardware architectures. Section 5 is
intended to cover our experiments and measures. Finally, we
conclude and open the discussion for further improvements
and extensions we intend to focus on in a short-term.

II. RELATED WORK

A. Common Use of Transport Protocols

Rind and al. [RSQ06] describe choices for TCP (Transport
Communication Protocol) over UDP (User Datagram Protocol)
and vice-versa related to speed, numbers of mobile devices
and link capacity (bandwidth) metrics. Results are given in
terms of throughput and goodput via a network simulator. It
shows that TCP is giving better performance when minimum



number of mobile devices are connected to a WLAN (Wireless
LAN) and clearly setup that faster moving nodes are highly
disturbing packets transmissions. UDP is found better if it is
possible to bear little loss of packets. Consequently it is a
first choice protocol for fast delivery of data. Uchida [Uch07]
presents an hardware-based TCP processor for Gigabit Ether-
net which requires only one Ethernet PHY device. The circuit
is small enough to be implemented on a single FPGA, with
an announced 949 Mb/s throughput in both emission and
reception directions. It has to be carefully compared with
other systems. With this approach, no high traffic over the
network is considered and TCP congestion control is well
known to be designed and optimized for wired networks.
Moreover, as the system we target is using a WIFI link
an thus is limited to a much lower throughput, very high
Gigabit transfert rate is oversized. Ploplys [PA03] and al.
perform a study where ”wireless” UDP is used for real-
time performance in control. Loss of data is well defined,
explained and evaluated based on many factors such as range,
environmental obstacles, computational loads and increased
network traffic. Existing work establishes that TCP is vastly
employed in LAN topology and UDP in WLAN The use of
UDP is natural when targeting wireless handled devices. UDP
is also the most suitable standard for systems with a high
latency and need by nature, a shorter communication time.

B. Dynamic Partial Reconfiguration Discussion

Compton and al. [CH02] give a complete survey of the
whole problematic about reconfigurable computing and agree
that PR latency is one of the most critical aspects in its
implementation. Reconfiguring time is highly dependent upon
the size and organization of partial reconfiguration region
inside the FPGA. Partial bitstreams in latest Virtex V4 and V5
are 2d shaped and relaxed concerning the column constraint
introduced before with previous technologies. It results in a
decrease of occupied reconfigurable area into the FPGA. This
area size is measured in frames of CLBs (Configurable Logic
Blocks) and is increasing on larger devices.

Fig. 1. Partial reconfiguration methods

From Xilinx’s datasheet, two types of partial reconfigura-
tion exist (Figure 1). Partial and dynamic reconfiguration of
Xilinx’s FPGA can be done with an Internal Configuration

Access Port (ICAP) [Xil06a]. Virtex V2p, Virtex V4 and V5
series contain this port and can be interfaced with hardware
IP or hard/soft processor core such as PowerPC, Microblaze
or OpenRISC. Maximum downloading speed rate announced
by the fabless company in internal reconfiguration mode is
capped to a maximum of 800 Mb/s when ICAP accesses
are 8 bits wide. Entire costs for OPB HW ICAP hardware
implementation is 150 slices and only a single BRAM. Claus
and al. [CZMS07] propose a real-time video application
demonstrating dynamic partial reconfiguration because of the
adaptative nature of the image processing flow. The platform is
a V2 where a PPC405 executes the software without a running
operating system for managing the reconfiguration. Unfortu-
nately, no speeds measurements were provided at publication
time. Lagger and al. [LUSG06] propose a system (ROPES)
dedicated to the acceleration of cryptographic functions. The
FPGA is a V2 1000 with a synthesizable Microblaze processor.
uClinux is used as RTOS and the software is downloading
bitstream using HTTP and FTP protocols. PR latencies are
respectively ranged from 240 Kb/s for HTTP and 480 Kb/s for
FTP. William and al. [WB04] have developed a Clinux device
driver on top of the ICAP, enabling bitstreams downloading.
The system is based on a Virtex V2p and articulated around
a synthesizable Microblaze processor which is running the
executable. As no measures are provided, estimations done
in a similar context, lead to a transfer speed ranging from
1.6 Mb/s to 3.2 Mb/s. This shows that ”TCP + uClinux” is
widely accepted as a universal platform. Anyway we underline
the low bitstream downloading performance issue with such a
couple, which is difficult to be envisaged in a real-time DPR
application. Best downloading speeds described are far below
what the ICAP and network bandwidth. Certainly usefull
for fast development, uClinux can not be considered in an
highly time-constrained environnement. In a previous work
[BCY+09], we proposed an implementation with an ad-hoc
data-link level protocol over a standard Fast Ethernet LAN
dedicated to lightweight dynamic partial reconfiguration. It is
implemented on a Virtex V2p which is running a PPC at 100
MHz, without any RTOS. A sustained 80 Mb/s is reachable
with a very little amount of software memory (Table I). In this

[LUSG06] [WB04] [Xil06b] [BCY+09]
Throughput
(Mb/s) 1.7 3.2 4 80

Memory
(bytes) > 1M > 1M < 100K < 100K

TABLE I
COMPARATIVES THROUGHPUTS AND SOFTWARE MEMORY FOOTPRINTS

paper we extend this work where we have introduced a specific
and fast downloading of partial bitstreams over Ethernet in
a wired LAN. Where our protocol has been found useful
when no IP routing is required and only a little amount of
hardware and software resources is available, the use of UDP
fits perfectly with ”over-the-air” wireless devices, subject of
this paper.



III. BITSTREAM DIFFUSION THROUGH LAN

We discuss in this section about several bitstream diffusion
protocols and what are pros and cons of each. We first quickly
come back to the well known TCP/IP architecture model and
then take some time to analyze three heterogenous protocols:
data link ad-hoc protocol, TCP and UDP.

A. TCP/IP Architecture Model

TCP/IP [RFC89] (Transmission Control Protocol/Internet
Protocol) is a networking reference framework used for devel-
oping networking applications. This model is usually described
as a four-layered architecture as shown in Figure 2. For a
communication, data are sent from layer 4 to layer 1, and
vice-versa for a reception. In the following lines, we place the
discussion on layer 1 and 3.

Fig. 2. The five-layered TCP/IP architecture model

B. Network Access

The TCP/IP Network Access layer (layer 1) is concerned
with physical characteristics of the transmission medium. Eth-
ernet standardized IEEE 802.3 [Eth] is a family of computer
networking technologies for local area networks with a number
of standards: 10 Mb/s Ethernet, Fast Ethernet 100 Mb/s,
Gigabit Ethernet 1 Gb/s and 10-Gigabit Ethernet 10 Gb/s. To
enable communication with multiple clients, it uses a coaxial
cable as a shared medium in order to attach every system and
the way the devices are sharing the channel is governed by the
CSMA/CD algorithm. To obtain a greater transmission length
and simplifying cabling, Ethernet repeaters are encouraged.
With todays hubs, transmission error rates are very small and
shows they are in favor of very simple error detection and
recovery strategy. A restart at bitstream level is then possible
rather than at packet level. International IEEE 802.11 [WIF]
describes characteristics liable to a wireless LAN (WLAN). It
makes possible to build broadband wireless local networks
and in practice allows to link computers, laptops, PDAs,
communicating devices and other peripherals, indoor or out-
door with ranges, speeds and modes depending on numerous
revisions of the standard from 802.11a to 802.11s. Wireless
is sometimes the only possibility in applications where it
is required to have a great mobility. In industry, reduction
of wiring proves its pertinence: costly to install, to repair,
imposing strict placements limitation. Compared to Bluetooth,

the WIFI main strength stands in its higher throughput and
range. When chosen, an ad-hoc protocol is intended to produce
a low level implementation of the minimal layer, abstracting
accesses to the involved hardware resources and the use of
a specific data-link (embedded into layer 1) level protocol.
This generally gives higher transfer rates as communication
doesn’t go through all netwoking layers. Anyway, the main
drawback is the downloading of bitstreams which is then not
possible from any machine over a LAN. That is why and
mainly for industrial and homogenous reasons, it is not viable.
We propose to migrate to a more commodious protocol, that
can be found in transport layer.

C. Transport Layer

Today, IP protocols are adapted to low latency and high
bandwidth data transfers. Therefore, this second point leds us
to adapt our protocol to one of the most common transport
protocol (layer 3). TCP [RFC81] is used in many non-critical
applications such as HTTP, FTP and SMTP. It is connection-
based and guarantees that the receiver will gets exactly what
the sender sent without any errors and in correct order. TCP
resends every packet if it doesn’t arrive correctly to the
destination. To avoid congestion, TCP is cutting down speed
whenever a packet is lost and re-increasing it slowly when
packets are successfully emitted. As for the most appropriate
transmission protocol, we pinpoint that packets looses in TCP
are attributed to congestion i.e a higher traffic. Hence for
a wireless environment where bit error rate is high, TCP
performances are highly degraded due to its window based
congestion control mechanism. UDP [RFC80] is similar to
TCP and stands in the same TCP/IP layer. Known UDP appli-
cations are DNS and SNMP. Connectionless, its difference is
located in the relationship between two parties. In other words,
one can send data to another and that is all. UDP doesn’t
provide any reception reliability thus, there is no guarantee
that packets will arrive. However if the transmission is correct,
the packet will be received without any data corruption. UDP
is faster than TCP as there is no extra overhead for error-
checking above the packet level. A comparison between TCP
and UDP is given in Table II. With this table and previous

Protocol Complexity Speed Architecture Caveats

UDP Low High Broadcast or
Client/Server

Unreliable,
String data

TCP Average Low Client/Server String data

TABLE II
COMPARISON OF TCP AND UDP PROTOCOLS [INS09]

studied arguments, UDP has been found to be the most
acceptable protocol for WLAN bitstream diffusion. From this
point, we assume the use of UDP over the network.

IV. CONTRIBUTION

We present in this section our contribution in details.
Software and hardware architectures are both developed to
show precisely how works our protocol. This contribution does



not depend on the targeted FPGA as tests (on V2 and V4
implementation) show us that speeds are close. The discussion
is placed on the architecture rather than on the latest FPGA
version.

A. Software Architecture

Our architecture workflow on Figure 3 shows that we
have to differentiate the software running onto the server and
the software onto the FPGA. On the left hand, the server
executes a console application eventually hooked to a front-
end executable. On the right hand, onto the client FPGA, the
processor runs an executable build with a PPC GNU GCC and
a TCP/IP stack.

Fig. 3. Server/client software workflow

1) lwIP as a TCP/IP networking stack: Instead of devel-
opping a networking library from scratch and in order not
to reinventing the wheel, we have chosen an open source
TCP/IP stack designed for embedded systems: lwIP. Directly
available in EDK, lwIP [Dun01] is an implementation under
BSD licence of the TCP/IP stack with RAM usage friendly in
mind. It was initially written by Adam Dunkels of the Swedish
Institute of Computer Science and is now maintained by
several developers headed by Leon Woestendberg and hosted
by Savannah. The porting proposed by Xilinx in EDK is quite
robust (both Microblaze and PPC can be used without any
problems), with a lot of parameters configurable at compile
time that can be tuned to tailor an architecture according to
the requirements. lwIP is also featuring a quite exhaustive
characteristics list (IP, ICMP, ARP, UDP and TCP) and can
be run with an underlying OS or not.

Our first approach was to tailor lwIP to use UDP only as
we don’t need another protocol. To ensure packets producer-
consumer paradigm, lwIP stack uses a pool of buffers. This
pool is a critical point in terms of performances and goodput
and has to be well scaled. Default setting value for this
segment is close to 800 KB large be 512 packets of 1528 bytes.
With that consideration we have found native lwIP parameters
to be oversized in EDK. The absence of transmission errors
during days of testing, which consist of sending and receiving
data as fast as possible and checking right packet order, proves
that reducing it to 100 KB is pertinent without interfering

overall performances. Next, we have tried to unload the pro-
cessor which is running the software from heavy computations.
To achieve this goal, an option called UDP checksum offload
could be set. It enables the network adapter to compute the
UDP checksum on transmit and receive, saving the CPU from
having to do it. The gain in term of throughput is significant
(x2) when the PPC is clocked at 100 MHz and can’t handle
too much computation.

2) Abstracting lwIP: We have developed a 800-line of code
software framework for abstracting lwIP functions calls as
much as possible. This is not only to ease the use of the stack,
but also to make fast porting in the future. With this library,
a new developer is able to pay his attention not onto how to
make the lwIP works with UDP protocol, but only to use it
without any additional knowledges. The full set of functions
comes documented, well understandable and is not platform
dependant, thus it is portable without changing a line of code.

3) Software DPR Protocol: We are now describing our
protocol by first introducing the chosen frame’s structure. It
is always constituted of two fields as shown in Figure 4. The
first one is reserved to special purpose such as session code id
or frame number and is 4 bytes long. The second is the data,
i.e. the bitstream.

Fig. 4. Frame structure

The allowable packet size relies directly to the frame format
we use: DIX Ethernet Version II frame format. The total
minimum size of one Ethernet frame is 1538 bytes. It includes
12 bytes of inter-frame spacing and 8 bytes of preamble. From
these 1518 bytes, 4 are for Frame Check Sequence (FCS).
Another 6 are for destination Ethernet address, 6 are source
Ethernet address, and 2 are the type, leaving 1500 bytes for
user data in each frame. Lastly, 20 bytes go to an IP header,
and 8 to the UDP header, leaving a maximum of 1472 bytes for
data in each frame. Bitstreams are generally bigger than this
maximum so it has to be fragmented before emission. Packet’s
transmissions are synchronized using a classic end-to-end
handshake for ensuring correct data transmission (Figure 5).
P Packets can be actually sent from the server depending on
what is called the burst size. When P = 1, only one packet
is dispatched before receiving an acknowledgement from the
client. If P = 5, five packets are transmitted without any data
flow control feedback.

Fig. 5. Protocol communication model

Next we have introduced a process between server and client



called session. Session is used to know that one, on the server
or client side, is trying to communicate with the other, or is
already in communication. A session is dedicated to one user
only and has two states: closed or opened. It can be only
opened with a code id, and can only be closed when process
is finished or an error (or timeout) occurred. Two types of
sessions are implemented: bandwidth test and partial bitstream
diffusion. When receiving a session code BITSTREAM, the
server is looking to initiate a transfer of a given bitstream to
the current client. The protocol is able to work in two modes:
slave and master (Figure 6). In master mode, the FPGA is
responsible for asking the LAN server a partial bitstream. In
slave mode, it reacts to the server requests and is forced to
update itself.

Fig. 6. Slave and master mode for a bitstream session

Throughput is directly depending on the UDP packet size
that a device is going to send to another one at a given time.
Without tracking tool that measures its behavior, a network
is an unknown environment and can change with a large set
of parameters such as number of devices or general traffic.
Finding out the packet size that our server has to send to get
the best throughput is a rather natural way to encompass our
goal and simple to implement. Ping is a well known ICMP
command to send out an Echo request from one machine
to another with a feedback of useful information, such as
delay. We mimic it by sending incremental packet size ranging
from 4 to 1472 bytes stepped 4 bytes by 4 bytes with an
acknowledgment from the client between each transmission. A
timer is running on the server during all the session. Between
each transaction (Tx/Rx), the timer is scanned to evaluate
current throughput. This session can be started with the id
code BANDWIDTH TEST.

Obviously, obtaining a maximal reconfiguration throughput
must be considered with care. Safety concerning the write of
a partial bitstream to the reconfigurable area is necessary in
partial reconfiguration context. A loss of a packet will result in
an incomplete form of data reception, so on an impossibility of
writing the complete partial bitstream into the reconfigurable
area. Manifestly, it will lead to an unpredictable behavior. At

this time, our protocol only implements a timeout without
any retransmission processes. The session is then prematurely
closed by the server, and server and client reset themselves
and come back to an idle state.

B. Hardware Architecture

As seen in the previous section, our software DPR protocol
is simple to implement and to use with our underlying software
framework. Concerning, our hardware architecture, Figure 7,
it is all done using tools versions that we find mature with
a minimum amount of bugs when used with dynamic partial
reconfiguration. Both Xilinx’s tools EDK, ISE 8.2 as well as
PlanAhead 10.1 for the partial workflow are used.

Fig. 7. Hardware architecture

1) Details of Implementation: Our architecture is built
around a PowerPC PPC405, hard wired processor running
at 100 MHz on a XUP evaluation board from Xilinx. The
FPGA part is a Virtex V2p30. Two privates’ memories to the
PPC DOCM (Data On Chip Memory) and IOCM (Instruction
On Chip Memory) are used for holding some program and
other data as well as two buses to enable communication
between components: PLB (Processor Local Bus) for faster
IPs and OPB (On Chip Peripheral Bus) for slower ones. 64
bits PLB bus, provides a high data transfer rate potential with
bandwidth capabilities up to 800 Mb/s at 100 MHz. OPB is a
32 bits data length bus. This leads to a 400 Mb/s bandwidth
when clocked at 100 MHz. Ethernet controller is connected
to the PLB, so is the RAM (Read Only Memory). The INTC
(Interrupt controller) is also added to the design and linked
to the OPB as well as a DMA (Direct Access Memory) for
performance measurements of data’ transfers. To enable not
only external reconfiguration but internal reconfiguration, an
ICAP (Internal Configuration Access Port) wrapped into the
HWICAP IP is instantiated. The full exo-reconfiguration at
reset is done through the external JTAG port. It is also optional
to add an additional DMA to the Ethernet controller (thanks
to the configuration of the IP in EDK) such as ”fast copy”
incoming packets to dedicated buffer is possible. However and
as lwIP port is not fully supporting DMA transactions, we left
the controller without it.



2) Hardware DPR Protocol: We now explain the dynamic
partial reconfiguration protocol in depth. A packet reception
is divided into four steps (Figure 8). It goes through internal
Ethernet FIFO to the reconfigurable area:

1) First, an Rx interruption occurrs. Received packet is
stored into an internal Ethernet Controller FIFO.

2) Second, FIFO buffer is copied to RAM where memory
pool (circular buffer) allocated by lwIP is available.

3) Third, Memory pool content is transferred to ICAP
BRAM.

4) Finally, ICAP BRAM is written to the reconfigurable
area.

Fig. 8. Bitstream path from Ethernet to ICAP

Actually, more than 90% of the processing time is spent in
data transfers from Ethernet controller buffer to lwIP memory
pool and from memory pool to ICAP, thus considered to be the
bottleneck. To ensure that our software/hardware partionning
was the best, some evaluations were done based on four
architectural options :

1) With processor data cache disable.
2) With processor data cache enable.
3) With processor data cache disable and DMA used to

transfer memory pool content to ICAP BRAM.
4) With processor data cache enable and DMA for trans-

fering.
In all these case, PPC405 instruction cache was activated

and set to 16 KB large (8 BRAMs). When enabled the
data cache is also 16 KB large. Table III demonstrates that
software data copy with data cache enable is the best setup.
This can be explained because EDK’s DMA engine has no
internal buffering, and doesn’t do burst transfers. For processor
without instruction cache, it might make sense to add a DMA,
otherwise the inner loop of the optimized memory copy would
be in cache and be executed at 2 cycles per instruction. The
limiting factor will become the OPB latency (reading/writing
from/to the OPB RAM). Indeed, when a data cache is enabled
and as the processor exhibits cache coherency anomalies, it
has to remain clean. It is the responsibility of the developer
of ensuring that any buffers in cache which are passed to
the DMA are flushed from it. In addition the cache has to
be invalidated prior to using any buffers resulting of a DMA
operation.

That is why we have decided to rely on pure software
concerning all data transfers and mainly between lwIP memory
pool buffers and ICAP BRAM. Moreover, this saves some
hardware resources and decreases significant overhead due

1 2 3 4
throughput - + - +

hardware memory footprint + + - -
software memory footprint + + - -

overall ++ +++ - +

TABLE III
HARDWARE/SOFTWARE PARTIONNING OPTIONS RESULTS

to the OPB to PLB bridge as well as avoiding additional
managements by the PPC.

V. RESULTS

Our measures are based onto reconfiguration of PPC405
coprocessors in slave mode. Operators like multiplier, divider,
but also more complex such as FFT and DCT were considered,
producing partial bitstreams file size ranged from 60 KB to
200 KB. As our goal is to get the maximum throughput
possible, this parameter was automatically setup with our
bandwidth test previously studied. One can establish that the
optimum packet size given is always close to the Maximum
Ethernet Transmission Unit (MTU), 1500 Bytes. Burst size
was set to the maximum, be the total number of frames needed
to send one bitstream depending on its size. The Ethernet
controller FIFO was fixed to 8 KB. The server was running the
application protocol in slave mode so it initiating the transfer
to the FPGA. Server Hardware is based onto an Asus Eee PC
1000H equipped with an Intel Atom 1.6 GHz, 1GB DDR2
RAM, Window XP 32bit home edition. Networking services
were ensured by an Artheros AR8121/AR8113/AR8114 PCI-E
Fast Ethernet Controller and an 802.11g Wireless LAN Card.
Figure 10 sums up throughputs results as a function of the
packet size and according to the scenarios given in Figure 9.
These are now described in details.

A. LAN Topology Results

We have first envisaged a LAN configuration to ensure
the global effectiveness of our protocol. It linked directly
server and client machine via a simple crossover cable. Results
obtained depend as we could expect, on transmitted packets
size. We have obtained a sustainable 60 Mb/s throughput
with an average packet size of 1492 bytes. This high transfer
throughput matches with WIFI WLAN rate where ”only” 30
Mb/s is reachable. This first result has to be compared to
related work: the endo-reconfiguration speed we have reached
with our protocol is 15 times more efficient.

B. WLAN Topology Results

The second scenario describes the server which was con-
nected to the client with a wireless link. FPGA was connected
to a Ethernet/WIFI bridge removing the need of specific
drivers. WIFI network type was set to ad-hoc allowing two or
more wireless clients to be connected each other without any
central controller. In this context, a constant 30 Mb/s through-
put was reachable with the same LAN scenario software
memory usage. This is the maximum physically achievable
with UDP using the 54Mb/s 802.11g standard [WtSK+05].



To our best knowledge, no other works have proposed such a
deal with dynamic partial reconfiguration.

Fig. 9. LAN and WLAN protocol performance rating scenarios

Fig. 10. Throughput curves for LAN and WLAN

C. Software Memory Footprint and Hardware Cost

In terms of software, 100 KB are dedicated to executable
code memory and 100 KB are allocated for data memory. This
is 4 times less software memory compared to known previous
works. In terms of hardware, all software instruction and data
codes fits into BRAMs and then don’t need any additionnal
DDR RAM controller. Thus only 8% of the chip, 2524 over
32383 slices, is occupied. In a Virtex V2p a slice consists of
two 4-input look-up tables and two flip-flops and is nearly
equivalent to two Logic Element (LE) in Altera devices. This
size is sufficient to implement user cicuits with the protocol
on one FPGA. This brings our entire design to a lightweight
implementation.

VI. CONCLUSION AND PERSPECTIVES

Never taken into consideration in previous works, our PR
platform takes advantage of wireless technology with high 30
Mb/s throughput which is the physical maximum achievable.
Software memory cost is 200 KB, and only 8% of the chip

is needed. Morevover, when used in a LAN topology, our
implementation exhibits an order of magnitude gain (x15)
compared to the best previous work, be 60 Mb/s. The under-
lying protocol is also simple and could be reused ”as is” thus,
adding another session for doing one or another task is easy.
From here we target other implementations and optimizations
for reconfigurable embedded systems. First, IP addresses are
assigned statically. We planned to do it more automatically
and dynamically by implementing a DHCP (Dynamic Host
Configuration Protocol) on the server depending of the context.
This can also feed the fact that multiple devices are looking
to dialog between each other as we necessary need a unique
IP for identifying them. This can allow them to be added to
a network without manual intervention. Next, when targeting
systems without PPC405 hard cores, it might be welcome to
port the application to a synthesizable Microblaze soft core
at a cost of significant slices loss unfortunately. Moreover,
it is worth noting that there is no security guarantee when
exchanging data between the server and the client. Confi-
dentiality, data integrity, authenticity (secure transaction in
a word) are not addressed here, but this is anyway a good
path to follow. In addition, even if not a standard, RUDP
(Reliable UDP) should be investigated for being a protocol
vastly employed for real time performances. As Virtex V2p is
now considered as an efficient but sometimes deprecated part
due to tools incompatibility, migrating to a Virtex V5 or even
V6 in the near future will become a must be. Theses should
deliver smaller partial bitstreams, thus smaller reconfiguration
times, as well as a reduction of FPGA slices consumption.
Last and not least when talking about network, Quality of
Service (QoS) is essential for both LAN and WLAN. Number
of works [GD04], [RAK] includes an additional software or
hardware reliability layer over UDP to ensure correct data by
implementing some simple algorithms. It could be a great idea
to focus onto such methods where hostile environments could
lead to packet looses.

REFERENCES

[BCY+09] Pierre Bomel, Jeremie Crenne, Linfeng Ye, Jean-Philippe
Diguet, and Guy Gogniat. Ultra-fast downloading of partial
bitstreams through ethernet. In Mladen Berekovic, Christian
Müller-Schloer, Christian Hochberger, and Stephan Wong, edi-
tors, ARCS, volume 5455 of Lecture Notes in Computer Science,
pages 72–83. Springer, 2009.

[BDGC08] P. Bomel, J.-P. Diguet, G. Gogniat, and J. Crenne. Bitstreams
repository hierarchy for fpga partially reconfigurable systems.
Parallel and Distributed Computing, 2008. ISPDC ’08. Interna-
tional Symposium on, pages 228–234, July 2008.

[CH02] Katherine Compton and Scott Hauck. Reconfigurable comput-
ing: a survey of systems and software. ACM Comput. Surv.,
34(2):171–210, June 2002.

[CZMS07] C. Claus, J. Zeppenfeld, F. Muller, and W. Stechele. Using
partial-run-time reconfigurable hardware to accelerate video
processing in driver assistance system. Design, Automation &
Test in Europe Conference & Exhibition, 2007. DATE ’07, pages
1–6, April 2007.

[DGRB04] Jean Philippe Delahaye, Guy Gogniat, Christian Roland, and
Pierre Bomel. software radio and dynamic reconfiguration on a
DSP/FPGA platform. 2004.

[Dun01] Adam Dunkels. lwip. Computer and Networks Ar-
chitectures (CNA), Swedish Institute of Computer Science,
http://www.sics.se/ãdam/lwip/, 2001.



[Eth] Ethernet. Carrier sense multiple access with collision detection
(csma/cd) access method and physical layer. IEEE Standard
802.3.

[GD04] Jasminder Grewal and John M. DeDourek. Provision of qoS in
wireless networks. In CNSR, pages 337–340. IEEE Computer
Society, 2004.

[Ins09] National Instruments. Building networked applications with the
labwindows /cvi udp support library. January 2009.

[LUSG06] A. Lagger, A. Upegui, E. Sanchez, and I. Gonzalez. Self-
reconfigurable pervasive platform for cryptographic application.
Field Programmable Logic and Applications, 2006. FPL ’06.
International Conference on, pages 1–4, Aug. 2006.

[PA03] N.J. Ploplys and A.G. Alleyne. Udp network communications
for distributed wireless control. American Control Conference,
2003. Proceedings of the 2003, 4:3335–3340 vol.4, June 2003.

[RAK] RAKNET. Raknet www.jenkinssoftware.com.
[RFC80] Internet Engineering Task Force. RFC768. User datagram

protocol. August 1980.
[RFC81] Internet Engineering Task Force. RFC793. Transmission control

protocol. September 1981.
[RFC89] Internet Engineering Task Force. RFC1122. Requirements for

internet hosts – communication layers. October 1989.
[RSQ06] A.R. Rind, K. Shahzad, and M.A. Qadir. Evaluation and com-

parison of tcp and udp over wired-cum-wireless lan. Multitopic
Conference, 2006. INMIC ’06. IEEE, pages 337–342, Dec. 2006.

[Uch07] T. Uchida. Hardware-based tcp processor for gigabit ethernet.
Nuclear Science Symposium Conference Record, 2007. NSS ’07.
IEEE, 1:309–315, 26 2007-Nov. 3 2007.

[WB04] John W. Williams and Neil Bergmann. Embedded linux as a
platform for dynamically self-reconfiguring systems-on-chip. In
Toomas P. Plaks, editor, ERSA, pages 163–169. CSREA Press,
2004.

[WIF] WIFI. Wireless lan medium access control (mac) and physical
layer (phy) specifications.

[WtSK+05] A.L. Wijesinha, Yeong tae Song, M. Krishnan, V. Mathur,
J. Ahn, and V. Shyamasundar. Throughput measurement for
udp traffic in an ieee 802.11g wlan. pages 220–225, May 2005.

[Xil06a] Xilinx. http://forums.xilinx.com/xlnx/attachments/xlnx/elinux/494/
1/opb hwicap.pdf. July 2006.

[Xil06b] Xilinx. Xapp433. web server design using microblaze soft
processor. October 2006.


