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Abstract. In this paper we present a partial bitstreams ultra-fast down-
loading process through a standard Ethernet network. These Virtex-based
and partially reconfigurable systems use a specific data-link level proto-
col to communicate with remote bistreams servers. Targeted applications
cover portable communicating low cost equipments, multi-standards soft-
ware defined radio, automotive embedded electronics, mobile robotics or
even spacecrafts where dynamic reconfiguration of FPGAs reduces the
components count: hence the price, the weight, the power consumption,
etc... These systems require a local network controller and a very small in-
ternal memory to support this specific protocol. Measures, based on real
implementations, show that our systems can download partial bistreams
with a speed twenty times faster (a sustained rate of 80 Mbits/s over Eth-
ernet 100 Mbit/s) than best known solutions with memory requirements
in the range of 10th of KB.
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1 Introduction

Field programmable gate arrays (FPGAs) are now being integrated into ap-
plications ranging from handheld devices to space-based applications. These
heterogeneous reconfigurable platforms provide a flexible way to build highly
reusable systems on demand. Today, runtime partial reconfiguration can po-
tentially reduce the number of devices or the device size, thereby reducing
size, weight and power consumption. Systems requiring dynamicaly a subset
of their functionnalities can take advantage of this partial reconfigurability be-
cause it allows swapping of hardware accelerators ”"on demand”. In this con-
text Xilinx’s Virtex FPGA partial reconfiguration can be exploited in different
ways, partially or globally, externally (exo-reconfiguration) or internally (endo-
reconfiguration).

Virtex’s dynamic and partial reconfiguration (PR) requires additional
resources to store the numerous partial configuration bitstreams. Researchers
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exploit in vast majority local FLASH and RAM memories as bitstreams reposi-
tories. In the best case Huebner et al. [1] reduce up to 50% of the bitstream mem-
ory footprint with the help of a small hardware decompressor. Recently, Haiyun
and Shurong [2] proposed a new adaptive LZW compression algorithm demon-
strating bitstreams size gains about 43%. Then, we face the migration of silicon
square millimeters from FPGAs to memories. Although their low cost, when
compared to FPGAs, is in favor of this migration, there are some drawbacks.

1. First, their reuse rate can be extremely low, since these memories could be
used just once at reset in the worst case.

2. Second, the balance in terms of global silicon square millimeters, compo-
nent number reduction, PCB area, static power consumption and MTBF, is
negative.

3. Third, for a single function to implement, the space of possible bitstreams
can be extremely large and become bigger than local memories. This is par-
ticularly true for embedded, high-volume and low-cost systems. There are
three combinatorial explosion factors namely:

(a) the FPGAs types with their numerous devices, families, sizes, packages
and speed grades variations,

(b) the number of possible configurations depending on shape and placement
of the TP on the 2D FPGA grid,

(¢) and the natural commercial life of the IP producing regularly new ver-
sions and updates.

In this paper we are presenting an evolution of a previous work [3] where we
proposed a specific and quite simple protocol for partial reconfiguration over Eth-
ernet. Through a better balanced harware/software partitionning of our hard-
ware architecture and, with no change at protocol level, we have been able to
double the sustained speed over a standard 100Mb/s (Mb = Mega bits) Eth-
ernet local Network. The experimental results obtained prove that our systems
can reach reconfiguration speeds twenty times faster than today’s ones. More-
over their PR software memory footprint is small enough (a few 10th of KB, KB
= Kilo Bytes) to be stored in FPGA internal memory hard blocks.

For systems having a reconfiguration latency constraint so strong that (even
with a specific protocol) they need shorter downloadings we have also proposed
the concept of a hierarchy of bitstreams servers [4]. It allows remote storage
of bitstreams on LAN or WAN-shared servers and local storage of bitstreams
copies in external RAM. A possible instance of a three level LRU caching strategy
permits to cumulate advantages of distant and local storage of bitstreams.

In the following we review in Sect. 2 the previous PR related works via a
standard LAN. In Sect. 3 we present our design choices and improvements to
double the past downloading speed. In Sect. 4 we describe our experiments and
measures about the partial reconfiguration speeds and memory footprints. We
make measures with the help of signal processing IPs representative enough
of the complexity expected in such embedded systems. Finally, in Sect. 5, we
conclude and explain what extensions we intend to short-term focus on.



74 P. Bomel et al.

2 Related Work

The PR community agrees on the fact that, in applicative domains with strong
real-time constraints, PR latency is one of the most critical aspects in its im-
plementation. If not brief enough, the PR interest to build efficient systems
can be jeopardized. Reconfiguring times will be highly dependent upon the size
and organization of the partially reconfigurable regions inside a FPGA. Virtex-
2 (V2) has column-wide frames embbeded into partial bitstreams: hence V2’s
bitstreams are bigger than necessary. Virtex-4s (V4) and Virtex-5s (V5) have
relaxed this constraint, they now allow for arbitrarily-shaped regions. They have
frames composed of 41 32-bits words. The smallest V4 device, the LX15, has
3740 frames, and the largest V4 device has, the FX140, has 41152 frames. From
Xilinx’s datasheets, four methods of partial reconfiguration exist and have dif-
ferent maximum downloading speeds:

1. externally (exo-reconfiguration)
(a) serial configuration port, 1 bit, 100 MHz, 100 Mb/s
(b) boundary scan port (JTAG), 1 bit, 66 MHz, 66 Mb/s
(c) SelectMap port, 8 bits parallel, 100 MHz, 800 Mb/s
2. internally (endo-reconfiguration)
(a) internal configuration port (ICAP), V2, 8 bits parallel, 100 MHz, 800
Mb/s

Of course, peak values are only objectives and ICAP inside V4 and V5 have
bigger word accesses formats (16 and 32 bits). Depending on the system de-
signer’s ability to build an efficient data pipeline from the bitstream storage
(RAM, FLASH, or remote) to the ICAP, the performances will be close (or not)
to the peak values. The good questions are "what latency is acceptable” for a
given application and ”"what is its related cost” in term of system cost (added
memory/peripherals components). In particular, in the field of partial reconfigu-
ration, to be able to compare contributions, we must identify what is the average
size of a partial bitstream and what is its average acceptable reconfiguration la-
tency. Finally, because systems can run at different frequencies, we must also
integrate the system frequency in the numbers. Then, we will be able to fairly
compare efficiencies of the various proposals. This will be done in the following
paragraphs.

Compton and Hauck [5] give a complete and global survey of the whole prob-
lematic about reconfigurable computing. Walder and Platzner [6] confirm the
need for fast reconfiguration in the field of the ”wearable-computing”. They
conclude that PR latency can be neglected if its effective latency is negligible
when compared to the applications computing time. We clearly see here that the
”average acceptable latency” is application dependant. Researchers investigate
two strategies to reduce the PR latency. These are the systematic reduction of
the bitstream files size (offline compression) and the speedup of their download-
ing (online decompression and optimised protocols). The first strategy relies on
off-line tools and methodologies for FPGA design: ”Module Based” and ”Dif-
ference Based” are two design flows from Xilinx [7]. The second strategy is an
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on-line approach based on embedded network services. In this paper we address
the second strategy with dynamic partial endo-reconfiguration and consider the
first one as necessary and complementary.

Partial and dynamic reconfiguration of Xilinx’s FPGAs goes through the con-
trol of a configuration port called ICAP [8] (Internal Configuration Access Port).
V2, V4 and V5 contain this port and a set of one or several PPC405 hard
core processors. The ICAP port can be interfaced with ”hard block” processors
(PPC405) as well as synthesizable soft cores (Microblaze, PicoBlaze, etc ...) with
more or less engineering work. The ICAP has been wrapped into a HWICAP
component which implements around it a standard OPB interface for a cost of
150 slices and a single BRAM. With the last version of EDK (version 10.2) there
is now a PLB bus version of this ICAP wrapper. The ICAP reconfiguration peak
rate announced by Xilinx is exactly of one byte per clock cycle, it means 100
MB/s (MB = Mega Bytes) for systems running at 100 MHz. Because systems
work at different frequencies, we’ll express all measures in number of bits trans-
mitted per second and per MHz. The reference ICAP bandwidth of 100 MB/s
becomes 8 Mb/(s.MHz). From now, we will use this ”figure of merit” (FOM) to
compare contributions to the ICAP’s peak value. Quantities will be expressed
in bits, times in seconds, and frequencies in MHz.

FOM = quantity/(time % frequency)

Claus et al. [9] consider that, for real-time video applications like driver assis-
tance, the average bitstreams size is about 300 KB. The adaptive nature of the
image flow processing implies to dynamically change algorithms without loosing
a single image (640x480 pixels, VGA, black and white). Under these conditions,
Claus accepts to loose one eighth of the processing time for each image. With a
rate of 25 images/s, the processing time is 40 ms, and a maximum of 5 ms can be
devoted to endo-reconfiguration. Transmitting 300 KB in 5 ms fixes the speed
constraint at 60 MB/s, which is sustainable by the ICAP. The experimental plat-
form is a V2 inside which a PPC405 executes the software (no RTOS specified)
managing the PR. Unfortunately they did not provide speed measurements at
publication time.

Not strictly dedicated to PR, the XAPP433 [10] application note from Xilinx,
describes a system built around a V4 FX12 running at 100 MHz. It contains a
synthesized Microblaze processor executing the code of an HTTP server. The
HTTP server downloads files via a 100 Mb/s Ethernet LAN. The protocol stack
is Dunkel’s IwIP [11] and the operating system is Xilinx’ XMK. A 64 MB external
memory is necessary to store IwIP buffers. The announced downloading rate is
500 KB/s, be 40 Kb/(s.MHz). This rate is 200 times lesser than ICAP’s one.

Lagger et al. [12] propose the ROPES (Reconfigurable Object for Pervasive
Systems) system, dedicated to the acceleration of cryptographic functions. It is
build with a V2 1000 running at 27 MHz. The processor is a synthesized Mi-
croblaze executing vClinux’s code. It downloads bitstreams via Ethernet with
HTTP and FTP protocols on top of a TCP/IP/Ethernet stack. For bitstreams
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of an average size of 70 KB, PR latencies are about 2380 ms with HTTP, and
about 1200 ms with FTP. The reconfiguration speed is about 30 to 60 KB/s, be
a maximum of 17 Kb/(s.MHz).

Williams and Bergmann [13] propose vClinux as a universal PR software plat-
form. They have developed a character mode device driver on top of the ICAP.
This driver enables to download the content of bitstreams coming from any loca-
tion because of the full separation between the ICAP access and the file system.
Junction between a remote file system and the ICAP is done at the user level by
a shell command or a user program. When a remote file system is mounted via
NF'S the bitstreams located there can be naturally downloaded into the ICAP.
The system is built with a V2 and the processor executing vClinux is a synthe-
sized Microblaze. The authors agree that this ease of use has a cost in term of
performances and they accept it. No measures are provided. To have an esti-
mation of such performances we made some measures in a similar context and
got transfer speeds ranging from 200 KB/s to 400 KB/s, representing a maxi-
mum of about 32 Kb/(s.MHz). We agree that vClinux is a universal platform
but we want to pinpoint its extremely low bitstream dowloading performance.
Certainly extremely usefull for fast development vClinux probably does not pro-
vide fast enough downloading facilities to be used in a highly time-constraints
environment. We think that further experiments should be done with a real-time
"flavor” of Linux and with better written/optimized ICAP drivers.

This first part of the state of the art establishes that ”Microblaze + Linux +
TCP” is widely accepted. Unfortunately, best downloading speeds are far below
the ICAP and network maximum bandwidth. Moreover, memory needs are in the
range of megabytes, thus requiring addition of external memories. Such a gap in
speed and such a memory footprint for a PR service seem to us really excessive.
First, Linux and its TCP/IP stack can’t run without an external memory to
store the kernel code and the communication protocols buffers. Secondly, the
implementation, and probably the nature (specified in the 80s for much slower
and unreliable data links) of the protocols, is such that only hundredths of KB/s
can be achieved on traditional LANs.

Finally, the authors [3] propose the implementation of a specific data link level
protocol over a standard 100 Mb/s local Ethernet dedicated to lightweight and
partially reconfigurable systems. This work has been initially implemented on a
V2 running at 100 MHz. No specific RTOS is needed (but XMK is sufficient)
and a set of interrupt handlers with a background task handle the data pipeline
from the remote bitstreams server to the local ICAP. Sustained speed is ranging
from 375 to 400 Kb/(s.MHz) for bistreams of sizes ranging from 50 to 200 KB.
This FOM is 10 times greater than the best previous works’s FOMs.

Table 1. Identified bistreams sizes and latencies requirements from previous works

Claus [9] Lagger [11] Authors [3]
Bitstream (KB) 300 70 50-200
Latency (ms) 5 1200-2380 10
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On top of [3], the authors have build a hierarchy of bitstreams servers [4]
to implement an LRU caching strategy for partial bitstreams. This hierarchy,
being paid the cost of cache in external memory, allows to reduce the average
downloading latency of partial bistreams. Hence, for systems with a known be-
havour, memory needs can be estimated and allocated to build the necessary
cache memory. Based on [3], the worst case downloading speed has a FOM of
375 to 400 Kb/(s.MHz). But, once partial bitstreams are loaded into RAM, their
downloading speed from external memory to ICAP is rising up to 4 Mb/(s.MHz),
which is ten times faster. The value of the average downloading speed depends,
of course, on the cache miss frequency. The smaller it is, the higher the average
value is. This value of 4 Mb/(s.MHz) cannot not be considered as a contribu-
tion to ultra-fast downloading of partial bitstreams because it does not represent
a pure network downloading speed. This a mix between memory accesses and
network communications.

3 Contribution

In this section we present our contribution in terms of hardware and software
architectures for PR. We present in details the essential points improving the
speed and reducing the memory footprint. All ICAP accesses are 8 bits wide.

This contribution does not depend on the FPGA type but rather on the
architecture build inside it. Tests show that, at the same frequency of 100 MHz,
FOM has similar values (not strictly equals because Ethernet controllers are not
the same) on a V2 or V4 implementation. We did not make a test on V5 yet, but
this will be done soon. This allows us to place the discussion on the embedded
architecture rather than on the latest version of FPGA available on the market.
Of course, latests versions of FPGA can bring our systems to higher frequencies
but should not change the FOM which is frequency independant.

3.1 Hardware Architecture

The hardware architecture we have first choosen (Fig. 1) relied on a V2 PRO 30
running at 100 MHz on a XUP evaluation board from Xilinx. A PPC405 core
executed the PR software. We considered that dynamic IPs communicated with
the FPGA environment directly via some pads. Thus, the FPGA was equivalent
to a set of reconfigurable components able to switch rapidly from one function
to another. Communication with the PPC405 and inter-IPs communication are
out of the scope of this article but can be implemented with Xilinx’s and Hueb-
ner’s bus macros [14] and OPB/PLB wrappers for partially reconfigurable IPs
as well as with an external crossbar like in the Erlangen Slot Machine of Bobda
et al. [15]. We have specified with EDK, XPS and Planahead tools a system
which contained a PPC405 surrounded by its minimal devices set for PR. The
PPC405 having a Harward architecture, we have added two memories to store
the executable code and the data. These are respectively the IOCM (Instruc-
tion On Chip Memory) and the DOCM (Data On Chip memory). The PPC405
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Fig. 1. Arch-1, Bistreams path from Ethernet to ICAP

communicated with its devices through two buses connected through a bridge.
These were the PLB (Processor Local Bus) for the faster devices and the OPB
(On Chip Peripheral Bus) for the slower devices. The Ethernet PHY controller
was connected to the PLB. The UART serial line, for instrumentation and trace
purpose, was connected to the OPB. Finally the ICAP, connected to the OPB,
managed the access and the downloading of bitstreams into the reconfigurable
areas. The full exo-reconfiguration at reset was done through the external JTAG
port while the endo-reconfiguration was dynamically done through the ICAP.
This architecture allowed to download partial bistreams with a FOM of 400
Kb/(s.MHz).

Measurements made later showed us that the partitionning between hardware
and software was not ideal. The bottleneck coming from software. Actually, more
than 90% of the processing time was spend in data transfers from Ethernet
controller to circular buffer and from circular buffer to ICAP (Fig. 3).
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The second hardware architecture we propose (Fig. 2) relies on a V4 VFX
60 running also at 100 MHz (which simplifies comparisons with first hardware
harchitecture) on a ML410 evaluation board from Xilinx. This FPGA has four
embbeded 10/100/1000 Mb/s Ethernet MAC controllers, among which only two
are used on the ML410 board. Our architecture then uses only one of these two,
configured to communicate at 100 Mb/s. Instead of relying on pure software
data transfert loops executed by the PPC, we decided to use two DMAs in
order to 1) transfer the data from the Ethernet controller to the packets circular
buffer and 2) to transfer the data from the circular buffer to the ICAP. The first
DMA is easily activated thanks to the configuration of the Ethernet controller
IP available in EDK. The second DMA has to be instanciated (223 slices) and
managed by the PPC itself when needed. The packets buffer, to be accessible
by both DMAs cannot stay in DOCM (private to PPC) and must migrate in
BRAMs located either on PLB or OPB bus. Because master accesses must be
allowed for both DMA, two bus bridges (PLB/OPB and OPB/PLB bridges)
must be added to allow for such data transfers. After testing on V2/XUP and
V4/MLA410, we obtained similar results: be a FOM about 800 Kb/(s.MHz).
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3.2 Software Architecture

The software architecture (Fig. 3) is based on three modules: the ICAP driver,
the Ethernet driver and the PR protocol processing. Main objective is to reduce
the number of software layers to cross when bitstreams are flowing from the
Ethernet controller to the ICAP port. A time measurement module based on
the internal hardware timer of the PPC405 and the access to the serial line via
Xilinx’s libc are also used and will not be commented as their use is marginal.
This software establishes a data pipeline between the remote bitstreams server
and the reconfigurable areas in the FPGA. We planned to reach the Ethernet
maximum bandwidth of 100 Mb/s and today, with our 800 Kb/(s.MHz) FOM,
we have reached a sustained rate of 80 Mb/s.

To uncouple the ICAP downloading from the Ethernet packet reception we
have designed in software a producer-consumer paradigm: the producer being the
Ethernet controller and the consumer being the ICAP port. A circular buffer is
asynchronously fed with Ethernet packets by the Ethernet controller private
DMA. Packets reception occurs by bursts: several packets are received without
any data flow control feedback. The packet burst length (P) is less than or equal
to the half capacity of the packets buffer. Each Ethernet packet has a maximum
size of 1518 bytes and has a maximum payload of 1500 bytes of bitstream data.
The PR protocol is executed concurrently with the Ethernet interrupt handlers.
It analyzes the packets content and transfers the bitstream data from the buffer
to the ICAP port via the second DMA programmation. The intermediate buffer
sizing is a critical point in terms of performances. The bigger the burst is, the
faster the protocol is. The buffer size depends on the available memory at the
reconfiguration time and this scare resource can change in time. The protocol
has been tailored to dynamicaly adapt its burst sizes to the buffer size, [3] gives
its detailed specification.

4 Results

Our measures are based on the repetitive endo-reconfiguration of cryptography
IPs like DES and triple DES producing bitstreams file sizes about 60 KB and 200
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KB. Results obtained (Fig. 4) depend also, as we could expect, on the producer-
consumer packets buffer size allocated to the PR protocol. So the FOMs depend
on P. The curves at the top (plain and dashed curves) represent respectively
measured speeds for 60 KB and 200 KB bitstreams for Arch-1 and 200 KB
bitstreams for Arch-2. One can establish that, in all cases, when the packets
burst has a size greater or equal to three packets (P = 3), maximum speeds of
400 Mb/(s@MHz) (first architecture) and 800 Mb/(s.MHz) (second architecture)
are reached and are stabilized. The size of the circular buffer being 2P, it needs
room for exactely six packets, be 9 KB (6 * 1.5K B) only. Compared to usual
buffer pools of hundredths of KB for standard protocol stacks, this is a very
small amount of memory to provide a continuous PR service.

Dotted curves at the bottom represent the average speeds reached by Xilinx,
Lagger and probably Williams. Our PR protocol exhibits a reconfiguration speed
80 Mb/s closer to our local 100 Mb/s Ethernet LAN limit. The gap between the
reconfiguration speed and the ICAP speed is now about one order of magnitude
instead of three orders of magnitude as previously. Finally, our PR software fits
into 32 KB of data memory and 40 KB of executable code memory.

When compared to related works, the endo-reconfiguration speed we have
reached with our ultra-fast downloading is 20 times more efficient and needs less

Table 2. Comparative endo-reconfiguration speeds and memory footprints

Lagger [11] Williams [12] Xilinx [9] Arch-1 [authors] Arch-2 [authors]
FOM (Mb/s@MHz) 17 32 40 400 800
Memory (bytes) > 1M > 1M > 1M < 100K < 100K
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memory space. Table 2 sums up the respective speeds expressed in Mb/(s.MHz)
and memory footprints in bytes.

5 Conclusion and Future Extensions

Our PR platform and experiments show there are still opportunities to improve
LAN-level, and probably IP-level, protocols in order to provide an efficient and
remote reconfiguration service standard networks. Our implementation exhibits
an order of magnitude gain (X 20) in speed when compared to related works.

From here, we target implementations and protocol optimizations for future
low-latency, high-bandwidth and network-reconfigurable sets of partially recon-
figurable embedded systems. Would another FPGA maker provide a new con-
figuration port, the protocol presented here could be reused ”as is”. Integration
of our specific PR protocol on top of UDP into Dunkel’s IwIP stack will be a
way to promote its usage as well as the customization of UDP/IP stacks inside
a real-time version of Linux or MicroC/OS-IIL.

Also, a software implementation running on a Microblaze soft core and a full
hardware implementation of the PR protocol might be welcome when targeting
systems without PPC405 hard cores. Ferivatives will be necessary when PR-
based systems will be connected to other LANs like Wifi or CAN. At last, for
performance purpose, 1 Gbit/s Ethernet and wider (16 bits and 32 bits) ICAP
word accesses should be tested together to raise the FOM.
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