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Abstract—Asymmetric coherency is a new concept to support
non-uniform workloads in multicore processors. We present the
theory behind asymmetric coherency policies and show our
design requires no additional hardware over an existing system.
Asymmetric coherency is designed to provide better performance
for asymmetry in a workload and this is applicable to SoC
multicores where the applications often are not evenly spread
among the processors. The low cost and complexity makes it a
desirable new coherency policy for future work. Our results show
up to a 60% reduction in coherency costs for unshared data and
up to a 174% improvement in memory access time for shared
data.

Keywords-Non-Uniform Workload; Cache; Memory Co-
herency; Multicore Processing; Memory Management

I. INTRODUCTION

A key issue with multicore systems is how to allow applica-
tions to utilise the system effectively. Having a large number of
cores usually creates the problem of distributing the workload
optimally across the cores.

There are many cases where the workload placed on a
multicore system is a non-uniform workload (an asymmetric
workload), where some cores are often idle and others have
a heavy workload. This is especially the case for embedded
multiprocessor architectures. Embedded MPSoC systems are
often designed for specialised applications [1], where they can
accelerate critical parts of the system. This indicates that em-
bedded applications commonly have non-uniform workloads
that can benefit from asymmetric coherency.

Memory coherency has been cited as one critical area
of research [2] that is needed for the envisioned massively
parallel FPGA-based softcore multiprocessors to be successful.
Memory coherency is necessary to ensure that all cores are
using the most recent data values. However, the necessary
drawback is there are overheads for maintaining the memory
coherency. The important coherency overheads are from the re-
quired additional coherency signals sent on the communication
channel. There are inherent coherency overheads even when
different applications do not share memory. Further coherency
overheads are added when the applications do interact through
shared memory.

Our work addresses the non-uniform distribution of the
application workload through modifications in memory co-
herency. This impacts the communication latency and through-
put for the memory system. We describe these distributions as

asymmetric workloads or non-uniform workloads. We label
the critical core (with the heavy workload) as the primary core
and other cores (mostly idle cores) to be secondary cores. In
this work, we propose a redistribution of coherency overheads
to improve the memory latency and throughput of the primary
core at the expense of secondary cores.

We present the new concept of asymmetric coherency, the
purposeful design of the memory coherency to have different
performance for different cores. Our design has low hardware
cost, simplicity in implementation, and good performance.
This shows that our technique is a suitable method for dealing
with the asymmetry in multicore workloads.

Our theory of asymmetric coherency has immediate applica-
bility in the design of non-runtime adjusted MPSoC systems.
Furthermore, the presented research can be adapted for future
implementations involving more complex coherency schemes
and runtime adaptivity.

In this paper, we present an asymmetric coherency policy as
a proof of concept for the theory. We are presenting the first
model for asymmetric cache coherency and the first analysis
on the behaviour of an asymmetric coherency system.

The remainder of this paper is as follows: Section II
describes related work; Section III explains the theoretical
details behind the asymmetric coherency research; Section IV
describes the experimental tools and setup used; Section V
presents the results that show asymmetric coherency improve-
ments and describe discovered aspects of the behaviour; and
finally Section VI concludes this paper and mentions our
intended future work.

II. RELATED WORK

The closest related work in cache coherency has considered
custom methods to address producer consumer or migratory
data behaviour [3], [4], [5], [6], [7]. These optimisations
work on the basis of creating special exceptions in the cache
coherency to handle fine-grained behaviour within an applica-
tion. The previous work maintained the underlying cache co-
herency system and caters for special circumstances generated
by the applications. The previous work required significant
additional hardware to cater for these special circumstances
and does not consider workload asymmetry.

Our proposed solution instead considers creating asymmetry
in the performance of the cache coherency, which has not been



considered before. Furthermore, unlike the previous work, our
proposed asymmetric coherency policy is extremely simple to
implement. There are no special circumstances in the policy
or extra hardware to cater for the asymmetric coherency.
Our implementation requires less hardware than the widely
accepted writeback/invalidate coherency policy that has been
in use for decades.

Related work in bus communication includes quality of
service (QoS) of bus arbitration [8]. Bus arbitration is com-
plementary to our work as our asymmetric coherency system
combined with bus arbitration can improve overall perfor-
mance to a greater degree than one mechanism can alone.

An alternative solution to a shared memory coherency
system, is to use private memories and message passing.
However, a previous study [9] found limited performance
differences from using message passing over shared memory
coherency. More recent design trends in reducing time to
market in embedded systems emphasises an additional draw-
back for message passing. Message passing requires that the
software has knowledge of the memory architecture and this
raises problems of increased design complexity for software
development.

III. ASYMMETRIC COHERENCY DESIGN

The main theory behind our research concept is that an
asymmetric performing cache coherency policy can help im-
prove the performance of asymmetric workloads by modifying
the coherency overheads. In this section, we will explain why
asymmetric workloads are relevant to many situations. Then
we will present the details of how our asymmetric coherency
modifies coherency overheads.

A. Asymmetric Workloads

Multicore systems allow for the workload to be spread
among multiple cores. However, breaking the system workload
over multiple cores does not mean the workload is evenly
distributed among the cores.

Embedded MPSoC systems have specialised workloads that
are often not evenly spread between the processors. In these
kinds of cases, the asymmetry in the workload is algorithmic
in nature.

Systems designed for general purpose workloads also con-
tain asymmetry in the workload and sometimes deal with
this by considering QoS. For the multiprogramming systems,
workload asymmetry is caused by priority given to some
programs while others are background tasks. For multi-thread
systems, the workload asymmetry can be caused by either
by the nature of the algorithm or the application designer
not having the design time to evenly distribute the workload
among cores.

In all these kinds of cases, the system can benefit from ac-
celerating one of the processors at the cost of other processors.
Our proposed solution is the acceleration of a primary core out
of the multicore system through the use of asymmetric cache
coherency. This will help the primary core to significantly run
faster, by reducing coherency and data sharing costs, while

still allowing for secondary cores to handle the more easily
parallelisable workloads.

B. Design of Asymmetry Coherency Policies

This section will describe some key aspects of coherency,
then explain the details behind asymmetric coherency.

The concept of asymmetric coherency can be applicable
to many multiprocessor situations. However, as a starting
point we focus on a small multicore system with a bus and
broadcast snoop coherency. The simplicity of bus systems
make them efficient for small multicore systems. A broadcast
snoop coherency was used because it been one of the best
solutions for small bus based multicores for the last decade.
This example system lacks runtime configurability of the
primary core, and can only handle one fixed primary core.
All these restrictions can be removed with more design work.

1) Cache Coherency Background: Within a multicore,
cache coherency is used to ensure that the latest written data
is the data being used. There are two main operations for en-
suring coherency: updating copies of the data, or invalidating
copies of the data. There are also two methods of propagating
the coherency operations: broadcasting the data to all cores,
or providing a directory listing that records the status of data
used by the cores.

The difference between update and invalidate is, update
initially takes more time than the invalidate. However, the
invalidate can incur further costs due to other cores requesting
the updated data. The difference between the broadcast and
directory systems is the broadcast must be received by every
core, while the directory system can send data or invalidates
to only the cores that require it.

Write policy is usually intimately linked to coherency. This
work considers three write policies: writeback, writethrough
and ”writeback only on hit/writethrough only on miss” (ab-
breviated writebackOnHit for this work). In bus systems,
updates are usually performed with a writethrough and when
a system decides to writeback it necessitates an invalidate.
Consequently, writeback/invalidate and writethrough/update
are common actions in coherency.

Techniques such as bus snooping, read-snarfing [10] and
dual ported ram make broadcast superior for bus based sys-
tems. Snooping allows for writes from other cores to be cap-
tured, read-snarfing allows for capture of data fetches initiated
by other cores, and dual ported rams allow processors to
perform the snooping and read-snarfing tasks without pausing
the operation of the processor cores. Dual ported rams removes
a drawback, mentioned in older papers, where snooping would
stop the processor from accessing its cache memory. Directory
based systems are favoured for network on chip (NoC) due to
scalability issues [4].

2) Asymmetric Coherency Design: The asymmetric co-
herency revolves around the idea of sacrificing the perfor-
mance of some cores to improve the performance of other
more important or greedier cores. It does this by changing
the memory latency and bandwidth. Our example design,



TABLE I
THEORETICAL PERFORMANCE ADVANTAGE COMPARISON FOR THE

SYMMETRIC AND ASYMMETRIC COHERENCY TYPES

Coherency
Policy

Data
Type

Comparison of Advantages Between
Asymmetric & Symmetric Writeback/Invalidate

Symmetric
Writeback/
Invalidate

Non-
Sharing

Secondary Core Write Hit: Invalidate cost instead of a
writethrough.

Sharing No differences.
Asymmetric Non-

Sharing
Secondary Core Write Miss: Single writes cost only a
writethrough instead of a fetch.

Sharing Primary Core Read and Write Misses: Avoids checking
other cores for data copies, and avoids writeback requests.

Coherency
Policy

Data
Type

Comparison of Advantages Between
Asymmetric & Symmetric Writethrough/Update

Symmetric
Write-
through/
Update

Non-
Sharing

Primary Core Write Miss: Single writes cost only a
writethrough instead of a fetch.

Sharing Primary Core All Writes: No invalidation of
secondary core copies. This reduces fetching.
Secondary Core Read Miss: Avoids checking other cores
for data copies, and avoids writeback requests.

Asymmetric Non-
Sharing

Primary Core Write Hit: Invalidate cost instead of a
writethrough.

Sharing No differences.

of the asymmetric coherency policy, aims to improve the
performance of a primary core at the cost of secondary cores.

The improvement comes from combining the best aspects
of the writethrough/update coherency policy with the write-
back/invalidate coherency policy. With snooping and dual
ported ram, the writethrough/update costs the initiating core
more time in sending the writethrough instead of a shorter
invalidate. The invalidate may save time for the initiating core,
but it requires other cores to check for dirty data and request
a writeback if any dirty data is found. If the primary core uses
invalidates (cheaper for itself, more expensive for others) while
the secondary cores use updates (cheaper for others, more
expensive for itself), then the primary core should experience
a performance improvement.

Table I shows the theoretical differences between our asym-
metric policy and the two original symmetric policies.

3) Asymmetric Coherency Implementation and Cost: Our
example asymmetric coherency uses less hardware than the
best performing symmetric system, which is writeback.

The implementation of the asymmetric coherency simplifies
the standard symmetric writeback system as shown in Fig. 1.
The figure shows the full extent of the hardware changes
required. The primary core uses a writeback/invalidate cache
with a modification such it doesn’t need to check for dirty data
in other cores. The secondary cores use a writethrough/update
cache with a modification to check for dirty data on other
cores. An asymmetric coherency policy using a primary core
write policy of writebackOnHit is also possible, but the system
is similar enough that for brevity it will not be analysed
extensively.

The slight reduction of hardware may not always be the case
for more complex implementations of asymmetric coherency.
Runtime configurability and many-core systems, opposed to
multicore, will require more complex hardware.

General purpose systems will require runtime coherency
configurability to handle both uniform and non-uniform work-
loads. Runtime coherency configurability imposes two more
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Fig. 1. Cache controller state machine changes to implement asymmetric
coherency from an initial symmetric writeback (grey shows removed logic)

hardware costs that are: an extended memory controller state
machine in each core to handle either writeback/invalidate
or writethrough/update, and a system to handle the decision
making. Many-core systems will likely require directory and
hierarchical coherency. This may require additional status bits
for data and more complex controllers.

IV. EXPERIMENTAL SETUP

This section will describe the experimental setup used to
demonstrate the asymmetric coherency. Section IV-A describes
the simulation system and Section IV-B describes the work-
loads used.

A. Simulation System

A cycle accurate and bit accurate trace driven simulation
system [11], [12] was upgraded for this work. The simulator
uses memory traces for each core. The modified simulator
has the additional ability to simulate a spinlock by simulating
the polling of a memory location until the value matches the
release signal.

The simulator can load different configuration files to
change the architecture and policies in the multicore system. It
supports up to 16 cores. In the experiments, 1 primary core and
4 secondary cores were given workloads. The private caches
used are 4KBytes in size, 2 way associativity, Pseudo-LRU
replacement and a 16 byte line size. The cores are connected
to a DRAM main memory through a bus.

The experimental parameters modified were the system
type, write policy and bus arbitration policy. Combinations
of these parameters created the different systems tested. The
details of the parameters are listed below:

• System Type: Single Processor; Multicore Symmetric Co-
herency; Multicore Asymmetric Coherency

• Write Policy: Writeback; WritebackOnHit (Writeback Only on
Hit/Writethrough Only on Miss); Writethrough

• Bus Arbitration Policy: Base (Round Robin); Priority (Bus
Arbitration by Priority); Cancel (Bus Arbitration by Priority &
Cancellation of Low Priority Accesses)



In the symmetric systems, all the cores use the same
write policy parameter. In the asymmetric systems, the write
policy mentioned only denotes the primary core policy. Write-
back or writebackOnHit is used for the primary core and a
writethrough policy is always used for the secondary cores.
If writethrough is used, our asymmetric coherency design
becomes a symmetric writethrough system. Consequently, no
asymmetric writethrough is described in our experiments.

Bus arbitration is complementary to asymmetric cache co-
herency so its side effects have been considered as part of
this research. Our base system is round robin and we provide
two priority policies to augment it. Firstly, a priority based
system allows for a high priority core to be chosen before a
lower priority core. Secondly, a more aggressive mode allows
for a high priority core to interrupt and cancel a low priority
memory access that has already started.

B. Benchmarks Setup

Asymmetric coherency can provide improvements for both
multiprogramming and multi-threaded systems that are run-
ning asymmetric workloads. We will describe the experimental
benchmark setups we use to show this.

In this section, we describe: the most relevant situations
for multiprogramming and multi-threaded systems, and the
benchmark and synthetic applications that were used for the
experiments.

Initial analysis incorrectly suggests that multiprogramming
applications can be run without coherency to avoid the over-
head cost. However, this is not the case due to implementation
issues. Coherency is just as relevant for multiprogramming
applications, because they are run on general purpose systems
that require coherency. The alternative to coherency is spe-
cialised partitioning that requires modifying each application
to fit the memory architecture of the platform. Requiring many
multiprogramming applications to be adapted to the memory
architecture is extremely costly in design time.

The experiments outlined in this paper are designed to
measure how the asymmetric coherency can change perfor-
mance. Coherency costs are present even if data is not being
shared. While not every memory access uses shared data,
the infrastructure to ensure memory coherency applies an
additional cost to most memory accesses.

There were several types of data sharing previously iden-
tified [3]. However, most adaptive coherency research [3],
[4], [5], [6], [7] focuses on producer-consumer and migratory
sharing as these types of data sharing encompass the majority
of shared data. Producer-consumer sharing is data transferred
once between cores. Migratory sharing is data that is trans-
ferred multiple times between cores.

For the multi-programming situation, applications often do
not share large amounts of data between cores. Instead, the
majority of overhead is likely to come from the inherent
costs of the coherency infrastructure. Interaction between cores
is mainly from cores competing for access to the bus. The
multi-programming experiments in Section V-A will focus on

how asymmetric coherency can reduce the inherent costs of
coherency for unshared data.

For the multi-threaded situation, applications are likely to
be processing data and sharing the results with other threads
running on different cores. This fits the producer-consumer
data sharing and migratory sharing models. The multi-threaded
experiments in Section V-B will focus on how asymmetric
coherency can reduce the costs of coherency for shared data.
A producer-consumer test situation is used and the results
are applicable to migratory sharing too. Unlike the previous
adaptive coherency research, asymmetric coherency does not
create specialised data transfers so migratory and producer-
consumer sharing are similar.

A mixture of synthetic workloads and real applications are
used in this research. Synthetic workloads are sometimes used
to provide a fine grained control of memory accesses. These
are randomly generated by our trace generator program using
several parameters such as write percentage, data spread, time
delay, address range, etc.

In the multi-programming examples, MiBench [13] will be
used for the measured workload while synthetic benchmarks
are used in other cores to simulate competing bus traffic. The
MiBench traces were recorded from the MiBench running
on a Virtex 4 FPGA with a Microblaze and uClinux. In the
multi-threaded example, only synthetic workloads are used
to allow for fine control of: the memory access patterns, the
spinlocks, and the data sharing. The spinlocks synchronise the
data transfers between cores.

V. RESULTS

We describe several situations where the workload on a
multicore system is asymmetric. Our results demonstrate that
asymmetric coherency assists multi-programming workloads
through better unshared data handling and assists multi-
threaded workloads with better shared data handling.

Section V-A describes the possible performance improve-
ments for an asymmetric multi-programming workload under
asymmetric coherency. Section V-B describes the possible
performance improvements for an asymmetric multi-threaded
workload under asymmetric coherency.

A. Asymmetric Multi-programming Workloads

In multi-programming workloads, some applications have
a higher priority than others or sometimes soft real-time
requirements. However, these applications often cannot run on
more than a single core. Asymmetric policies can be used to
accelerate a single primary core while allowing for secondary
cores to continue running in the background.

In the multi-programming experiments, applications from
the MiBench are used as the important workload. Secondary
cores are modelled with synthetic workloads. The main in-
teraction between cores is presented in terms of generated
bus traffic. Data sharing is considered later for multi-threaded
applications as most multi-programming applications will not
share data.



In this section, we demonstrate the inherent overheads
of coherency and how asymmetric coherency can reduce it.
Then we explore the impact of bus traffic on the asymmetric
coherency improvement. Finally, we describe the performance
costs on secondary cores.

1) Basic Overheads for Multicore Memory Policies: Mul-
ticore processors require cache coherency to function, but
maintaining the coherency incurs additional costs even when
there is no data sharing. Asymmetric cache coherency can
reduce the coherency costs. The asymmetric cache coherency
policy uses a writethrough policy for the secondary cores. This
reduces the inherent coherency overheads in the system for
the primary core. In this section, we show that reducing these
overheads can accelerate the primary core workload.

There are two overheads from supporting a multicore.
Firstly, there is a bus arbitration cost, which in our simulated
design is 2 clock cycles. Secondly, there is the cost for cache
coherency checks that are present even if the other cores
do not have a workload. Our system is a broadcast system
without a central directory to keep track of sharing. Writes
require invalidations of the data in other cores if they are not
writethrough/update. Read misses must check for dirty data
in other cores. Directory systems do not have the broadcast
system overheads, but instead incur similar overheads from
maintaining tags tracking the data sharing.

TABLE II
BREAKDOWN OF COHERENCY AND BUS ARBITRATION COSTS FOR

UNSHARED DATA UNDER DIFFERENT CORE CONFIGURATIONS

Memory Access Time Cost (%)
Comparison
to Single Core

Primary Core
Write Policy

Testcase
Dijkstra

Testcase
Jpeg Decode

Shared Bus Cost
writeback 9.26% 7.48%
writebackOnHit 9.89% 16.81%
writethrough 16.30% 19.50%

Symmetric
Coherency Cost

writeback 15.37% 20.22%
writebackOnHit 14.90% 9.05%

Asymmetric
Coherency Cost

writeback 6.89% 13.26%
writebackOnHit 6.44% 3.19%

Table II shows the additional clock cycles required for
coherency and bus arbitration costs as a percentage relative
to the memory access time. Two examples are shown to
explain coherency costs, the results for all the applications
are in Fig. 2. Writethrough is not shown as it does not have
an inherent coherency cost. However, the writethrough policy
replaces the coherency costs with the cost of writethrough and
consistently produced significantly worse results for all the real
benchmarks tested throughout this work.

For the two MiBench examples in Table II, the bus ar-
bitration costs varies between a 7.5% to a 19.5% increase
in memory access time costs for symmetric and asymmetric
systems. The symmetric coherency policy cost with writeback
varies between 9.1% to 20.2%. The asymmetric coherency
policy cost varies between 3.2% to 13.3%.

2) Asymmetric Coherency Improvement: The asymmetric
coherency policy alleviates the cost of the coherency overhead.
When writeback is used in the secondary cores, and the
primary core needs to fetch data, a bus extra cycle is needed

for checking whether there is dirty data in the secondary cores.
If the secondary cores are writethrough always the check for
dirty data is not required. This means that the asymmetric
policy has an advantage over the symmetric policy when there
is a read miss. Due to this difference the asymmetric policy
compared to the symmetric policy reduced non-shared data
coherency costs by around 5.9% to 6.9% in Table II.
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Fig. 2. Coherency costs of asymmetric and symmetric policies for single core
workloads (MiBench applications) placed on a multicore system (Displaying
percentage cost relative to memory access time)

Fig. 2 shows the coherency costs for the asymmetric and
symmetric policies using both writeback and writebackOnHit
under a wider range of MiBench applications. Applications
that contained less than 2% system bus usage are not shown
due to irrelevance as they do not access the main memory
much.

The difference between the coherency costs for the asym-
metric policy and symmetric policy varied between 0.3% (for
the application Stringsearch) and 8.7% (for the application
Rijndael Decrypt). For the Stringsearch case, the coherency
cost showed minor improvement with only a 2.3% and a 9.3%
reduction in costs due to infrequent writes. However, in all the
other cases the coherency costs were reduced by 20% to 60%
in Fig. 2.

3) Secondary Core Traffic Impact on the Workload: Even
though the other cores do not handle any of the measured
workload, they can influence the operation of asymmetric
and symmetric policies. The secondary cores influence the
asymmetric and symmetric policies through data sharing and
competing bus traffic. In a multiprogramming environment, the
impact of the secondary cores on the primary core is mainly
caused by the differences in bus traffic generated by different
policies. Data sharing is less common in a multiprogrammed
environment and will be discussed in the multi-threaded sec-
tion.

The amount of bus load from the secondary cores is
dependant on the type and the frequency of memory accesses
performed by the secondary processors. This section will look
at the impact from read and write accesses generated by the
secondary cores.

For this experiment, only the Dijkstra application is shown
as other MiBench applications exhibited similar behaviour.
Synthetic secondary core workloads are used to allow for
adjustment of secondary core memory access patterns.

The results shown in Table III demonstrate secondary core



TABLE III
IMPACT OF SECONDARY CORE READ/WRITE TRAFFIC ON ASYMMETRIC
POLICIES WITH DIJKSTRA ON A WRITEBACK PRIMARY CORE (MEMORY

ACCESS TIME NORMALISED TO SINGLE CORE WITH NO TRAFFIC)
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Base 7.83 100.0 6.69 100.0 17.07
Priority 2.37 100.0 2.04 100.0 16.33
Cancel & Priority 1.30 100.0 1.21 100.0 7.78
Base 3.36 84.7 2.69 79.7 25.09
Priority 2.15 85.3 1.86 80.3 15.95
Cancel & Priority 1.30 95.6 1.21 91.4 7.79
Base 1.53 41.4 1.37 37.9 11.43
Priority 1.50 41.6 1.34 38.1 11.32
Cancel & Priority 1.28 51.0 1.19 46.3 8.10
Base 1.39 95.9 3.31 100.0 -57.86
Priority 1.26 95.8 1.48 100.0 -14.57
Cancel & Priority 1.26 95.8 1.21 100.0 4.13
Base 1.27 31.6 1.70 66.8 -25.05
Priority 1.26 31.7 1.40 67.1 -9.52
Cancel & Priority 1.26 31.8 1.20 67.0 5.08
Base 1.27 27.0 1.25 33.5 1.11
Priority 1.26 27.0 1.23 33.6 2.74
Cancel & Priority 1.26 27.1 1.18 33.5 6.67

None All Types 1.26 25.6 1.17 23.6 7.96

Secondary 
Core 
Traffic

Bus Arbitration 
Policies

Symmetric 
Coherency

Asymmetric 
Coherency

Asymmetric 
Coherency
(Memory Access 
Time Improve %)

Access 
Time

Bus 
Usage (%)

Access 
Time

Bus 
Usage (%)

High Read 
Traffic

Med Read 
Traffic

Low Read 
Traffic

High Write 
Traffic

Med Write 
Traffic

Low Write 
Traffic

read and write access traffic impacting the primary core run-
ning the Dijkstra application. The secondary core workloads
are considered background processes, so the results focus on
the impact on the primary core.

Under secondary core read traffic, the asymmetric coherency
policy was superior due to requiring fewer bus accesses for
coherency. This advantage peaked at a 25% improvement with
moderate bus traffic. Under secondary core write traffic, the
asymmetric coherency policy generated a higher bus traffic
than the symmetric. This is due to the writethrough policy of
the secondary cores in the asymmetric coherency policy. The
policy increased bus traffic and caused significant reductions
in performance for the asymmetric policy. In the worst case
situation, there was a 58% decrease.

However, when priority bus arbitration policies were ap-
plied, the impact of bus traffic was less important. For read
traffic the performance improvement was between 7.8% to
8.1% and for write traffic it was between 4.1% to 6.7%. The
single workload coherency improvement without bus traffic
was 8.0%. Secondary core workloads can cause a significant
traffic related performance detriment to the primary core,
for both the asymmetric and symmetric coherency policies.
However, the priority bus arbitration policies removed most
of these performance detriments.

4) Secondary Core Performance Degradation from Asym-
metric Coherency Policies: The asymmetric policy is designed
to sacrifice performance in the secondary cores to improve the
performance of the primary core. In a multiprogramming en-
vironment the cost will be the performance of the background
processes running on the secondary cores.

The results in Table IV showed that for asymmetric co-
herency the maximum performance decrease was solely due to
the secondary core writethrough policy. The maximum cost of
using writethrough was 31% and this decreased as bus traffic
was added. When the bus saturated, the asymmetric coherency
gave an improvement over the symmetric. This is because
increasing bus traffic, combined with round robin arbitration,

TABLE IV
IMPACT OF ASYMMETRIC POLICIES ON PERFORMANCE OF ONE

SECONDARY CORE RUNNING DIJKSTRA (NORMALISED TO A WRITEBACK
SYMMETRIC SYSTEM WITH NO BACKGROUND TRAFFIC)
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Base 3.72 98.3 3.83 99.8 -2.88
Priority 5.38 98.6 7.04 100.0 -23.59
Cancel & Priority 441.16 100.0 356.39 100.0 23.79
Base 4.41 99.8 4.01 100.0 9.93
Priority 4.46 99.8 4.24 100.0 5.18
Cancel & Priority 4.37 99.9 4.35 100.0 0.45
Base 2.13 71.8 2.56 83.1 -16.83
Priority 2.26 71.5 2.74 83.1 -17.48
Cancel & Priority 2.58 76.4 3.05 86.1 -15.51
Base 1.36 49.0 1.92 58.4 -28.87
Priority 1.37 49.0 1.93 58.3 -29.07
Cancel & Priority 1.73 52.2 2.26 60.3 -23.54

No Traffic All Types 1.00 25.7 1.45 36.3 -31.01
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favours the fewer bus accesses of the writethrough coherency,
opposed to the shorter overall access time of the writeback
coherency. However, when the primary core saturates the bus,
the cancel bus arbitration caused the bandwidth starvation of
the secondary cores.

B. Asymmetric Multi-threaded Workloads

This section looks at the possible performance improvement
asymmetric coherency policy can provide for a multi-threaded
application, where the workload is also asymmetric.

The test cases model a producer/consumer situation, con-
sisting of a single primary consumer thread with four data
producer threads that feed the primary thread data. Each thread
is associated with a core. The primary core load is much higher
than the individual secondary core loads. Spinlocks are used
to ensure the cores exchange data correctly, and our memory
access time results in this section will include the time the
cores spend idling in spinlocks.

There are three considerations that affect the performance
of the asymmetric coherency under multi-threaded workloads.
These are in addition to the behaviour discussed in Sec-
tion V-A. The considerations are: the memory access pattern
of the data sharing, the percentage split of shared versus non-
shared data, and the bus usage of the multi-threaded workload.

This section will first explore the data sharing patterns
and the percentage split of shared versus non-shared data for
asymmetric policies. Then it will explore the impact of bus
usage on the multi-threaded performance of the asymmetric
policies.

1) Sharing Interactions in a Multi-threaded System: We
first look at the impact of data sharing patterns between the
cores and the percentage of shared versus non-shared data.

The possible read and write interactions for data shar-
ing between cores are labelled in Table V. The basic pro-
ducer/consumer example was adapted with different types
of interactions and with varying percentages of non-sharing
writes performed by the primary core.

The main advantages of a symmetric writethrough policy
are that it avoids data sharing overheads in the coherency
and unnecessary fetches for writes. The main advantage of



TABLE V
TEST CASE LABELLING FOR POSSIBLE DATA SHARING INTERACTIONS

BETWEEN SECONDARY AND PRIMARY CORES

Secondary Core
Read Write Read/Write

Pr
im

ar
y

C
or

e

Read p.r s.r p.r s.w p.r s.rw
Write p.w s.r p.w s.w p.w s.rw
Read/ Write p.rw s.r p.rw s.w p.rw s.rw

a symmetric writeback policy is it reduces unnecessary writes
to the main memory for unshared data.

The proposed asymmetric policy combines the advantages
of the two symmetric policies for the operation of the primary
core. From the perspective of the primary core, the asymmetric
policy has the performance of the writeback policy for the
unshared data while operating with the reduced data sharing
coherency overheads of the writethrough policy.

Fig. 3 shows producer consumer data sharing, where the
primary core is the consumer and four secondary cores are
producers of the data. The secondary cores process data
packets before passing the data to the primary core with
a spinlock. The types of data sharing explored in Fig. 3
were labelled in Table V. The results show the increased
memory access latency of the best symmetric configuration
relative to the best asymmetric configuration. The memory
access time improvement ranged from -3.5% to 174% and
this corresponded to an execution time improvement of -1.3%
to 63.7%.

There were nine test cases explored in Fig. 3. In three of the
test cases, the data producers (secondary cores) do not produce
any data, which does not comply with the producer consumer
situation. The three test cases p.r s.r, p.w s.r and p.rw s.r
were included only to help explain coherency behaviour.
In these cases, there is no improvements observed for the
asymmetric policy as the secondary cores only performed
reads. Coherency deals with the propagation of write data,
so no actual coherency related data sharing is occurring.

The other six cases, where the secondary cores writes
to the shared data, show improvement from the asymmetric
coherency policy. Most of these cases show zero improvement
for the asymmetric policy at 100% data sharing and at 0%
data sharing. However, there is significant improvement around
70% data sharing.

This effect can be explained by considering that the results
are composed of the individual symmetric policies as shown
for p.rw s.w in Fig. 4. For 100% shared data, writethrough in
the secondary core reduces the costs for the primary core.
When there is 0% shared data (100% unshared data), the
writeback policy provides the best efficiency for the primary
core. However, the symmetric policies are best for either the
shared or the unshared data, but not both.

The asymmetric policy provides the advantages of both
symmetric policies for the primary core. Consequently, when
there is a mixture of shared and unshared data asymmetric
coherency is superior. The decreased efficiency of data ac-
cesses on the secondary cores did not effect the primary core,
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Fig. 3. Increased access time latency of symmetric compared to asymmetric
coherency. Sharing interaction labels are explained in Table V
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Fig. 4. The best system results that were used to calculate the sharing
performance for the data sharing p.rw s.w in Fig. 3

because of the asymmetric workload. The primary core had a
larger workload, which meant that the secondary cores were
still able to prepare their data for the primary core before the
primary core required it.

In most cases, symmetric writethrough and writebackOnHit
were able to equal the asymmetric policy at 100% data
sharing. However, there are two cases, p.w s.w and p.rw s.rw,
where the asymmetric policy is better at 100% data sharing.
In p.w s.w, the asymmetric was better than the symmetric
writethrough and writebackOnHit due to being able to cache
the writes on the primary core without coherency costs. In
p.rw s.rw, the symmetric writethrough and WritebackOnHit
are worse than the asymmetric for differing reasons. The
symmetric writethrough is worse due to not being able to cache
the primary core writes. While the symmetric WritebackOnHit
is worse due to the writeback on the secondary core requiring
a writeback request from the primary core.

Asymmetric outperforms all of the symmetric coherency
policies when there is a mix of sharing and non-sharing
data accesses. The memory access time improvement was
-3.5% to 174%, and there was a corresponding execution
time improvement of -1.3% to 63.7%. Furthermore, when
comparing individual policies, a single symmetric policy will
perform poorly at either 100% data sharing or 0% data
sharing. However, a single asymmetric policy provides good
performance in all the situations.

2) Bus Usage Impact on a Multi-thread System: All the bus
usage of a multi-threaded system is part of the workload, so
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Low Traffic High Traffic Highest Traffic

Description Write Policy

Base 2.250 26.53 2.676 40.61 2.816 51.13 1.260 77.77
Base 2.570 29.55 2.932 45.77 3.066 57.63 1.706 89.18
Base 3.099 38.41 3.428 58.64 3.583 72.56 1.974 92.43
Priority 2.163 26.79 2.622 40.96 2.786 51.44 1.234 79.18
Cancel 1.835 29.50 2.208 81.80 3.445 92.17 1.141 97.82
Priority 2.469 29.90 2.761 47.01 2.951 58.88 1.697 89.63
Cancel 1.937 30.50 2.224 69.03 2.741 81.69 1.573 97.96
Priority 2.937 39.10 3.257 60.12 3.470 73.97 1.964 92.84
Cancel 2.934 38.67 3.219 75.02 3.660 86.02 1.836 95.22
Base 1.660 19.51 1.835 32.03 1.907 42.40 1.145 79.86
Priority 1.541 19.81 1.640 33.26 1.770 43.83 1.126 81.03
Cancel 1.000 20.12 1.000 61.21 1.000 92.72 1.000 96.97
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the impact is different from interference bus traffic presented
in Section V-A3. In this section, the bus usage is increased or
decreased by adjusting the workload’s pseudo-processing time
between memory accesses.

Table VI shows the effect of increasing the bus usage for a
test case equalivant to the p.rw s.w at 70% sharing. These test
conditions showed high improvement in the previous section.
To generate low bus usage a long delay was used between
memory accesses, while the high bus usage was generated
with shorter time delays.

The results showed that asymmetric coherency is better
suited to improving performance of the primary core during
increased bus usage until the bus reaches a saturation point.
When the bus usage saturates the performance drops signifi-
cantly. This is due to the cancel bus arbitration policy causing
starvation in the secondary cores while the primary core is
completing its own workload (as seen in Section V-A4). When
this occurs, in a multi-threaded application, the primary core
and secondary cores are not working in parallel.

VI. CONCLUSIONS

Our contribution is the concept of asymmetric coherency.
We have designed an example and shown possible benefits.

Asymmetric coherency is a promising new concept for the
design of memory coherency. It provides another method that
hardware can be fine tuned to the asymmetry found in many
workloads. Our example design has an extremely low cost and
complexity. This makes the concept immediately applicable to
embedded MPSoC systems.

In the multiprogramming experiments, our results show the
asymmetric policy reduces coherency costs by 20% to 60%
for most of the test cases. We also measured the impact of
secondary core bus traffic. Traffic generated by reads would
increase the asymmetric policy improvement, while traffic
generated by writes would decrease the asymmetric policy
improvement. However, with priority bus arbitration policies,
the impact from considering secondary core traffic was very
small.

Our multi-threaded experiments focused on shared data
handling with the primary core dependant on secondary core

data. The results showed improvements in execution time of
up to 63.7% for the asymmetric compared to the symmetric
coherency. This corresponded to a 174% improvement in
memory access time. The asymmetric coherency gave an
improvement in almost all of the data sharing situations.

Future work will look at implementing runtime adaptivity
for cache coherency policies. Adaptivity will make the asym-
metric coherency policy useful in general purpose systems.
The runtime adaptivity will allow for configurability in the
choice of the primary core and also coherency policy changes
between symmetric and asymmetric configurations. Further-
more, we intend to create asymmetric coherency designs that
can scale to many-core architectures. This involves designing
for different memory hierarchy and interconnect situations.
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