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Abstract Current SoC design trends are characterized by

the integration of larger amount of IPs targeting a wide

range of application fields. Such multi-application systems

are constrained by a set of requirements. In such scenario

network-on-chips (NoC) are becoming more important as

the on-chip communication structure. Designing an optimal

NoC for satisfying the requirements of each individual

application requires the specification of a large set of

configuration parameters leading to a wide solution space.

It has been shown that IP mapping is one of the most

critical parameters in NoC design, strongly influencing the

SoC performance. IP mapping has been solved for single

application systems using single and multi-objective opti-

mization algorithms. In this paper we propose the use of a

multi-objective adaptive immune algorithm (M2AIA), an

evolutionary approach to solve the multi-application NoC

mapping problem. Latency and power consumption were

adopted as the target multi-objective functions. To com-

pare the efficiency of our approach, our results are com-

pared with those of the genetic and branch and bound

multi-objective mapping algorithms. We tested 11 well-

known benchmarks, including random and real applica-

tions, and combines up to 8 applications at the same SoC.

The experimental results showed that the M2AIA decreases

in average the power consumption and the latency 27.3 and

42.1 % compared to the branch and bound approach and

29.3 and 36.1 % over the genetic approach.

Keywords Network-on-chip � Mapping � Multi-objective

optimization � Immune algorithm � Power � Latency

1 Introduction

Electronics system design is being revolutionized by the

widespread adoption of the system-on-chip (SoC) para-

digm. A SoC can integrate hundreds of cores on a single

die. In such a scenario, SoC designers are faced with the

task of meeting the design requirements in a reduced time-

to-market. To be cost effective, SoCs are often program-

mable and integrate several different applications on the

same chip (i.e. cell-phone, personal digital assistant) [1].

Although sharing many of the hardware components on the

SoC, the different applications executed on the same die

may present very different communication requirements

and design constraints. Such type of system is called multi-

application [1]. A communication centric paradigm, net-

work-on-chip (NoC), has been adopted to address the

interconnection issues of current SoCs. NoC has become

the heart of the SoC [2]. A NoC is an integrated network

that uses routers to allow the communication among the

computation structure components. Routers carry out the

communication exchange by means of packets. Packets

consist of a set of minimal transmission units called flits

(flow control digits). The information is queued at each

router until the communication through another router or

HW computational core has succeeded. The NoC config-

uration has a great impact on the cost and on the

M. J. Sepúlveda (&) � W. J. Chau � M. Strum

Microelectronics Laboratory-EPUSP, University of São Paulo,

São Paulo, Brazil

e-mail: jsepulveda@lme.usp.br

W. J. Chau

e-mail: jcwang@lme.usp.br

M. Strum

e-mail: strum@lme.usp.br

G. Gogniat

LabSTICC, University of South Brittany-UBS, Lorient, France

e-mail: guy.gogniat@univ-ubs.fr

123

Analog Integr Circ Sig Process (2012) 73:851–860

DOI 10.1007/s10470-012-9869-9



performance of the SoC [2]. A NoC may be configured by a

set of global parameters (topology, size and mapping) and

local parameters (link width, buffer configuration, flow

control, routing technique, arbitration mechanism) leading

to a very large NoC design space to be explored. The final

configuration of the NoC must support the requirements of

all the applications of the SoC. NoCs designed for a par-

ticular application does not necessarily meet the require-

ments of the remaining applications. Finding an optimal

global solution is not an easy task [2]. This paper addresses

the mapping problem. It deals with the allocation of HW

cores onto the network routers such that all the applications

requirements of the SoC are met and a set of performance

metrics is optimized.

According to Murali et al. [1], NoC mapping is one of

the most critical parameters in NoC design. Previous works

showed that an optimal mapping may enhance the NoC

performance up to 60 % [2]. Mapping is a quadratic

assignment problem that is known to be NP-hard [3]. The

search space of the problem increases factorially with the

system size [4]. Furthermore, the mapping solution must

satisfy all the system requirements consisting of multiple

desired objectives that are frequently in contrast with each

other [4]. To the best of our knowledge, only Murali et al.

[1] addresses the multi-application NoC mapping with the

aim of minimizing communication delay by exploiting the

possibility of splitting traffic among various paths. How-

ever, previous works show that mapping strategies that

search for single performance index optimization may lead

to unacceptable values for other performance indexes [4].

The best mapping solutions have been obtained using a

multi-objective strategy [4–6]. As a result, the designer

obtains a set of best mapping alternatives (Pareto optimal

set, nondominated solutions) featuring different trade-offs

among the performance indexes [4–6]. Pareto dominance is

used to compare and rank the mapping solutions. A map-

ping belongs to the Pareto optimal set if there is no other

mapping that can improve at least one of the objectives

without degrading any other objective (nondominance)

[4–6, 8]. Three multi-objective mapping strategies, PBBB,

MGAP and multi-objective adaptive immune algorithm

(MAIA) have been proposed to solve single application

NoC mapping [4, 5]. Their goal was the optimization of

latency and power consumption for a mesh-based NoC.

PBBB uses a branch and bound algorithm [4], MGAP uses

a genetics algorithm [5] and MAIA uses an adaptive

immune algorithm (AIA) [6].

This paper is an evolution of the work presented at [6].

In this work we propose M2AIA an improved version of

our MAIA, to solve the multi-application NoC mapping

problem. M2AIA explores the mapping space producing a

set of best mapping alternatives. We compared our solution

with modified versions that we implemented for the PBBB

(MA_PBBB) and MGAP (MA_MGAP) algorithms. The

Pareto optimal set of all 3 algorithms were then evaluated

and compared using a NoC-based TLM (SystemC) simu-

lation environment. The remaining text is divided into five

sections. Section 2 presents an overview of the previous

multi-objective mapping works. Section 3 presents the

M2AIA mapping algorithm. Section 4 shows our experi-

mental results and the comparison among M2AIA,

MA_PBBB and MA_MGAP. Finally we present our con-

clusions in Sect. 5.

2 Related works

NoC Mapping has been widely explored [1, 4–8]. The

purpose of these previous works is to find a NoC config-

uration that satisfies the requirements of the SoC.

According to the number of the optimization objectives and

the number of application supported by the SoC, previous

works can be divided into 3 categories: (1) Single objective

and single application [7, 8]; (2) Multiple objective and

single application [4–6]; and (3) Single objective and

multiple applications [1]. All works [1, 4–8] used an

application characterization graph (APCG) that describes

the communication requirements.

The works that belong to the first category [7, 8] pre-

sented a heuristic algorithm that selects the first NoC

configuration that satisfies the single application SoC

latency requirement. However, the works of [4–6] show

that for many applications a single objective optimization

is not enough. Moreover, the requirements of the set of

applications may be contrasting.

The works of the second category [4–6] employed

multi-objective algorithms to solve the mapping problem

for mesh-based NoCs while optimizing latency and power

indexes. In Ascia and Catania [4] PBBB, a branch and

bound algorithm is proposed. PBBB maps the cores

according to their communication traffic, creating a tree of

mapping alternatives. At the bound phase, each mapping

alternative is evaluated according to both optimization

objectives through event-driven trace-based simulation

(dynamical model). The best mapping alternatives are kept

while the others are pruned. The branch and bound phases

are repeated on the survivors. In Jena and Sharma [5]

MGAP, a genetic mapping algorithm is presented. MGAP

codifies different mapping alternatives in chromosomes.

The mapping alternatives are evaluated through an ana-

lytical model (static model). Crossover and mutation

operators are used in order to explore the mapping space

(create new mapping alternatives).

Despite their good results, these strategies present some

difficulties. The branch and bound strategy has two main

disadvantages. First, the performance exploration time is

852 Analog Integr Circ Sig Process (2012) 73:851–860

123



highly dependent on the number of cores that must be

mapped. Therefore, the usefulness of such strategy is

limited to small systems [8]. Second, the search tree may

grow exponentially without improving the solution [8]. The

genetics strategy is a probabilistic heuristic that depends on

the configuration of the genetic operators. Its effectiveness

may be reduced in order to speed-up the algorithm’s con-

vergence. Furthermore, the lack of diversity (it progresses

around the best solution) may result in suboptimal solu-

tions [9]. AIA may overcome these drawbacks [10]. They

integrate a wide set of features that improve local search

while preventing the premature convergence by preserving

the diversity of solutions in the population [10]. Previous

works [10–12] show that AIA speeds-up the execution time

and improve the search task over the genetic algorithms.

Moreover, the PBBB and the MGAP use only a static or

dynamic model approach to evaluate and select a mapping

alternative. This characteristic can generate suboptimal

solutions [6].

Our previous work of Sepulveda et al. [6] combines

both; a static-dynamic model approach to find the mapping

alternatives that optimizes the performance metrics. It uses

an artificial immune algorithm to explore the efficiently the

huge NoC design space. MAIA integrate a wide set of

features that improve local search while preventing the

premature convergence by preserving the diversity of

solutions in the population. The pareto optimal set is then

simulated through a SystemC-TLM SoC model. Despite

their good results, these strategies must be modified to

support the new systems requirements, characterized by

supporting different applications that may have different

performance requirements and design constraints.

The work of Murali et al. [1] is the only previous work

that belongs to the third category. Murali et al. [1] proposes

a heuristic capable of select the NoC configuration that

satisfies the latency requirements of all the applications

(just a single optimization objective).

For the best of our knowledge our work is the first

attempt that addresses the multi-application NoC mapping

while optimizing multiple performance indexes.

3 M2AIA

An immune system protects the organism by producing

antibodies capable of identify attackers (antigens). It con-

stantly monitors the defense process through the evaluation

of the affinity and avidity. They quantify the match between

antigen–antibody pairs (for recognition) and between a

single antibody and the whole antibody population (for

diversity). The survival of a specific antibody depends on

these values. The immune system integrates a wide set of

mechanisms: pattern recognition (affinity), clonal selection

(cloning the antibodies that best match the antigen), clonal

suppression (killing the worst antibodies), mutation (mod-

ifying a set of antibodies), affinity maturation (creating a

new set of antibodies), learning and memory (storing the

successful antibodies). AIA have been successfully used in

network security [11], parallel processing [13], image

processing [14], robotic [15] and many challenging opti-

mization problems [16].

M2AIA uses the MAIA adaptive immune algorithm to

solve the mapping problem. Table 1 shows the metaphors

employed by MAIA. The algorithm is depicted on Fig. 1.

3.1 Mapping algorithm for multiple-objectives

and a single application

MAIA performs the mapping search using static evaluation

(analytical model). MAIA determines the best NoC map-

pings (Pareto optimal set) which are then simulated

through a TLM-based NoC performance evaluation

framework. The simulation performs the dynamic evalua-

tion of the mapping alternatives under different traffic

conditions.

MAIA uses the APCG of the application and the size of

the NoC to find the set of mapping alternatives that opti-

mizes the objective functions. MAIA is composed of six

phases.

Phase 1 Generating the initial set of mapping alterna-

tives. It is composed of M1 random generated and

designer suggested mapping alternatives. Each mapping

consists of an IP core-NoC router pair.

Phase 2 Evaluation of the objective functions, power

consumption and latency of all the mapping alternatives.

Its value will be used to rank the mapping alternatives.

Note that MAIA can support any objective functions as

well.

Phase 3 Ranking of mapping alternatives according to

the dominance value of the objective functions results. A

mapping is dominated by the solutions with lower

Table 1 Immune system metaphors

Immune system feature MAIA

Antigen Application characterization graph (APCG)

Antibody Mapping alternative

Pattern recognition Multi-objective quantification

Clonal selection Top mapping alternatives selection

Clonal suppression Mapping alternatives elimination

Mutation Mapping alternatives modification

Maturation Mapping alternatives creation

Learning and memory Mapping solutions

1 All literals in italic refer to designer specified parameters.
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objective function values [4, 5]. Each m mapping is

assigned a fitness value r(m, i) based on its rank d(m, i)

at i iteration, as in (1).

r m; ið Þ ¼ 1þ dðm; iÞ ð1Þ

Phase 4 Refining the Pareto optimal set. The N non-

dominated mapping alternatives (r(m, i) = 1) are copied

and stored in memory (Pareto optimal set). The non-

dominance characteristic of all the stored mapping

solutions is verified. The new non-dominated alterna-

tives are kept as part of the set of solutions. The

remaining are erased from the memory. The copied

mapping alternatives are modified using two mutation

operators: shift (random shift of IPs) and somatic point

(random swap of two IP). Figure 2 shows the M2

resulting mapping alternative after a shift of 2 positions

of M1. Figure 3 shows the 2-positions somatic pint

application.

Phase 5 Ranking the remaining (M–N) dominated

mapping alternatives (r(m, i) = 1) according to two

parameters: (1) the objective functions and (2) avidity

(normalized sum of euclidean distances between every

solution pair). The purpose is to identify and penalize

mapping solutions in densely populated areas.

Phase 6 Generating M new mapping alternatives. The

new set of mapping alternatives comes from the

crossover of the N mutated mappings (step 4) and the

(M–N) mapping alternatives (step 5). The crossover

operator (Fig. 4) creates a new mapping (M3) from the

combination of two different mappings (M1, M2).

Fig. 1 MAIA algorithm

Fig. 2 Shift of M1 mapping

alternative
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MAIA stops when no more significant improvement can

be expected.

3.2 Mapping algorithm for multi-application SoC

In order to solve the multi-application SoC mapping,

M2AIA adopts the combination of the APCGs of each

application of the SoC in order to generate a synthetic

APCG, used as an entry of the optimization process. The

new APCG is called of Worst-Case APCG (WC-APCG). It

includes all the IP cores integrated at the SoC. Figure 5

shows the mapping technique M2AIA. For the communi-

cation flow between every pair of IP cores, the tightest

communication requirements across all the applications are

selected as the requirements of the WC-APCG. Thus the

design constraints of all the individual applications are

subsumed in the WC-APCG and any NoC mapping that

satisfies the constraints in the WC-APCG will satisfy the

constraints of each individual application. The WC-APCG

is then used for the mapping process. Figure 6 shows an

Fig. 3 Somatic point to a

mapping alternative M1

Fig. 4 Crossover of M1 and

M2 mapping alternatives
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example of the generation of a WC-APCG from a SoC that

executes 2 applications. Each application is described by

an APCG. The applications share 5 of the 6 cores of the

SoC. Each IP pair is characterized by the latency (cycles)

and power (mW) requirements. The WC-APCG is com-

posed of 6 cores, whose IP-pairs are characterized by the

tightest requirements for both characteristics: latency and

power. Once M2AIA obtains the Pareto optimal set from

the WC-APCG, a dynamical evaluation is performed using

the SystemC-TLM SoC simulation and evaluation

framework.

4 Analytical model

MAIA uses an analytical NoC model built from the

queueing theory. In this approach, the NoC routers are

represented as a collection of service centers, compose of

queues and servers, which purpose is to attend the com-

munication of packets. Figure 7 illustrates a single service

center. Four processes can be distinguished at the model:

(1) arrive of packets at the service center; (2) wait in the

queue if necessary, when the server is busy; (3) receive

service from the server; and (4) depart of packets.

Each service center is characterized by 3 parameters: (1)

workload intensity, determined by the traffic conditions
Fig. 5 Proposed approach M2AIA

Fig. 6 Example of WC-APCG generation
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and expressed as the packet interarrival time; (2) service,

determined by the service time; and (3) capacity, expressed

as the queue size. The variation of the parameters of the

model allows the description of different NoC configura-

tions and traffic conditions.

Let ki be the packet arrival rate at the router i. It is

compose of the communication flows that request com-

mutation service from all the ports of the router. Let Si the

service time expend by the router to commutate a packet.

Then the service rate li is given by (2).

li ¼
1

Si
ð2Þ

The traffic intensity at the router i is given by (3)

qi ¼
ki

li

: ð3Þ

The bottleneck of the system will be the router with the

higher q value [17]. The residence time Ti at each router

can be calculated by (4). Ti represents the average time

spent by the packet at the router.

Ti ¼
Si

1� qi

ð4Þ

The commutation time Tci of the router, given by (5), is

the result of the product of the number of commutation

performed by the router gi and the residence time Ti.

Tci ¼ niTi ð5Þ

The NoC is modeled as an open network of service

centers, that is, packets come from sources to be commuted

by the NoC routers until being deliver to a specific sink,

target of the communication. Network of queues have

proven to be useful models to analyze the performance of

complex systems [17]. For specific model parameter

values, it is possible to calculate several performance

metrics by solving (2–5), yielding performance measures

such as latency, router utilization (the proportion of time

the router is busy), residence time, queue length (the

average number of packets at the router) and router

throughput (the rate at which packet pass through the

router.

5 Experimental results

M2AIA was tested and compared with the MA_PBBB

(branch and bound) [4] and MA_MGAP (genetic-based) [5]

multi-objective algorithms. MA_PBBB and MA_MGAP

were modified in order to support multi-application mapping.

We implemented M2AIA, MA_PBBB and MA_MGAP in

C??. All were executed on a single Pentium IV–1.73 GHz

personal computer. For comparison purposes, all 3 algo-

rithms perform the mapping exploration using the same

analytical model. The purpose of our experiments was to

minimize the latency LNoC and the power consumption PNoC.

The objective functions are given by (6) and (7) respectively.

LNoC ¼
P

tacc þ hs;d � 1
� �

tc þ tlea

# flits
: ð6Þ

PNoC ¼
P

hs;d þ 1
� �

PR þ hs;dPL

# flits
ð7Þ

LNoC is determined by three components: (i) the time tacc

to access the NoC and insert the flit; (ii) the commutation

time tc, spent by the intermediate h routers from s source to

d destination and; (iii) the time tlea required to leave the

NoC. PNoC is determined by PR and PL, the power

consumed in the routers and links respectively. PR and PL

are proportional to the channel utilization rate and router

utilization rate respectively.

All the tests were performed on a homogeneous

wormhole 2D mesh-based NoC, a XY routing algorithm, 4-

flits sized buffers and a round-robin arbitration technique.

Table 2 shows the adopted M2AIA parameters. The multi-

objective mapping algorithms were used to solve the

mapping problem of 11 multi-application benchmarks.

Table 3 shows the characteristics of the experimental work.

The APCG values of each benchmark were randomly

selected. Benchmarks T1-T7 combine different well-

known embedded communication patterns [8].

Benchmarks T8-T11 are part of MiBench tool suite. Each

benchmark is composed of a set of applications targeting a

specific area of the embedded market: automotive, con-

sumer devices and security [10]. T8 represents embedded

processors in network devices like switches and routers. It

involves the shortest path calculation, tree and table lookups

and data input/output. T9 represents typical applications of

the automotive systems like air bag controllers, engine

performance monitors and sensor systems. The processors

require performance in basic math abilities, bit manipula-

tion, data input/output and simple data organization. T10

focuses mainly on multimedia applications. It includes

encoding/decoding algorithms, image color format conver-

sion, image dithering and color palette reduction. T11

includes several common algorithms for data encryption,

decryption and hashing.

Fig. 7 Model of the router at the NoC
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Figures 8 and 9 show the analytical LNOC and PNOC

results for the pareto optimal set of the three approaches.

Figures 10 and 11 show the TLM-based simulation results

for the NoC power and NoC latency respectively of the

Pareto optimal set of the 3 algorithms. The comparisons

among these results show the fidelity of the prediction of

our model. However the lack of precisions is because the

difficulty of the analytical (static) model to represent the

dynamic behavior of the NoC. The M2AIA algorithm

produced better results for all benchmarks. M2AIA found

NoC mappings that satisfy the requirements of the set of

applications and also achieves higher optimizations in

power and latency when compared with the MA_PBBB

and MA_MGAP. Our algorithm decreases the power con-

sumption in average 27.3 and 42.1 % and the latency 29.3

and 36.1 % over the MA_PBBB and MA_MGAP,

Table 2 M2AIA parameters

Parameter Value

Initial population M (phase 2) 600

Latency objective function LNoC

Power objective function PNoC

Mutation probability (phase 5) 0.1

Crossover (phase 7) 40 %

Stop criterion 0.1

Table 3 Characteristics of the experimental work

Benchmark #IP’s #APCGs Type

T1 9 5 Hot spot/transpose

T2 16 Hot spot/transpose/random

T3 25

T4 36

T5 49

T6 100

T7 12 3-node rooted (1, 2, 3) forest

T8 7 3 Networking

T9 16 8 Automotive

T10 5 Costumer devices

T11 4 Security

Fig. 8 NoC latency static evaluation results

Fig. 9 NoC power static evaluation results

Fig. 10 NoC latency dynamic results

Fig. 11 NoC power dynamic results

Fig. 12 Average frequency distribution of results
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respectively. The best improvement over MA_PBBB was

for T3 (52 and 51 % for power and NoC latency respec-

tively). The best improvement over MA_MGAP was for

T10 (34 and 50 % respectively).

Figure 12 shows frequency distributions for the function

cost(x) that is the addition of both objective functions

values LNOC and PNOC. Although the lack of physical sense

of cost(x), it gives the designer an idea of the quality of the

obtained mapping solutions of each approach. The results

correspond to the last 600 mapping alternatives for T6, the

benchmark that achieves the higher values of latencies.

Figure 12 shows that M2AIA has a higher probability of

finding better solutions than MA_MGAP and MA_PBBB.

This behavior is repeated for all the benchmarks.

We evaluated the performance of the 3 algorithms. We

use three performance metrics: 1-Spacing P (distance

between the mapping solutions); 2-Spread A (distance

among all the mapping alternatives); and 3-Execution time

T (time spent to reach the stop criterion). Table 4 shows the

result of the 3 metrics. The execution time results are

expressed as a percentage of time spent to find the solution

of the smaller system (7 IPs).

The results show that M2AIA achieves a lower spacing

and spread values, so that it performs a uniform explora-

tion. Moreover, M2AIA speedups the mapping search

almost 100,000 times when compared to the MA_PBBB

and MA_MGAP techniques. These are desirable charac-

teristics for a search algorithm [6]. The results show the

M2AIA independence of the number of IP cores. Also

M2AIA obtained better results than all other reported

algorithms in a shorter time.

6 Conclusions

In this paper we propose the use of a M2AIA, an evolu-

tionary approach to solve the multi-application NoC map-

ping problem. The contributions of our work include the

adoption of an adaptive immune algorithm combined with

the use of both, static and dynamic mapping evaluation

techniques in order to improve the efficiency of the

exploration of the multi-application mapping space. Pre-

vious multi-objective algorithms were modified in order to

support the multi-application mapping. M2AIA was tested

for a mesh-based NoC targeting the minimization of the

total amount of power consumption and latency. M2AIA

may use others objective functions and NoC topology.

As future work, we plan to refine our analytical model in

order to include a wider set of traffic characteristics:

topologies, natures (long-range-dependence) and types

(QoS). We also plan to use M2AIA to define the NoC

sizing and NoC topology parameters.
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