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As electronic systems are pervading our lives, MPSoC (multiprocessor system-on-chip) security is becoming an important
requirement. MPSoCs are able to support multiple applications on the same chip. The challenge is to provide MPSoC security
that makes possible a trustworthy system that meets the performance and security requirements of all the applications. The
network-on-chip (NoC) can be used to efficiently incorporate security. Our work proposes the implementation of QoSS (quality of
security service) to overcome present MPSoC vulnerabilities. QoSS is a novel concept for data protection that introduces security
as a dimension of QoS. QoSS takes advantage of the NoC wide system visibility and critical role in enabling system operation,
exploiting the NoC components to detect and prevent a wide range of attacks. In this paper, we present the implementation of a
layered dynamic security NoC architecture that integrates agile and dynamic security firewalls in order to detect attacks based on
different security rules. We evaluate the effectiveness of our approach over several MPSoCs scenarios and estimate their impact
on the overall performance. We show that our architecture can perform a fast detection of a wide range of attacks and a fast

configuration of different security policies for several MPSoC applications.

1. Introduction

SoC designers have to face up tight development times as
well as the rapid evolution of current applications [1]. To
be cost effective, SoCs are often programmable and integrate
different applications on the same chip (i.e., cell-phone,
personal digital assistant) [1]. Although sharing many of
the hardware components on the SoC, different applications
executed on a single chip may present very different require-
ments and design constraints. Such type of system is called
multiapplication [2]. MPSoCs have been proposed as a
promising architecture choice to overcome the new challeng-
ing application requirements. A MPSoC integrates multiple
programmable processor cores, specialized memories, and
other intellectual property (IP) components into a single
chip [1]. MPSoC platforms allow simultaneous execution
of several applications in the same structure. Current
ubiquitous computing and flexibility in SoC design trends

promote the resource sharing and upgrading capabilities. As
MPSoCs are pervading our lives, security is emerging as an
extremely important design requirement. Many of the cur-
rent electronic systems embedded into an MPSoC are used
to capture, store, manipulate and access sensitive data,
and perform several critical functions without security
guarantee [3]. Due to the increasing complexity, flexibility,
intrinsic embedded constraints, and strict requirements, the
implementation of security is considered as a challenging
task. The security at MPSoC is specially challenging, as the
flexibility offered by the platform also causes vulnerability.
Each application supported by the MPSoC is characterized
by a different set of security rules, called security policy.
The set of applications can be mapped dynamically on the
MPSoC. Therefore, there is no a single and static security
requirement, but a set of ever changing security policies
that must be satisfied. The MPSoCs security policy must
be able to supply different levels of security and be capable



of changes during operation time. A McAfee report [4]
estimates an exorbitant increasing of embedded attacks in
the last 5 years and loses of billions of dollars [3]. MPSoC
can be attacked via hardware/software [3]. Software attacks
are responsible for 80% of security incidents [4]. All software
attacks start with an abnormal communication. In this paper,
we address protection of the MPSoC against software attacks
by implementation of security policies at the NoC-based
communication structure.

In order to support the MPSoC high communication
requirements, the network-on-chip (NoC) approach is em-
ployed [5-7]. An NoC is an integrated network that uses
routers to allow the communication among computation
components. Data flows through the NoC as packets. The
integration of security at the NoC is naturally advantageous
[8]. The NoC may contribute to the overall security of the
system, providing the ideal mean for monitoring systems
behavior and detecting specific attacks [8]. The communi-
cation structure is becoming the heart of the MPSoC [7]. It
has a significant impact on the overall MPSoC performance.
To make feasible MPSoC protection by NoCs, the security
policy must be customized in order to provide a better
tradeoff between system performance and security. Our work
proposes the implementation of QoSS (quality of security
service) to overcome present SoC vulnerabilities. QoSS is a
novel concept for data protection that introduces security
as a dimension of QoS (quality-of-service). In contrast with
previous works, different security levels deployment allows
the best tradeoff between system security and performance
requirements. In our work, QoSS is implemented at the
network-on-chip (NoC) to provide predictable security lev-
els of the system by adding functionality to the routers of
the network and consequently changing some local con-
figuration parameters or modifying the network interfaces.
The goal of our work is to present a layered dynamical
NoC-based architecture to efficiently meet the changeable
MPSoC security requirements. Our hierarchical architecture
distributes the security policy management by partitioning
the NoC topology into different security zones (low NoC),
ruled by a local security policy and connected through a
global interconnect (high NoC), which implements a global
security policy. Our hierarchical approach improves system’s
performance while effectively handling the security policy
changes. Each zone integrates a set of mechanisms capable
of being configured according to QoSS needs of each
application. We show that our architecture can perform
a fast detection of a wide range of attacks and a fast
configuration of the different security policies for several
MPSoC applications. We also show that penalties due to the
integration of the dynamic NoC-based security architecture
are limited to a fraction of time and space of the system. The
different levels of security of each security zone arise from the
configuration of the parameters corresponding to the NoC
security mechanisms. Two techniques are employed in order
to achieve an efficient configuration: (1) security mecha-
nisms are implemented hierarchically, therefore, avoiding
interruption in NoC execution; (2) QoS (quality-of-service)
mechanisms are employed to provide predictable penalties
while the network interfaces are modified. The experiments
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were performed using a SystemC-TLM-timed simulation
framework. It automatically carries out performance evalua-
tions for a wide variety of MPSoC scenarios.

In summary, the novelties of our work are as follows:

(i) implementation of a layered dynamical MPSoC secu-
rity by the use of a hierarchical NoC, we divide the
MPSoC security policy into global and local ones,
which is suitable for dynamic systems;

(ii) creation of security zones in the MPSoC;

(iii) implementation of QoSS for hierarchical NoCs.

2. Previous Works

Security integration at the NoC level was addressed in the
works of [8, 9]. They take advantage of the NoC wide system
visibility and critical role in enabling system operation,
exploiting the NoC to detect and prevent attacks. However,
they implement a single-level static security, which may be
inefficient as a solution for the highly changeable MPSoC
security requirements. The work presented in [6] proposes
the integration of ciphering techniques at the network
interface in order to ensure the secrecy of the exchanged
information through the NoC. The proposed mechanism
ensures that no unencrypted data leaves the NoC. A key-
keeper secure core is responsible for the key distribution
in the NoC. New keys can be downloaded and stored in
the key-keeper core by using encryption techniques. The
papers [8-10] integrate a table at the network interface
containing the access control rules of each IP. They specify
how a component of the NoC can access the protected
device. Packets that do not satisfy these access control rules
are discarded. The purpose of [9] is to prevent attacks by
verifying the source and size of the packets. The packets that
do not obey the communication rules are discarded. This
work also integrates a secure network manager component
to monitor the NoC behavior. Its purpose is to prevent four
common NoC attacks: denial-of-service (DoS), draining,
extraction of secret information, and modification. The filter
of [10, 11], called data protection unit (DPU), enables the
communication only if the type of operation requested
by the initiator of the communication is authorized. The
work of [12] proposes an architecture composed by three
modules in order to avoid code injection attacks: (1) SPU
(stack protection unit), to track the transactions; (2) ITU
(instruction trace unit), to track the instructions; (3) LSM
(local security manager), to react upon the reception of an
alert signal of SPU or ITU. These previous works show the
main role of the NoC in the security of the system. It is
a powerful structure for the surveillance and detection of
attacks in SoCs. However, the adoption of these previous
solutions to address MPSoC security challenges present three
main limitations. (1) They implement a single NoC security
level for the entire SoC; (2) they implement static security
policies; (3) they are not appropriate for multithreaded
systems. In our previous work [5], we developed a dynamical
NoC-based protection for SoCs. However, it uses central
control blocks that present a strong impact on the overall
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area due to link overhead. The purpose of the present work
is to overcome these limitations.

3. Security

Many SoCs interact with other electronic devices, in many
cases wirelessly. By interacting with other digital devices, an
SoC may receive viruses (or other similar malicious pieces
of code). Among the motivations for someone to attack
a SoC, we underline three examples: (1) economical gain
by obtaining confidential information (e.g., passwords, IP
bitstreams) stored in an SoC; (2) reputation: a hacker may
attack a SoC by viewing this action as a personal challenge;
(3) vandalism: the purpose is to cause loss or damage to a
SoC. Viruses may be used for this purpose.

Attacks exploit different system vulnerabilities. An attack
can be defined as any unauthorized attempt to access or to
use the system resources [3]. An attack can be conducted
through three different ways: (1) software: tampering with
executable instructions through the communication struc-
ture [3]; (2) microprobing: an invasive technique that
involves physical manipulation of the system [5]; and (3)
side-channel: based on information gained from the physical
implementation, including timing analysis, power analysis,
electromagnetic analysis, and fault induction [6]. According
to the purpose of the attacks, they can be classified into three
categories: (1) extraction: unauthorized reading of critical
data that is being exchanged through the network from/to
a secure target; (2) modification: unauthorized change of
critical data that may be done through writing actions, state
modifications, data creation or removal; (3) denial of Service,
whose aim is to bring down the system performance.

In order to prevent and to mitigate attacks to the NoC,
security services can be implemented. The main function
of security services is to protect network resources and data
exchanges by means of communication management [9, 11].
There are six security services [10]: (1) confidentiality which
ensures the data secrecy; (2) integrity which assures that data
is kept unchanged during any operation; (3) authentication
which validates the sender IP integrity; (4) access control
which allows or denies the use of a particular resource; (5)
availability which ensures the use of the network resources;
(6) nonrepudiation that maintains evidence of NoC commu-
nication events. It has been shown that the most successtul
attacks are the software-based ones [3]. One of the most
obvious threats to MPSoC security during its normal oper-
ation occurs at its interface to external devices, frequently
involving reconfigurable devices or wireless communication
IPs embedded onto the SoC. In such cases, the vulnerable IPs
fall under control of an external attacker. Thus, these IPs may
become malicious. Under the attacker’s control, the infected
IPs may try, for example, to obtain sensitive information, like
passwords or FPGA bitstreams, stored inside the SoC, and
send it to the external world. An interface IP may also become
a door by which viruses enter the SoC. There are known
cases of SoC attacks that have succeeded [4]. In our work,
we consider attacks that take advantage of the lack of MPSoC
security upgrading. However, our architecture can defend
against a broader range of attacks. MPSoC’s characteristics

demand that security policy must be upgraded as a response
of the execution of a new application on it. We consider, for
example, that there is an MPSoC designed to support three
applications (AI, A2, and A3). Initially, the set of applications
Al and A2 is being executed in the MPSoC when, at some
instant, the application A3 must be executed. The tasks of A3
are mapped onto the components of the MPSoC. The task
that performs critical functions and the sensitive information
(i.e., a ciphering key or personal data) of A3 is mapped
together with the tasks of Al and A2. The tasks of A3 will
be unprotected, if the security policy that defines the access
control rights is not upgraded for the new scenario. An
attacker can take advantage of this threat and use the rights
over Al and A2 to expose/modify the sensitive information
of A3 or/and avoid the utilization of the MPSoC resources by
the tasks of A3 by keeping busy the component with a never-
ending AI/A2 task execution.

4. Quality of Security Service

4.1. Security Mechanisms. The implementation of security
services is carried out through security mechanisms which
increase the complexity of the NoC. Optimal NoC config-
uration demands a deep exploration of the wide NoC design
space. Recently, the work in [13] proposes the quality-
of-security-service QoSS (quality-of-security-service) for
extrachip (conventional) networks. It explores the tradeoff
between the system trustfulness and its performance. The
traffic of a single embedded application may integrate several
flows, each of which characterized by different security
requirements. The QoSS concept allows differentiated treat-
ment for the data exchange carried out through the NoC.
The QoSS can be implemented either by adding functionality
to NoC routers and consequently changing some local con-
figuration parameters or by modifying network interfaces.
Different security levels are implemented through security
mechanisms. The security choices represent a special config-
uration of the security mechanisms. The security mechanisms
use the embodied information within the packet to perform
access control and authentication on the packet arriving at
(1) the NoC interface or (2) the router. For comparison
reasons, we addressed access control and authentication
services in order to neutralize extraction and modification
attacks. Additional security service can be handled with
complementary cyphering techniques [8]. Access control
and authentication security mechanisms are implemented as
firewalls. Each firewall stores the security policy information
of each resource in a security table. Whenever a transaction
takes place, the information embodied in the packet is
checked against the security table information.

4.2. Access Control. It regulates NoC traffic, allowing or deny-
ing data exchanges between a master-slave pair based upon a
set of rules. The communication control flow was modified
to manage packet accesses by using the data stored in the
security table of the firewall which contains the access rights
of each MPSoC computation component. The rights change
according to the applications that are mapped on the MPSoC
at that time. Our access control service implements four
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TABLE 1: Access control levels. TaBLE 2: Authentication levels.

Level N oV RV Level NY% PV CvV

LO LO

L1 X L1 X

L2 X X L2 X X

L3 X X X L3 X X X

security levels, which arise from the combination of three
security mechanisms. Note that our method can support
any number of security levels. Table 1 shows the different
access control levels. A higher security level compares a larger
number of information embodied in the packet (source, type
of operation, and master role). Unauthorized packets are
discarded.

SV: it verifies the source/target of the transaction that
is, the rights that the master has over the target slave com-
ponent. It identifies the task and the thread authorized for
each transaction.

OV: it verifies that the authorized operations are executed
in the correct MPSoC resources. It also regulates the memory
access through the verification of the fields: address, speci-
fying the memory addresses involved in the operation; size,
corresponding to the maximal range of memory addresses
capable of being modified by the operation; time,stating the
number of memory modifications allowed by the transac-
tion.

RV: it verifies the role of the initiator component of the
transaction.

The SV offers a basic access control. It verifies the exist-
ence of the message destination and that the master and
slave components have not identical NoC addresses. Such
characteristic avoid possible DoS (Denial of Service) attacks
through livelock, characterized by the insertion of a packet
that cannot reach its destination, and draining attacks, which
is characterized by the intentional wasting of NoC resources.
The OV can be used to detect buffer overflow attacks, one
of the common embedded attacks [3]. It explores the rights
of an authenticated component in order to perform unau-
thorized operations [3]. The RV mechanism includes the
operation context of the master of the transaction.

4.3. Authentication. The authentication security service ver-
ifies the integrity of the source of critical data. It does this by
checking if the route taken by the packet is consistent with
the source IP field contents.

Our authentication service implements four security lev-
els, which arise from the combination of 3 security mech-
anisms. Table 2 shows the different authentication levels.
These strategies make very difficult for a malicious master
to successfully send a packet as it would be another master.

SV: it is the same mechanism described at Section 4.2.

PV: in order to perform the authentication, a routing
trace is embodied in the header field of the packet. This field
content is modified by the routers along the communication
path of each packet. In this process, when a packet traverses
a router, the packet header receives this router signature. A
simple strategy to do this, adopted in this work, is to use

a trace field containing R bits, where R is the number of
routers in the NoC. The routers are numbered from 0 to
(R — 1). To each router, r corresponds the bit in the trace
field whose position inside the field is also r. When a packet
enters the NoC, all the bits of its trace field are equal to 0.
Each time the packet crosses a router, this router changes
the corresponding bit in the trace field to 1. Then, at the
end of the route, the packet terminator reveals the complete
path that has been taken by the packet, indicating with 1
which routers have been crossed by the packet and with 0
which have not. By knowing the NoC topology and routing
algorithm, the slave can deduce what is the true packet sender
and thus it can verify if the alleged source is in fact this
sender. For this purpose, a security table in each destination
contains the expected value for the trace field coming from
each possible master. In the case of a mismatch (i.e., the trace
field does not correspond to the expected one) the packet is
discarded.

CV: each master-slave pair may also keep track of the
sequential number of its transactions. In this case, this
sequential number is also included in the header. The slave
then verifies if the transactions occur according to the
expected numbering. To overcome this feature, an intruder
would have to know the current expected sequential number
of the transaction of the master-slave pair it intends to attack.
A packet whose sequential number differs from the expected
one is discarded.

5. Our Approach

The goal of our work is to design a layered dynamic NoC-
based architecture for the MPSoC protection. In such a
scenario, all the applications that are going to be mapped on
the MPSoC are known in advance. Our security architecture
is based on a hierarchical NoC (HNoC), combining a low
and high NoC, and on the configuration of the security
mechanism embodied at the network interface of the NoCs.
Such configuration is carried out through the establishment
of a set of parameters (upgrade of the security table), avoiding
the high-cost of dynamic reconfiguration. There is an IP that
stores all the security policies that the MPSoC must obey. The
HNoC is notated as 1n(S1)/(S,), where n is the number of
security zones, S; is the low NoC size, and S; is the high NoC
size. Figure 1 shows an HNoC, whose size is 4(2 X 2)/(2 X 2).
The security zones are identified as Zone I to Zone IV.

The IP components are mapped on the HNoC according
to their communication and security characteristics by using
the MAIAS algorithm [14]. The purpose is to allocate in the
same security zone the IPs with higher communication fre-
quency and similar security requirements. As a consequence,
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the inter-cluster communication is reduced. The HNoC is a
scalable solution [15]. It integrates low-diameter topologies,
that aided by efficient flow control and routing mechanisms,
minimizes the overall power consumption and NoC latency
[16].

Our architecture integrates five key components: (1) low
NoC/high NoC, (2) policy keeper, (3) configuration control, (4)
security mechanisms, and (5) monitors. Our work supposes
that the task allocation of the applications has been previ-
ously defined.

5.1. Low NoC and High NoC. The HNoC is a layered com-
munication structure composed by a set of networks. It can
be divided into low and high NoC [14]. The IP cores of the
MPSoC can be organized into clusters by the low NoC. Each
cluster is completely separated from the others. The low 2D-
mesh NoC has its own connection to a router of the high
NoC. The high NoC collects the traffic coming from different
clusters. Therefore, the high NoC must provide a larger
bandwidth than the links in the low NoC. Higher frequency
or additional links can be used at the high NoC. We use
additional links. The high NoC links are physically longer
than links at the low NoC, but they can be implemented
on the higher metal layers with reduced RC-delay. This
hierarchical structure allows the implementation of security
zones, composed of the IPs at each cluster. The components
at each security zone have similar security characteristics.
The security policy, that rules the interaction among all
the system components, is divided into local and global
policies. The IPs of a security zone are ruled by the local
security policy. The intercluster communication is ruled by
the global security policy. Such hierarchical approach provides
three advantages: (1) it facilitates the security management
of the MPSoC; (2) it produces smaller security tables;
(3) it improves system performance. The security policy
of the MPSoC can change over time. Such behaviour is
the consequence of two factors: (1) MPSoCs are used
as a platform to support different applications, each one
characterized by a different set of security requirements;

(2) MPSoC status could influence the security policy, that
is, under certain conditions, the security level of the system
may be dynamically reinforced or decreased. Therefore, the
security configuration of the MPSoC must be modified in
order to satisfy the new requirements.

5.2. Policy Keeper. As mentioned earlier, secure mobile com-
puter security systems need policies that are flexible and
expressive. But traditionally, security systems are designed to
enforce one particular security policy. To encompass a wide
variety of policies, the policy keeper component stores a
thread-oriented policy representation which allows the secu-
rity specification tailored to the threads set of the applica-
tions being executed at each security zone of the MPSoC.
The policy keeper is a safe component that stores the security
policies (local and global). It integrates the information of
the MPSoC thread scheduler, the security zone, and the
access rules (rights) of each thread being executed on the
MPSoC over the system resources. The local security policy
configures the low NoC security mechanisms of each security
zone and the global security policy configures the security
mechanisms embodied at the high NoC. The security policy
can express different levels of security. Data can be loaded on
the policy keeper at two moments: (1) power up time, when
all the applications that will be executed on the MPSoC are
previously known; (2) run time, otherwise. At run time, the
loaded security policy must come from a trusted third-party
authority. For some applications, like military applications,
the storage of the security requirements in the system is not
desirable. The size of the table stored by the policy keeper
component depends on the number of applications, tasks,
threads, and operation modes supported by the MPSoC.

5.3. Configuration Control. The configuration control com-
ponent focuses on establishing the conditions to guarantee
the security requirements of each application and for all the
operation modes throughout the operation of the MPSoC.
Its main function is the coordination and configuration of
the security mechanisms of the MPSoC according to the local
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and global security policies of each application. In this work,
the security mechanisms are composed of firewalls embodied
in the NoC (low and high), the communication structure of
the MPSoC. It uses the NoC interface ID source/destination
information embodied in the policy keeper component to
block the communication and start the reconfiguration
process of the security mechanisms.

5.4. Security Mechanisms. The main function of the security
mechanism components is to defend the MPSoC against
possible attacks. The NoC security implementation allows
MPSoC protection by means of communication manage-
ment. NoC firewalls are implemented at the network inter-
face (secure network interface) at the low NoC and at the
high NoC. The mechanisms implemented in this work are
explained in Section 3. Security mechanisms at the low NoC
are implemented at the network interface. The network
interface is the point of interconnection between NoC
routers and processing components of the MPSoC.

Security mechanisms at the high NoC are implemented
at NoC routers. The security mechanism uses information
embodied in the packets that flow through the NoC to
enforce the different security policies. Our work assumes a
network interface compliant with the specifications of the
OCP/IP (open core protocol) interface. Messages coming
from an MPSoC processing component are translated by the
interface into packets compliant to the protocol used within
the NoC. The adopted OCP compliant NoC packet format
(see Figure 2) is composed of 9 fields.

(1) Source: it identifies the task, the thread, and the mas-
ter component. It is the initiator of the communica-
tion.

(2) Destination: it identifies the slave component. It is the
target of the communication.

(3) Operation: it codes the transaction type, that is, a
read, read linked, read-exclusive, write, write-non-
post, conditional write, and broadcast.

(4) Type: it defines the information type that is being
exchanged, that is, data, instruction, or signal types.

(5) Role: it represents the role of the initiator component.
That is, user, root. The roles are defined by the secu-
rity policy of the system.

(6) Priority: it allows traffic priority classification.

(7) Size: it defines the number of bytes contained in the
packet payload.
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(8) Path: it registers the path of the packet through the
NoC and the sequential number of this packet in the
current transaction between this master-slave pair.

(9) Payload: it embodies the information generated by
the master.

Our firewall differs from those proposed by [8, 10] in
the source, type and role fields. Such characteristics allow that
our security mechanism avoid a wider set of attacks as the
DoS (Denial of service), by using the source field, and buffer
overflow by the verification of the address, type and size
fields. Moreover, our approach supports the multithreading
characteristic of the MPSoC. It allows the safe execution of
multiple tasks of different applications, and thus multiple
security policies implementations, at the same time. Note
that our architecture is also feasible for different security
mechanisms whose security characteristics are capable of
being changed during system operation.

5.5. Monitors. The monitor component is implemented at
the high NoC and low NoC routers and is permanently
auditing the MPSoC communication behaviour. It detects
NoC activity in order to determine the completion of each
communication event between different master/slave pairs of
the MPSoC. A master is defined as any component that initi-
ates a communication transaction. A slave is any component
that receives a request of a communication transaction of a
master. The monitor also has the ability to record and report
on the security mechanism configuration at any moment.

5.6. Execution Mode. The functionality of our layered secu-
rity system can be summarized as in Figure 3. When the
MPSoC security policy must be upgraded, because, for
example, a new application must be executed or the MPSoC
operation mode is changed, the configuration control starts
six procedures: lookup policy keeper, block, look-up monitors,
global configuration (high NoC), local configuration (low
NoC), and unblock. At the lookup policy keeper step, the
configuration control downloads the proper local and global
security policies, stored in the policy keeper component.
It uses the MPSoC tasks mapping information to identify
which security mechanism and which security zones must be
modified as well as the new security tables information.

The block procedure interrupts the injection of packets
whose final destination is the processing component linked
to the security zone that is going to be reconfigured (called
target interface). Such packets are stored on the interface
linked to the master processing component. The reconfig-
uration manager also starts a QoS (quality-of-service) mech-
anism that raises the priority of the communication of the
packets whose final destination is the component linked
to the target interface; modifying the Priority packet field.
The QoS mechanism modifies the arbitration of the NoC
routers, so that, the communication of the packets with
higher priorities is performed first.

Once the communication of all the packets flowing to
the target interface is finished, the reconfiguration of the
target interface can start. In order to configure the HNoC,
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the configuration control component sends new information
that must be stored at the security tables of the firewalls.
The high NoC configuration modifies the security tables at
the routers. The low NoC configuration modifies the security
tables at the network interfaces of the selected security zone.
Note that as the security mechanisms are implemented at the
NoC interface, the communication is not interrupted at the
NoC during the reconfiguration. The NoC routers continue
the communication of the remaining packets through the
network. This characteristic of our architecture can reduce
the latency penalties due to the reconfiguration. When
the reconfiguration is finished, the final unblock procedure
starts. The configuration control frees the injection of the
packets that were being blocked during the reconfiguration.
The normal NoC operation is achieved when all the target
interfaces are reconfigured.

6. Results

6.1. Experimental Setup. We have developed a SystemC-TLM
cycle-accurate model of our architecture. Its evaluation was
performed by the SystemC-TLM framework as described
in [5]. We employ a 4(2 x 2)/(2 x 2) HNoC character-
ized by an XY routing scheme, round-robin (RR) arbiter,
and FIFO memory organization. The proposed solution
has been verified against three types of attack scenarios:
(1) extraction: characterized by unauthorized attempts to
access data; (2) modification: using the buffer overflow
technique; and (3) DoS: repeating several times the same
transaction. The performance evaluation of our approach
was based on the MiBench benchmark suite [17]. We
select three applications: auto/industrial (AI), consumer
electronics (A2), and telecommunication (A3), see Table 3.
Each application is characterized by a security policy that
establishes different levels of authentication and access
control security mechanisms, as shown in Table 4.

TABLE 3: Benchmarks.

Auto/Industrial (A1) Consumer (A2) Telecomm. (A3)
Basicmath Jpeg CRC32
Bitcount lame FFT
Qsort mad IFFT
susan (edges) tiff2bw ADPCM enc.
susan (corners) tiff2rgba ADPCM dec.
susan (smoothing) tiffdither GSM enc.
tiffmedian GSM dec.
typeset

TABLE 4: Security levels.

Application Function Authentic. Access control
Basicmath Level 0 Level 2
Bitcount Level 0 Level 0
Automotive Qsort Level 3 Level 3
(AD) susan (edges) Level 2 Level 2
susan (corners) Level 2 Level 2
(smsou(:ta}?ing) Level 2 Level 2
Jpeg Level 2 Level 2
Lame Level 2 Level 2
Consummer Mad Level 0 Level 0
Electronics tiff2bw Level 0 Level 0
(A2) tiff2rgba Level 0 Level 0
tiffdither Level 0 Level 0
tiffmedian Level 0 Level 0
typeset Level 0 Level 0
CRC32 Level 2 Level 2
FFT Level 1 Level 1
Telecomm. IFFT Level 1 Level 1
(A3) ADPCM enc. Level 0 Level 0
ADPCM dec. Level 0 Level 0
GSM enc. Level 3 Level 3
GSM dec. Level 3 Level 3

Our experimental work considers six mapping combina-
tions resulting from the execution of these three applications
on the MPSoC (Al, A2, A3, A1-A2, A1-A3, A3-A2). These
patterns were used as NoC benchmarks in previous works.
Our MPSoC traffic is composed of a set of heterogeneous
tasks arriving at different rates in the system. The tasks are
randomly allocated in the system processing components.
For comparison reasons, each traffic pattern is composed of
five flit size packets of three types: real-time, write or read
and signaling, characterized by a different generation rate.
The intercluster communication varies from 20% to 50%
of the overall traffic. We compared the communication per-
formance of the HNoC-based dynamic security architecture
against the simple NoC-based dynamic security and the best-
effort NoC (without security).
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TaBLE 5: Security efficacy.
Attack scenario Authentication  Acces Control
efficacy efficacy

Send critical information 87% 100%
Read critical information 83% 100%
Write not authorized areas 100% 100%
Nonexisting target 100% 100%
Repeated information 89% 100%
Communication target = source 100% 100%

6.2. Security Efficacy. Table 5 shows the results of the efficacy
of our security implementation. It represents the percent-
age of attacks detected by the security mechanisms. The
percentages of the efficacy of authentication and access
control security services were the same as our previous
dynamic approach. That is because both approaches use
the same security mechanisms. In some cases a few attacks
were detected. This means that the security level should be
increased in order to achieve 100% of security.

6.3. Security Performance. For comparison reasons, the per-
formance of the security mechanisms is expressed in this
work in terms of power consumption and latency. The power
consumption (Ppyn), given by (1) is the sum of Pxoc (low
NoC and high NoC power), Pxeep (policy keeper power), Pcon
(configuration control power), and Pyon (monitor power):

PDYN:PN0C+PKeep+PCon+PMon- (1)

The NoC power is given by (2). It is the sum of Py; (sum of the
links power of the low NoC and the high NoC), Piy (interfaces
power), and Pg; (low NoC and high NoC routers power) due
to transaction completion [14]. P; and Py; are proportional
to the channel utilization rate and router utilization rate,
respectively,

Proc = Pri + P + Pri. (2)

We developed power models for the main components in
the HNoC architecture. We integrated these models into
the simulator, taking the architectural and technological
parameters into account. The characterization was made
under the 65 nm process constraints, 1 volt as a power supply,
and a 25°C temperature. Our power estimation strategy is
based on identifying the activity of each component of our
dynamic system. In order to fulfill this task, the monitor
annotates the communication events on the NoC. Figures
4 and 5 show the latency and power distributions over
all the components of our hierarchical architecture. They
show that the security interfaces and the policy keeper
are the components that consume more time and power,
respectively.

Figure 6 represents the average relative execution time of
our architecture after completing 4, 8, 16, 32, and 64 tasks
of the MiBench benchmarks. The number of processors that
execute these tasks varies from 1 to 16. The comparison
among the best effort NoC (without security), the simple
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TaBLE 6: Implementation penalties.

Parameter Dynamical approach ~ Our HNoC approach
4.1% 3.8%
19.6% 7.6%
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FIGURE 7: Average NoC latency.

dynamic security approach [5] and the layered security
architecture, is shown in Figure 7 and Table 6. The results
of Figure7 are obtained after injecting a percentage of
long-range-dependence (LRD) traffic in the MPSoC. Such
traffic is typical for the three MiBench applications that we
selected [17]. Our layered approach performs better than
the simple dynamic security architecture for all percentages
of LRD traffic. Table 6 shows the implementation penalties
of the simple dynamic security architecture and our layered
architecture when compared to the best effort NoC, stressed
by uniform traffic. Our approach always achieves the best
results.

7. Conclusion

In this work, we proposed a layered NoC security archi-
tecture able to support dynamic protection for MPSoC.
We implement two security services: access control and
authentication. We adopted the QoSS concept that allows
the implementation of different security levels. Our work
shows that NoC-centric security may take advantage of the
distributed property of the NoC. Results show that the
inclusion of security issues in the hierarchical NoC performs
better that a simple NoC architecture. It reduces the penalties
of the latency, power, and area up to 0.3%, 12%, and 21%,
respectively, when compared to the simple dynamic solution.
Inclusion of the QoSS concept allows the designer to select
the most suited among different security levels in order to
satisfy both security and performance requirements. In our
current architecture, all the applications that are going to be
mapped on the MPSoC are known in advance. As a future
work, we plan to create virtual security zones, whose size

will be defined by the security characteristics of the unkown
applications.
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