
Dynamically Configurable Security for SRAM FPGA Bitstreams

Lilian Bossuet1, Guy Gogniat1, Wayne Burleson2,

1 LESTER Lab
Université de Bretagne Sud,

Lorient, France
{lilian.bossuet, guy.gogniat}@univ-ubs.fr

2 Department of Electrical and Computer
Engineering

University of Massachusetts,
Amherst, USA

burleson@ecs.umass.edu

Abstract

This paper proposes a solution to improve the security
of SRAM FPGAs through bitstream encryption. This
proposition is distinct from other works because it uses
the latest capabilities of SRAM FPGAs like partial and
dynamic reconfiguration. It doesn’t need any external
battery to store the secret key. It opens a new way of
application partitioning according to the security policy.

1. Introduction

The FPGA (Field Programmable Gate Array) concept
is born during the 80’s, at that time the configuration
point size (transistors or fuses) was too large in
comparison with the chip size to have an interesting
FPGA density. So these devices were just used to do
prototyping or glue logic. If during a long time the
FPGAs have not taken benefit from the best deep-
submicron technology, today the more advanced FPGAs
use 90 nanometer technology with copper metallization
(best actual accessible technology). With the
improvement of technological processes and since the
FPGAs structure is very regular, it is possible to build
some FPGAs with more than one million transistors.
Thanks to these evolutions, FPGAs are more and more
attractive for numerous systems and to build efficient SoC
(System on a Chip). The FPGAs market increases and
FPGAs are capturing classical market share of ASIC
(Application Specific Integrated Circuit) market. The cost
cross-over point, that permits to know the necessary
number of systems built to choose an efficient ASIC
solution, is more and more far [1]. It is possible even for
an important number of systems built to choose an
economical-efficient FPGA solution.

Since FPGAs are becoming so important for
electronic industry it is necessary to think about the
security of FPGA-based systems. It is possible to consider
the FPGA-based systems security problem in three ways:

System security using FPGA: in this case the FPGA is
used as one part of the security system such as network
isolations (firewalls).

Protecting FPGA data: in this case it is necessary to
protect the FPGA application. The data inside the circuit
and the data transferred to/from the peripheral circuits
during the communication must be protected. The main
solution is to integrate data encryption scheme inside the
FPGA.

FPGA design security: in this last case the protection
concerns the design against cloning and reverse
engineering. It is intellectual property protection.
Concerning the SRAM FPGAs it corresponds to the way
to protect the bitstream so the FPGA configuration.

This article focuses on this last way to deal with
FPGA and the security problem. If the FPGA design itself
is not secure the other security problems can not be
efficiently treated. Many works already propose solutions
to protect the bitstream. However the contribution of this
paper relies on the utilization of the latest improvements
of SRAM FPGAs configuration techniques to answer the
security problem.

This paper is organized as follows. Section 2 describes
some aspects of the design security problem. Section 3
presents several works dealing with the protection of
SRAM FPGA configuration. In Section 4 a new solution
is proposed. Finally, the section 5 concludes this paper
and exposes several future directions.

2. Design Security

It is interesting before investigating the different
solutions to secure the configuration of SRAM FPGAs to
list what are the different attacks against an integrated
circuit today, what is the protection level of some current
circuits and why do they have this level of protection?

2.1 Need for Design Security

The problem of design security is simple, the
designer doesn’t want that a competitor could be able to
pirate his design. There are two sorts of piracy:

The Cloning is when a competitor makes a copy of the
design, and when he is able to create a copy of the pirated
system.

The Reverse Engineering is when a competitor copies a
design by reconstructing a “schematic” or netlist level
representation; in this process, he understands how the
design works and how to improve it, or to modify it with
malicious intents.

So reverse engineering is more serious than cloning.
These two aspects correspond to different attacks, and the
design security must protect the system against both
attacks. There are two types of attack; the non-invasive
and the invasive attacks:

The non-invasive attacks gather all the methods that use
external means. For example the attackers can use all the
possibilities of the circuit inputs in order to obtain all the
different outputs and draw the system truth table, this
method is called “Black Box Attack”.
In the case of SRAM FPGA a simple attack method
consist in intercepting the bitstream between the root
ROM and the FPGA when the system power is switched
on. More complex attacks can bring into play time, power
and electromagnetic changes and measures like the simple
or differential power analysis, interested readers can refer
to the work on power analysis of FPGA in [2].

The invasive attacks (or physical attacks) are
characterized by the necessity to destroy the integrated
circuit (component package) to study the chip (design
inside the component) with some complex methods. For
example it is possible to use laser cutter microscope in
order to split the chip in several slices and understand the
chip layout. These attacks can use sophisticated tools like
optical microscope, mechanical probes and even Focused
Ion Beam (FIB). As these attacks use the weakness of the
silicon technology, when they are possible, it is very hard
to secure the system against them.

The papers [3] and [4] give some information about
these different attacks. It is possible to classify the
integrated circuits according to their protection against the
different types of attacks.

2.2 Protection level of some circuits

The level of protection offered by actual integrated
circuits is an interesting metric to be thinking of works to

improve the security level of one particular type of
integrated circuit. In the IBM Systems Journal a paper [5]
defines the various security levels for modern electronic
systems and the corresponding taxonomy of attackers:

Level 0 (ZERO): No special security features added to
the system.

Level 1 (LOW): Some security features in place. They
are relatively easily defeated with common laboratory or
shop tools.

Level 2 (MODLOW): More expensive tools are
required, as well as specialized knowledge.

Level 3 (MOD): Special tools and equipment are
required, as well as some special skills and knowledge.
The attack may become time-consuming but will
eventually be successful.

Level 4 (MODH): Equipment is available but is
expensive to buy and operate. Special skills and
knowledge are required to utilize the equipment for an
attack. More than one operation may be required so that
several adversaries with complementary skills would have
to work on the attack sequence. The attack could be
unsuccessful.

Level 5 (HIGH): All known attacks have been
unsuccessful. Some research by a team of specialists is
necessary. Highly specialized equipment is necessary,
some of which might have to be designed and built. The
success of the attack is uncertain.

According to this classification it is possible to give a
general security level for the current integrated circuits.
Of course these different levels are not fixed, and depend
of the factory, the type of circuit (in a same factory there
are several families and some of them can be especially
security-efficient like some military families). The
authors have tried to give one level by classical integrated
circuit and explain the reason of their choices. The
security level of the classical integrated circuits is given
in the table 1.

Conventional SRAM FPGAs have the lowest security
level. These circuits need a bitstream transfer from the
root ROM at power up (because the memory of
configuration is a SRAM volatile memory). So it is easy
for the pirate to read with a simple probe the bitstream
during the transfer. The conventional SRAM FPGAs are
inefficient for safe design. But with a bitstream
encryption it is possible to clearly improve the security
level since the security weakness is secure. SRAM
FPGAs have a good resistance against some attacks like

power analysis [2] even if today few works present the
results of attacks against SRAM FPGA [6].

Integrated Circuit
Security

Level
Conventional SRAM FPGA 1

ASIC Gate Array 3

Cell-based ASIC 3

SRAM FPGA with bitstream encryption 4

Flash FPGA 5

Antifuse FPGA 5

Table 1. Security level of classical integrated circuits
Actel - Security [7]

Often considered like a secure technology, ASICs are
actually relatively easy to reverse engineer. Because
unlike FPGAs, ASICs have no switch. So it is possible to
strip the chip to copy with certitude the complete layout
in order to understand how it works. It is not a simple
process so the security level is 3 for such devices.

Contrary to the ASICs, the FPGAs like antifuse or
flash are really security-efficient since they are based on
switches. With these FPGAs no bitstream can be
intercepted in the field (no bitstream transfer, no external
configuration device). In the case of antifuse FPGAs the
attacker needs a Scanning Electron Microscope (SEM) in
order to know the state of each antifuse. But the
difference between a programming and a non-
programming antifuse is very difficult to see. Moreover
such analysis is intractable in a device like Actel AX2000
that contains 53 million of antifuses and according to
Actel [7] only 2-5 % (average) of these antifuses are
programmed. For Flash FPGA there is no optical
difference after configuration, so the invasive attacks are
very complex.

If the antifuse and the flash FPGAs are very security-
efficient they are just one time configurable, so they are
not really reconfigurable devices. If the designer wants a
reconfigurable device he must target a SRAM FPGA.
Moreover the capacity of the SRAM FPGAs are the
highest for FPGAs devices. Actually the SRAM FPGAs
have a market share higher than 60 % (just with the two
leaders companies Xilinx [8] and Altera [9]). So the
research to improve the security level of such FPGAs and
particularly the improvement of bitstream encryption are
today necessary.

Some works give efficient solutions to encrypt the
SRAM FPGA bitstream. But there are some drawbacks
and it is possible to improve them taking into account the
latest innovations of these FPGAs. The following section
presents some works about the bitstream encryption.

3. Related work

Two approaches are generally possible to address the
design security problem. The first one considers that the
best solutions to protect the devices against piracy are
legal solutions. The definition of efficient laws, the
regulation and the management of intellectual properties
are parts of this solution.

The second one according to the last section, proposes
to improve the security level of actual SRAM FPGAs by
configuration protection (bitstream encryption). In the
following we only address this last approach.

Xilinx proposes security system [8] based on a triple
DES encryption scheme to protect the bitstream of the
Virtex-II and Virtex-II Pro family device [10].

Xilinx CAD software tool encrypts the bitstream using
the powerful Triple Data Encryption (DES) algorithm
before downloading the configuration inside the FPGA.
Triple DES is the standard used by many governments for
safe communication and by banks around the world for
money transfers. This algorithm uses three 56-bits public
keys. The designer can use random keys or choose their
own-keys.

The figure 1 shows the encryption/decryption system
used by Xilinx to protect the configuration of Virtex-II
devices.

Figure 1. Xilinx Virtex-II triple DES encryption scheme

This system is relatively simple; it is just necessary to
choose one option during the last step of the CAD
process, the bitstream generation. Firstly a key file that
describes the configuration of the three keys, is
programmed inside the FPGA. Of course it is not
necessary to store the key file inside the configuration
memory. The keys are stored in a dedicated SRAM
memory inside the FPGA that can be backed up with a
small battery (like a watch battery).

After, the configuration step is performed like a
classical configuration without bitstream encryption. In
fact, the configuration stored in the external EPROM is
encrypted. The FPGA contains a decryption circuit that
automatically detects when the bitstream is encrypted and
decrypts the configuration before the SRAM bits are
programmed. Xilinx does not give information about the
necessary extra-time to decrypt the configuration.

HQFU\SWHG
FRQILJXUDWLRQ

(3520)3*$ 9LUWH[�,,

GHFU\SWLRQ
FLUFXLW

NH\V VWRUDJH

� �

H[WHUQDO
EDWWHU\

&$'

722/

FRQILJXUDWLRQ
JHQHUDWRU

HQFU\SWLRQ
VRIWZDUH

SXEOLF NH\V SXEOLF NH\V

FRQILJXUDWLRQ
PHPRU\

The Xilinx bitstream encryption scheme is efficient
because without the correct key it is not possible to
configure other chips with the encrypted bitstream.
Nevertheless when the device is configured, it is not
possible to use partial reconfiguration and to do read-
back.

If the designer does not need security, he can
configure the device with non-encrypted bitstream and the
on-chip keys are simply ignored.

Nevertheless this method has a strong drawback; it
uses an external battery to save the key. It is poor for
several reasons. This solution costs a lot of area on the
board and even if the used battery is small it is necessary
to add it a socket, and the board area is a critical issue for
embedded application. Moreover this solution increases
the board cost and reduces the system lifetime.

It is necessary to improve the Xilinx solution by
proposing a solution without additional battery.

Tom Kean of the Algotronix society proposes an
attractive solution to answer this problem [11] [12]. The
first idea of Kean is to use a secret cryptographic key
stored on an FPGA. He gives some ways to store this key
like using a laser to program a set of links during
manufacture.

As the secret key is only known by the FPGA, it must
contains an encryption and a decryption circuit. But
contrary to Xilinx method, the CAD doesn’t change and
just generates a classical bitstream.

 The figure 2 shows the encryption/decryption system
used by Kean to protect the configuration of SRAM
FPGA. The figure 2(a) shows the initial configuration of
secure FPGA and the figure 2(b) shows the normal
configuration of secure FPGA.

Figure 2. Kean proposed encryption/decryption
scheme [11] & [12]

This solution has many advantages, it does not affect
system reliability, it does not require additional
components and it does not require support from CAD
software. In this system nobody (the designer or the CAD
tool) needs knowledge on the key.

If Kean’s solution overcomes the battery limitation of
the Xilinx solution, both solutions have the same
important disadvantages. In the two cases the encryption
and the decryption circuits are embedded inside the
FPGA. These circuits take FPGA silicon area normally

reserved for the developed application. So the total
application dedicated-area is reduced by these solutions.
Moreover in these solutions the encryption and the
decryption circuits are fixed, so it is not possible to
upgrade them or to choose the encryption/decryption
algorithm and architecture.

In both solutions, the entire design is encrypted with
the same encryption algorithm. However such approach is
very restrictive since it doesn’t consider any security
policy. Actual designs (due to the high degree of
application complexity) are based on numerous
heterogeneous parts that do not present the same “security
sensitivity”. Hence, the designer may want to partition his
application in several parts and use different
encryption/decryption algorithms to encrypt/decrypt these
parts. For example if the designer uses some free or very
easy to find IPs (Intellectual Property) it may be not
necessary to encrypt these parts of the application. Other
parts like interfaces for example don’t need a high
security level. On the other hand the real designer’s IPs
need a high security level.

Finally the two proposed solutions give only one fixe
answer to the bitstream security problem and they have a
lake of flexibility.

Other solutions are proposed, most of them can be
found in recent US Patents for example [13], [14], [15]
and [16]. But these solutions are not very different from
Xilinx [10] or Kean [11, 12] solutions.

If existing solutions are not very different one from
another it is mainly due to the fact that they don’t use the
new features of SRAM FPGAs like partial
reconfiguration or dynamic reconfiguration.

In the following section we present a new solution to
address the bitstream security problem that takes
advantage of this new features.

4. A new solution to protect the SRAM
FPGA bitstream.

4.1 New possibility of SRAM FPGA

According to previous sections actual solutions to
secure the SRAM FPGA bitstream are efficient but they
have a lake of flexibility. Although the main advantage of
the reconfigurable devices like SRAM FPGAs
(particularly in comparison with other FPGAs or ASIC) is
the flexibility given by the reconfiguration capabilities.
This advantage is more and more important with the new
capabilities of SRAM FPGAs like partial reconfiguration,
dynamical reconfiguration or auto-reconfiguration.

In [17] Xilinx presents a self-reconfiguring platform
(SRP) for Xilinx Virtex-II and Xilinx Virtex-II Pro
devices. Self-reconfiguration extends the concept of
dynamic reconfiguration. It assumes that dedicated
circuits of the FPGA are used to control the configuration
of the other parts of the FPGA. In this case the FPGA is

HQFU\SWHG

FRQILJXUDWLRQ

)/$6+

6HULDO (3520

)3*$

HQFU\SWLRQ

FLUFXLW

VHFUHW NH\

FRQILJXUDWLRQ

FLUFXLW

FRQILJXUDWLRQ

PHPRU\

-7$*

HQFU\SWHG

FRQILJXUDWLRQ

)/$6+

6HULDO (3520
)3*$

GHFU\SWLRQ

FLUFXLW

VHFUHW NH\

FRQILJXUDWLRQ

FLUFXLW

FRQILJXUDWLRQ

PHPRU\

a) Initial programming of secure FPGA b) Normal configuration of secure FPGA

able to dynamically reconfigure itself under the control of
an embedded microprocessor. This microprocessor can be
a soft core like Xilinx MicroBlaze (32-bit RISC) or a
hardcore IBM PowerPC (32-bit RISC) embedded on the
Xilinx Virtex-II Pro. To perform the dynamical
reconfiguration, the microprocessor uses a specific
interface called ICAD (Internal Configuration Access
Port) and a small configuration cache that uses the
embedded RAM (called BlockRAM in Xilinx Virtex
devices) of the FPGA.

Xilinx proposes a tool to manage these new FPGA
capabilities called XPART for Xilinx Partial
Reconfiguration Toolkit.

4.2 Proposed solution

This solution takes benefit of the new possibilities of
reconfiguration of SRAM FPGAs to improve their
security level without the drawbacks highlighted
previously: The encryption and the decryption circuit
must leave all the silicon area free for the developed
application. Of course the solution must use an embedded
key in order to work without extra-battery. To store the
key a solution close to Kean’s solution [11, 12] can be
chosen. It is possible to use a laser to engrave the key or
use some antifuse elements to do a non-volatile key
programming.

A very important feature is also to give the designer
the opportunity to choose the encryption/decryption
algorithms and architectures. In this way it is possible to
adapt the encryption/decryption scheme according to the
requested security level for the developed application.
Furthermore, the feature enables to easily upgrade the
system if a new efficient encryption/decryption algorithm
is available.

Finally we address the sensitivity policy problem by
allowing the designer to use different encryption
algorithms for a single application. The Security-Critical
Parts (SCP) of the application will only be encrypted.

As the encryption/decryption scheme has a cost
because this scheme spends time, consumes power and
takes silicon area, it is very interesting to adapt it
according to the required security level of the application.

To understand our approach an example is given
during the initial configuration step and the normal
configuration step. In this example the application is
partitioned into three different parts; two SCPs that need
high security level (but will be encrypted with two
different encryption algorithms) and one other part that
doesn’t need encryption. The case with 2 SCPs is just an
example other configurations can be considered.

The figure 3 shows the encryption system when the
FPGA is initially configured and the root configuration
memory is programmed (initial configuration).

During the initial FPGA configuration the first step
consists in programming the root configuration memory

with the non-encrypted parts. There are two decryption
circuits that will be used to decrypt the encrypted
bitstreams, and the non-encrypted part of the application.

 Figure 3. Encryption scheme during the initial FPGA
configuration

After it is necessary to configure the FPGA with the
encryption circuit 1 in order to encrypt the configuration
of the application SCP 1. Once the SCP 1 configuration is
encrypted, it is stored in the root external EPROM
configuration memory. Since the SCP 2 needs other
encryption circuit, the FPGA configuration is cleared in
order to be programmed with the encryption circuit 2.

Of course it is necessary for the CAD to manage
partial reconfiguration like in Xilinx proposition [17].

At the end of the initial configuration step the root
configuration memory contains the encrypted
configuration of SCP 1 and SCP 2, the non-encrypted
configuration of the other application parts and the
configuration of the decryption circuits required to
decrypt SCP 1 and SCP 2 (decryption circuit 1 and
decryption circuit 2). The FPGA configuration is erased.

The figure 4 shows the decryption-configuration
system when the FPGA is configured with an extra
EPROM memory that stores the configuration (normal
configuration).

The FPGA configuration process works as follows:
First the FPGA is configured with the decryption circuit1.
Then the FPGA uses it to decrypt the encrypted
configuration of SCP 1 and auto-configures the SCP 1
inside the FPGA. Since the SCP 1 is decrypted it is not
necessary to keep the decryption circuit 1. The decryption
circuit 2 replaces it in order to decrypt the encrypted
configuration of SCP 2. In the same way after the
configuration it is not necessary to keep the decryption
circuit 2. After this first phase the FPGA is configured
with the SCP 1 and the SCP 2 parts. The last step consists
in configuring the FPGA free area with the other
application parts that have not an encrypted configuration.

HQFU\SWHG
FRQILJXUDWLRQ
RI 6&3 �

(3520
FRQILJXUDWLRQ
FRQWUROOHU

HQFU\SWHG
FRQILJXUDWLRQ
RI 6&3 �

QR�HQFU\SWHG
FRQILJXUDWLRQ

FRQILJXUDWLRQ
GHFU\SWLRQ
FLUFXLW �

FRQILJXUDWLRQ
GHFU\SWLRQ
FLUFXLW �

)3*$

VHFUHW NH\

FRQILJXUDWLRQ
FLUFXLW

FRQILJXUDWLRQ
PHPRU\

Figure 4. Decryption-configuration scheme during the
normal FPGA configuration

Finally the FPGA is configured with all the
application parts.

As the partial configuration is a specific task, it is
necessary to use a dedicated configuration controller. This
controller can be external like a dedicated CPLD or a
microprocessor. But it is also possible that this controller
is embedded inside the FPGA, like in the case of Xilinx
auto-configuration system [17]. In this last case the
configuration controller can be a soft-core microprocessor
(like Xilinx MicroBlaze) or, a hardcore microprocessor
(like IBM PowerPC for Xilinx VirtexII-Pro devices).

The security configuration controller (SCC) is based
on a finite state machine to perform the configuration
management. To manage the configuration sequence the
SCC needs the external EPROM memory partitioning (the
memory mapping). We can notice that this mapping can
be complex in order to still improve the system security.
For example the designer can interleave the data stored in
the memory and mixes the several encrypted and no-
encrypted configurations. A configuration address register
stores the memory mapping.

With the knowledge of the memory mapping, the
configuration management finite state machine is simple.
The figure 5 shows the 3-states used by the SCC. The
table 2 describes the actions associated to the states of the
SCC. The first state of this 3-states FSM is an idle state.
To change of state the SCC waits for a start signal. This
signal is the begin-signal of the configuration. Once in the
second sate, the loading state, the SCC changes of state
according to the type of configuration file. If the
configuration file is not encrypted the current state is the
second state. In this state the normal configuration of the
FPGA is performed. If the configuration file is encrypted
the current state is the “loading and decrypting” state. In
this state the SCC loads first the configuration of the

decryption circuit inside the FPGA before loading the
encrypted configuration of a SCP.

The machine returns in the idle state when all the
application is loaded inside the FPGA.

Figure 5. Configuration controller FSM

State name actions

idle Wait start

loading

Load selected configuration* on the
FPGA.

Update the configuration address register.

* the selected configuration can be the non-
encrypted configuration of a decryption
circuit or of a non-SCP application part.

Loading
&

decrypting

Start the decryption algorithm and load the
corresponding SCP configuration on the
FPGA.

Update the configuration address register.

Table 2. States description of the configuration
controller FSM

One feature is very important in this solution; the key
management. It is mandatory that a pirate can’t access to
the keys used by the different decryption/encryption
circuits. Moreover, as in this solution the
decryption/encryption algorithm is not fixed, it is
necessary to store a large key. Indeed different algorithms
don’t use the same key size (for example the AES
algorithm uses a 128 bits key, and the triple DES uses
three 56 bits keys so 168 bits key). In fact among the n
key bits the encryption/decryption circuits select m
necessary bits. Since only the designer knows the m
chosen bits it is a supplementary security barrier.

HQFU\SWHG

FRQILJXUDWLRQ

RI 6&3 �

(3520

)3*$

VHFUHW NH\

FRQILJXUDWLRQ

FLUFXLW

QR�HQFU\SWHG

FRQILJXUDWLRQ

FRQILJXUDWLRQ

GHFU\SWLRQ
FLUFXLW �

FRQILJXUDWLRQ

GHFU\SWLRQ
FLUFXLW �

-7$*

FRQILJXUDWLRQ

PHPRU\

HQFU\SWLRQ
FLUFXLW �

/RDGLQJ 	

GHFU\SWLQJ

/RDGLQJ 	
GHFU\SWLQJ

ORDGLQJ
ORDGLQJ

LGOH
LGOH

HQG ORDGLQJ

GHFU\SWLRQ
FLUFXLW

HQG ORDGLQJ
HQFU\SWHG

6&3

HQG ORDGLQJ

QR�GHFU\SWLRQ
FLUFXLW

DSSOLFDWLRQ

HQG ORDGLQJ

VWDUW

DSSOLFDWLRQ

HQG ORDGLQJ

4.3 Drawbacks and advantages of the proposed
solution

If this method permits to overcome the limitation of
other proposed solutions, it has some drawbacks.

The first drawback is the relative complexity of the
method, since it is necessary to manage the partial
reconfiguration and auto-configuration. Most of the
FPGA manufacturers don’t have CAD tool to manage
these types of configuration but Xilinx proposes an
efficient tool for such needs.

The decryption circuit can have several sizes
according to the algorithm and the implementation.
Several works give comparisons of the hardware
performance of the different AES final candidates
(MARS, RC6, Rijndael, Serpent or Twofish for example)
using FPGA [18][19][20][21]. All these works use the
Xilinx Virtex as reconfigurable target. The table 3 and the
table 4 compare the results of these studies for the area
requirement (one Virtex slice corresponds to two 4 inputs
LUTs, two flip-flop and one carry chain) and time
performance (throughput).

slices of the cryptographic core
Algorithm

[18] [19] [20]
Rijndael 4312 5302 2902
Serpent 1250 7964 4438

RC6 1749 3189 1139
Twofish 2809 3053 1076
MARS 4621 - - 2737

Table 3. Area requirement of FPGA implementations
of AES final candidates

Throughput (Mbit/s)
Algorithm

[18] [19] [20]
Rinjdael 353.0 300.1 331.5
Serpent 148.9 444.2 339.4

RC6 112.9 126.5 103.9
Twofish 173.1 119.6 177.3
MARS 101.9 - - 39.8

Table 4. Time performance of FPGA implementations
of AES final candidates

The performances (time and area) showed in the two
tables are different for each work. Because the
architectures chosen, for the different studies, have
different structures (loop unroll, pipeline and sub-
pipeline). All these results are given only for an
encryption core without the key-setup circuit. But this
circuit must be considered because it can take area
(slices). The table 5 shows the number of slices for key-
setup circuit of the five AES final candidates and relative
area percentage of the total area requirement (encryption
core and key-setup circuits).

slices of the key-
setup circuit

% of the total area
Algorithm

[18] [21] [18] [21]
Rijndael 1361 128 24 % 14 %
Serpent 1300 2060 51 % 35%

RC6 901 290 34 % 15 %
Twofish 6554 1260 70 % 48 %
MARS 2275 50 33 % 3 %

Table 5. Area requirement of FPGA implementations
of AES final candidates

According to these results, it is significant to consider
the key-setup circuit in the area requirement. Finally the
three tables show that a same decryption standard (AES in
this example) can be performed with several algorithms
and each algorithm can have different implementations.
So it is necessary to give all the possibilities to the
designer, and our solution gives all this flexibility.

The configuration controller can be complex. Its
complexity depends on the number of SCPs in the
application. This number is correlated to the application
security partitioning. The costs of a larger root memory
and a complex configuration controller are the hardware
overhead costs of this method but they represent the
origin of its flexibility. The system security has always
costs that are necessary to evaluate in order to choose the
best solution according to the required security level.

Since it is necessary to first configure the decryption
circuit before the real configuration of each SCP, this
method can spend time when the system is powered up.
But today the SRAM FPGA configuration is more and
more fast (about 10 millisecond for a partial
reconfiguration for a Xilinx Virtex 1000-E device [22]).

This method has many very interesting advantages.
First the encryption/decryption circuits don’t take FPGA
application-dedicated resources, since when a decryption
circuit has been used it is removed from the FPGA. The
FPGA resources initially used to perform the decryption
circuit are free for other uses.

We choose, like Kean [11, 12], to embed the key
inside the FPGA in order to have not an external extra-
battery.

One of the main advantages of this method is the
increase of flexibility. The designer can partition the
application according to the required security level. So if
just a small part of the application needs a strong security,
the system can be very simple (just one small SCP). The
designer has all the possibilities to choose the suitable
algorithms and architectures for the encryption/decryption
circuits. It is possible to adjust the security level
according to the application constraints.

Moreover the designer can upgrade its application and
the security scheme with the same reconfigurable
hardware. In this way it is possible to take advantage of
the latest improvements of the security field.

5. Conclusions and future work

Since the SRAM FPGAs are more and more important
for the electronic industry it is necessary to improve the
security level of such devices. Although some works have
already proposed solutions to improve this security level,
we think that is it possible to investigate more this
domain.

In this article we propose a new solution to prevent
piracy against SRAM FPGAs bitstream. Our contribution
is to use the latest developments of configuration
technique in order to improve the security system
flexibility.

This work is not yet practical or experimental but it
corresponds to a proposal to the community in order to
become more efficient.

For the near future we want to study the system
feasibility, and particularly the management of partial
reconfiguration and auto-reconfiguration.

We think that the security problem is a very important
issue for FPGAs and for all the reconfigurable systems on
chip. Probably in a near future there will be more and
more works about this subject.

6. References

[1] N. Tredennick, B. Shimamoto. The Rise of
Reconfigurable Systems. In proceeding of Engineering of
Reconfigurable Systems and Application, ERSA’2003.
June 23-26, 2003, Las Vegas, Nevada, USA.

[2] F.X. Standaert, L. van Oldeneel tot Oldenzeel, D. Samyde,
J.J. Quisquater. Power Analysis of FPGAs: How Practical
Is the Attack. In proceeding of 13th International
Conference on Field-Programmable Logic and
Applications, FPL’2003, pp. 707-711. September 2003,
Lisbon, Portugal.

[3] R. Anderson, M. Kuhn. Tamper Resistance – a cautionary
Note. In Proceeding of the Second USENIX Workshop on
Electronic Commerce, pp. 1-11. November 18-21, 1996,
Oakland, California, USA.

[4] R. Anderson, M. Kuhn. Low Cost Attack on Tamper
Resistant Devices. In Proceeding of the 5th Workshop of
Security Protocols, pp. 125-136. April 7-9, 1997, Paris,
France.

[5] D.G. Abraham, G.M. Dolan, G.P. Double, J.V. Stevens.
Transaction Security System. In IBM Systems Journal,
vol. 30, no 2, pp. 206-229, 1991.

[6] T. Wollinger, C. Paar. How Secure Are FPGAs in
Cryptographic Applications. In proceeding of 13th

International Conference on Field-Programmable Logic
and Applications, FPL’2003, pp. 707-711. September
2003, Lisbon, Portugal.

[7] Actel Coporation. Resource Center: Security.
www.actel.com/products/rescenter/security/index.html

[8] Xilinx Coporation www.xilinx.com

[9] Altera Coporation www.altera.com

[10] Xilinx Coporation. Virtex-II platform FPGA Handbook.
Available on www.xilinx.com

[11] T. Kean. Secure Configuration of Field Programmable
Gate Arrays. In proceeding of 11th International
Conference on Field-Programmable Logic and
Applications, FPL’2001. Belfast, United Kingdom.

[12] T. Kean. Secure Configuration of Field Programmable
Gate Array. Proceedings IEEE Symposium on Field
Programmable Custom Computing Machines (FCCM),
Rohnert Park CA , 2001.

[13] Kelen, et al. System and Method for PLD Bitstream
Encryption. US Patent 6 118 869, September 12, 2000.

[14] Erickson, et al. Encryption of Configuration Stream. US
Patent 6 212 639, April 3, 2001.

[15] Mason, et al. Secure Programmable Logic Device. US
Patent 6 331 784, December 18, 2001.

[16] Pang, et al. Non Volatile/Battery-Backed Key in PLD. US
Patent 6 336 117, April 2, 2002.

[17] B. Blodget, P. James-Roxby, E. Keller, S. McMillan and
P. Sundararajan. A Self-reconfiguration Platform. In
proceeding of 13th International Conference on Field-
Programmable Logic and Applications, FPL’2003,
pp. 565-574. September 2003, Lisbon, Portugal.

[18] A. Dandalis, K. Prasanna, J. D. P. Rolim. A Compartive
Study of Performances of the AES Final Candidates Using
FPGA. Workshop on Cryptographic Hardware and
Embedded Systems, August 2000.

[19] A. J. Elbirt, W. Yip, B. Chetwynd, C. Paar. An FPGA
Implementation and Performance Evaluation of the AES
Block Cipher Candidate Algorithm Finalists. In
proceeding of the third Advanced Encryption Standard
candidate conference, AES3. April 12-14, 2000, New
York, New York, USA.

[20] K. Gaj, P. Chodowiec. Comparison of the Hardware
Performance of the AES Candidates Using Reconfigurable
Hardware. In proceeding of the third Advanced
Encryption Standard candidate conference, AES3. April
12-14, 2000, New York, New York, USA.

[21] N. Weaver, J. Wawrzynek. A Comparison of the AES
Candidates Amenability to FPGA Implementation. In
proceeding of the third Advanced Encryption Standard
candidate conference, AES3. April 12-14, 2000, New
York, New York, USA.

[22] J-P Delahaye. Systèmes Radio Dynamiquement
Reconfigurables sur des Architectures Hétérogènes.
Master Thesis, Université de Paris XI, Faculté d’Orsay.
Spetember 2003.

