
978-1-4673-2921-7/12/$31.00 c©2012 IEEE

An analytical approach for sizing of heterogeneous multiprocessor flexible platforms for iterative
demapping and channel decoding

Vianney Lapôtre, Guy Gogniat, Jean-Philippe Diguet
Université de bretagne Sud, CNRS Lab-STICC UMR 6285

Lorient, France
Email: firstname.lastname@univ-ubs.fr

Salim Haddad, Amer Baghdadi
Institut Telecom, Telecom Bretagne, CNRS Lab-STICC UMR 6285

Brest, France
Email: firstname.lastname@telecom-bretagne.eu

Abstract—Flexible baseband receivers gain the interest of many
research efforts to enable the design of future multi-modes multi-
standards terminals. A main challenge in this domain is to provide this
flexibility with minimum overhead in terms of area, speed, and energy.
In this regard, heterogeneous multiprocessor platforms are emerging
as a promising implementation solution. However, the heterogeneity
of such platforms makes it complex to find the required number of
processors supporting a specific configuration (i.e. requirements level).

This paper investigates, in this context, the significant optimization
potential both at design-time and at run-time regarding the selection
of the most appropriate hardware configuration of a multiprocessor
platform for iterative demapping and channel decoding. A formal
representation of the architectural solution space which allows de-
signers to find the minimum hardware configuration is proposed.
The proposed approach is illustrated through a flexible multi-ASIP
hardware platform for iterative demapping and channel decoding.

Keywords-Multiprocessor, ASIP; Self-adaptation; Wireless multi-
standards receiver; Platform sizing; Run-time; Design-time;

I. INTRODUCTION
Last years have seen considerable evolutions of wireless com-

munication standards in the domain of cellular telephone networks,
local/wide wireless area networks, and Digital Video Broadcasting
(DVB). Besides the increasing requirements in terms of throughput
and robustness against destructive channel effects, the convergence
of services in single smart terminal becomes a crucial and challeng-
ing feature. As an example, the fourth generation (4G) of cellular
wireless standards aims at providing mobile broadband solution to
laptop computer wireless modems, smartphones, and other mobile
devices. Diverse features such as ultra-broadband Internet access,
IP telephony, gaming services, and streamed multimedia will be
provided.

In order to enable such advanced services at the algorithmic
level, new state of the art data processing techniques have been
developed and adopted in the emerging wireless communication
standards. At the architecture level, many efforts are being con-
ducted towards the design of flexible high throughput hardware
platforms which can be configured to the required configuration.
The overall flexibility of the radio platform can be achieved
through the flexibility of individual components at transmitter side
(encoder, interleaver, mapper, etc.) and at receiver side (demapper,
deinterleaver, decoder, etc.). In this context, heterogeneous multi-
processors platforms [1], [2], [3] have been widely adopted. These
platforms usually integrate different tiles that provide high perfor-
mances and high flexibility to respect services requirements. ASIP
based tiles have been adopted to provide flexible and powerful
solutions. For example, in [1], an 10.8 Mbps ASIP core is used
for turbo-decoding. However, the high throughput requirement of
emerging services imposes the efficient exploitation of different
parallelism levels. Several recent works propose multiprocessor
approaches to build these tiles [4], [5], [6], [7]. In this work we
investigate the sizing of a heterogeneous multiprocessor flexible

platform for iterative demapping and channel decoding and propose
a novel approach for efficient design-time and run-time sizing. We
illustrate how for a given level of requirement several architecture
alternatives with different number of processors exist. A formal
representation of the architectural solution space is proposed. This
formulation enables the designer to find the most efficient hardware
configuration. Based on this formal representation, the architecture
can be chosen both at design-time and at run-time according to an
optimization objective which could be, for example, minimizing
the number of processors, reducing the active area on the chip,
reducing the clock frequency, etc.

The proposed approach is illustrated through a flexible multi-
ASIP hardware platform for iterative demapping and channel
decoding. This platform integrates two different types of ASIPs
(Application-Specific Instruction-set Processor): one for demap-
ping, called DemASIP, and the second for turbo decoding, called
DecASIP. This paper presents the following contributions:

• A formal representation of the architectural solution space is
proposed.

• A method to apply this formal representation at design-time
and at run-time is defined.

• A use case that demonstrates the interest of the proposed
method to reduce the chip area at design-time and the active
area at run-time is presented and evaluated.

The rest of the paper is organized as follows. Section II provides
an overview of relevant literature. Section III presents the system
model and the configuration parameters. Section IV describes the
proposed formal representation of the architectural solution space
which allows the designer to size the platform depending on the
system configuration. Section V evaluates the impact of a design-
time sizing on the chip area and the impact of a run-time sizing on
the active area for different receiver configurations. Finally, section
VI provides a discussion on the proposed work and concludes the
paper.

II. STATE OF THE ART

The high throughput requirement of emerging services imposes
the efficient exploitation of different parallelism levels. In this
context, multiprocessor architecture [4], [5], [6], [7] is a promising
approach to reach high flexibility, high throughput and energy
efficiency. In [4], an heterogeneous architecture for convolutional
and turbo-decoding consisting of a dedicated 150Mbps IP block
and a cluster of ASIPs is presented. The dedicated IP block is
used when high throughput is required while ASIPs are used for
lower throughput. Even if the authors superficially describe a multi-
ASIP architecture in which the ASIPs are connected through a
crossbar, the sizing of such an architecture is not addressed. The
presented results are limited to two ASIPs that share a memory.
In [5] and [6], the authors present a multi-ASIP platform for
decoding in which the ASIPs are connected through a Network

17 Proc1 + 10 Proc2

7 Proc1 + 16 Proc2

2 4

R
e

q
u

ir
e

m
e

n
ts

(e
.g

. T
h

ro
u

g
h

p
u

t,
 B

E
R

,
…

)

Config1
(HD Media)

7 Proc1

3 Proc1

Config2
(Web Brows

Architecture

Alternatives

SNR (dB)6 8 10

13 Proc1 + 8 Proc2

7 Proc1 + 10 Proc2

3 Proc1 + 12 Proc2

Config2
Brows.)

3 Proc1 + 2 Proc2

2 Proc1 + 5 Proc2

1 Proc1 + 6 Proc2

Config3
(Voice conv.)

Architecture

Alternatives

Figure 1. Usage scenario example of the considered heterogeneous multi-
processor platform integrates two different types of processors that perform
demapping and decoding algorithms respectively (Proc1 and Proc2).

on Chip. The high flexibility of such architectures allows dynamic
reconfiguration at run-time but the run-time sizing task is not
addressed. In [5], different decoding tasks can be mapped at
run time on different ASIPs but no methodology to define the
number of processors necessary to perform a given configuration
is presented. As in [7], recent works propose to combine several
functionalities, like decoding and demapping, in a multi-ASIP
heterogeneous platform. Unfortunately, the sizing of such platforms
is not well addressed in the literature. We assume that the designer,
based on his background and simulations, has to deal with the
sizing of these complex heterogeneous platforms. However this
approach could provide sub-optimal solutions and decrease the
sizing flexibility at run-time since all the decisions are taken at
design-time. In fact, flexible hardware multiprocessor platforms for
iterative demapping and channel decoding are generally designed
to support a set of communication standards which correspond to
some specific application needs and usage scenarios. Each usage
scenario corresponds to particular requirements for example in
terms of throughput, latency, error rates, and/or others. Fig. 1 gives
an example of such usage scenario which corresponds to a mobile
terminal supporting different services (High Definition Multimedia,
Web Browsing, Voice Conversation) at different channel conditions.
Hence, at design-time, the platform must be dimensioned to support
the highest requirements while, at run-time, the number of proces-
sors can be chosen depending of the current level of requirements.
Furthermore, for a heterogeneous multiprocessor platform, and for
a specific requirement level, several architectural configurations
(i.e. with a different number of each type of processors) exist
(Fig. 1). The alternatives exploration and the selection of the
most appropriate one is a complex task. However, it represents
an important optimization room which is not investigated in the
literature. In this paper we address this point and propose a formal
approach to find the optimal configuration.

III. SYSTEM MODEL AND CONFIGURATION

In order to illustrate the proposed approach for sizing of hetero-
geneous multiprocessor flexible platform for iterative demapping
and channel decoding we consider in this paper the communication
system model of Fig. 2. It consists of a multi-modes advanced wire-
less communication system integrating convolutional turbo code,
Bit Interleaved Coded Modulation (BICM), various modulation
schemes, and Signal Space Diversity (SSD). A brief presentation
of the system model and the considered parameters is given in this
section.

DEPUNCTURING

(QPSK, QAM16, QAM64)

MAPPER

(QAM256)

CC-1

CC-2

TURBO ENCODER

Decoded Bits

TURBO DECODER

TURBO
DEMAPPER

DEINTERLEAVER

INTERLEAVER PUNCTURING

PUNCTURING
INTERLEAVER

SSD

ROTATION

s

p1

p2∏
1

U

X′
r

C

∏
1

∏
1

DEC1

DEC2

∏−1

1

L(p1)

L(s)

L(p2)

DECODERLext,DemXr

∏−1
2

Lapr,Dem
∏

2

S

Sr

∏
2

V

X ′I
rD

E
L
A
Y

d

X ′Q
r

S′
r

DELAY d
RAYLEIGH FADING CHANNEL (with or without erasure)

Figure 2. System model with TBICM-ID-SSD.

A. System model

Fig. 2 presents a simplified structure of the transmitter, the
channel, and the receiver. On the transmitter side, information bits
U which are called systematic bits are regrouped into symbols ui

consisting of k bits, and encoded with a q-binary turbo encoder. It
consists of a parallel concatenation of two identical convolutional
codes (PCCC). The output codeword C is then punctured to
reach a desired coding rate Rc. In order to gain resilience against
error bursts, resulting sequence is interleaved using an S-random
interleaver Π2. Punctured and interleaved bits denoted by vi are
then Gray mapped to complex channel symbols sq chosen from
a 2M -ary constellation X , where M is the number of bits per
modulated symbol. Applying the SSD consists of a rotation of the
constellation followed by a signal space component interleaving.

At the receiver side (which is the topic of this paper), the
corresponding operations to the transmitter ones are applied in
reverse order. However, in order to meet the increasing require-
ments in terms of reduced error rates, the iterative processing is
considered at two levels. The first level is at the channel decoding
by adopting a turbo decoding process. The second level is between
the channel decoder and the soft demapper. In fact, besides extrinsic
information exchange inside the channel turbo decoder, additional
extrinsic information is feedback as a priori information used by
the demapper to improve the symbol to bit conversion. Thus, the
receiver model, denoted as TBICM-ID-SSD, implements iterative
demapping with turbo decoding.

B. Receiver configuration

A flexible software model of the whole system of the Fig.2
(transmitter, channel, and receiver) was developed. This model
supports many parameters corresponding to the constellation type
and modulation order, interleaving laws, turbo code type, code rate,
and frame size.

Furthermore, the receiver can be configured to execute iterative
or non iterative demodulation. For the case of iterative demod-
ulation, state of the art implementations apply one turbo code
iteration for each demapping iteration [8]. Thus, the number of
demapping iterations (itdem) is equal to the number of turbo
decoding iterations (itdec) in this case. This number of iterations
constitutes another flexible parameter of the system model. On the
other hand, for non iterative demodulation itdem will be equal to
1.

DemProc DemProc DemProc DemProc DemProc DemProc DemProc

communication interconnect ()

Control of Input Channel Data

Input

Channel

Data

Global Receiver Controller

1
 ,

−
ΠΠ

DecProc DecProc DecProc DecProc DecProc DecProc

communication interconnect ()

communication interconnect ()

Decoded

bits
DecProc

1

11 ,
−

ΠΠ

1

22 ,
−

ΠΠ

Figure 3. Generic architecture of the heterogeneous multiprocessor
receiver. In this configuration, 2 DemProcs and 4 DecProcs are not used.

The configuration of these flexible parameters is generally con-
strained by the available communication standard, the channel
condition, and the target system requirements in terms of through-
put, latency, and error rate performance. The determination of
their values should also take into consideration the complexity
issue in order to advise the most efficient configuration (as many
solutions generally exist). This task is out of the scope of this paper.
However, in order to define the suitable system configurations of
the usage scenario that will be considered in Section V, commu-
nication system experts were inquired and extensive simulations
were conducted.

Based on the system model, the next section proposes a generic
architecture model and a formal method for an efficient sizing of
such platforms.

IV. PLATFORM SIZING

Multi-standards and multi-modes platforms have to be able to
self-adapt when application requirements and environment evolve
at run-time. A configuration is defined by the communication
parameters which are chosen in accordance with the application
requirements and the environment in which the communication is
established. In this section we propose formal expressions which
allow designers to optimize the receiver architecture by computing
the required number of processors depending on each configuration.
This point is essential as it enables designers to formally explore
potential architectures that will meet performance constraints.

A. Generic heterogeneous multiprocessor architecture model

Fig. 3 presents the generic architecture of a flexible multi-
processor hardware platform for iterative demapping and channel
decoding. The aim of this platform is to provide a flexible and
dynamic solution compared to existing ones [1], [2], [3] (generally
based on hardware accelerators) where designer can tune the
number of resources both at design-time and at run-time. As it
will be presented, such an approach allows the system meeting
performance constraints without loosing its flexibility. These fea-
tures will be mandatory for future communication systems. In
Fig. 3, DemProc and DecProc perform demapping and decoding
algorithms respectively. These two processors are characterized by
their area, maximum frequency, and their performance defined by
the number of cycles to demap or decode one modulated or coded
symbol respectively. The platform integrates a communication
interconnect that allows extrinsic information exchanges (between
DecProcs themselves and between DecProcs and DemProcs). In
this paper, we assume that the communication interconnect is

designed for the worst case configuration in which all processors
exchange data at the same time and it is congestion and conflict
free.

B. Formal representation of the architectural solution space

The generic architecture of Fig. 3 can be abstracted as two
components: one demapper and one decoder. Each component uses
several processors in parallel to perform the frame computation
exploiting sub-bloc parallelism. These two components are serially
connected. The time required to process one frame (Tsyst) corre-
sponds to the sum of the time required by the demapper (Tdem)
and the time required by the decoder (Tdec) to execute all their
iterations on the frame. It can be expressed as:

Tsyst = Tdem + Tdec

= Ndem.Tdem/symb +Ndec.Tdec/symb (1)

where Ndem and Ndec represent, respectively, the number of mod-
ulated and coded symbols per frame. Tdem/symb and Tdec/symb

represent the time required by the demapper and the time required
by the decoder to execute all their iterations on one modulated
and coded symbol respectively. Hence, the system throughput
(Dsyst = Ndec/Tsyst) can be expressed as below.

Dsyst =
Ddem.Ddec.Ndec

Ndem.Ddec +Ndec.Ddem
(2)

where Ddem (= 1/Tdem/symb) and Ddec (= 1/Tdec/symb) are
the demapper and the decoder throughputs (in modulated and coded
symbols, respectively). In fact, considering the code rate Rc and the
number of bits per symbol M , the relation between the number of
coded symbols (Ndec) and the corresponding number of modulated
symbols (Ndem) can be written as follows.

Ndem =
q

M.Rc
.Ndec

= α.Ndec (3)

where q depends on the coding scheme (q = 1 for simple binary
turbo code and q = 2 for double binary turbo code). Introducing
this expression of Ndem into equation (2) gives the following
system throughput expression.

Dsyst =
Ddem.Ddec

Ddem + α.Ddec
(4)

The throughput of the system Dsyst is generally imposed by the
application requirement. On the other hand, the throughputs of the
demapper and the decoder depend on the number of processors,
the number of iterations, the number of clock cycles required to
process on symbol, and the clock frequency. They can be expressed
as follows.

Ddem =
NbdemProc.Fdem

itdem.cyclesdem/symb

(5)

where NbdemProc is the number of demapping processors, itdem
is the number of demapping iterations, cyclesdem/symb is the
number of cycles necessary to demap one symbol, and Fdem is
the clock frequency.

Ddec =
NbdecProc.Fdec

2.itdec.cyclesdec/symb

(6)

where NbdecProc is the number of decoding processors, itdec is
the number of decoding iterations, cyclesdec/symb is the number
of cycles necessary to decode one symbol, and Fdec is the clock
frequency.

n NbdemProc NbdecProc

0.25 40 44
0.75 56 21

1 64 18
1.25 72 16
1.75 88 14

Table I
ARCHITECTURE ALTERNATIVES IN FUNCTION OF N. EXAMPLE FOR:

Dsyst = 200 MBPS, QPSK, Rc = 0.5,
itdem = itdec = 8, cyclesdem/symb = 6, cyclesdec/symb = 1.75 AND

0.75 FOR THE LAST ITERATION, Fdec = Fdem = 300MHz

It is worth noting that the linear increase in throughput with
the number of decoding processors is limited due to the sub-bloc
initialization issue [9]. This limitation, which depends on the target
frame size and code rate, should be considered in the platform
sizing. However, this issue is not encountered in the demapping
sub-bloc parallelism.

In order to establish a relation between the demapping time and
the decoding time, we define the ratio n as follows.

n.Tdem = Tdec (7)

From this equation we can obtain a relation between the
throughputs of the demapper and the decoder:

n.
Ndem

Ddem
=

Ndec

Ddec

Ddem = Ddec.n.
Ndem

Ndec

Ddem = Ddec.n.α (8)

We deduce from (8) and (4) the equations which link the
throughput of the system with the throughputs of the demapper
and the decoder:

Ddec =
n+ 1

n
.Dsyst (9)

Ddem = α.(n+ 1).Dsyst (10)

Finally, from equations (5) and (6) we can express NbdemProc

and NbdecProc as follows.

NbdemProc = Cdem.Ddem (11)

NbdecProc = Cdec.Ddec (12)

where
Cdem =

itdem.cyclesdem/symb

Fdem
and Cdec =

2.itdec.cyclesdec/symb

Fdec

depend on the system configuration and the processor parameters.
Replacing Ddem and Ddec by their expressions from equations

(10) and (9) allows to compute the number of processors necessary
for a given configuration and a given n.

NbdemProc = Cdem.α.(n+ 1).Dsyst (13)

NbdecProc = Cdec.
n+ 1

n
.Dsyst (14)

Table I illustrates, for a given configuration, how different values
of n lead to different architecture alternatives, although all of them
acheiving the target throughput and supporting the target system
configuration. Depending on n we observe that the architecture
alternative could be quite different. For example, when n= 0,25
the architecture consists of 40 processors for demapping and 44
processors for decoding while when n=1.25, 72 processors for
demapping and 16 processors for decoding are necessary. It is
essential, both at design-time and at run-time, to determine the
value of n which optimizes the resources use. The optimization

goal depends of designers priorities and could be for example the
number of processors used for each possible configuration, the total
area of the chip, the clock frequency for each type of processor, etc.
In this paper we extend the previous equations in order to optimize
the total area of the chip at design-time. The same optimization can
be applied at run-time in order to reduce the active area for the
configurations performed on the platform.

C. Area optimization

Heterogeneous processors have typically different areas and
performances. One main optimization objective is to determine
the number of DemProcs and DecProcs in order to minimize the
receiver area for a given configuration. The total area of the receiver
depends on n. It can be computed using the expression below.

An = Adem.NbdemProc +Adec.NdecProc (15)

where Adem and Adec are the area of one DemProc and one
DecProc respectively. Therefore, by putting equations (11), (12)
and (8) into equation (15), An can be expressed as a function of
Cdem and Cdec.

An = (Cdec.Adec + Cdem.Adem.α.n)Ddec (16)

On the other hand, using equation (4), Ddem can be expressed
as:

Ddem =
α.Dsyst.Ddec

Ddec −Dsyst
(17)

Moreover, Ddec can be expressed as a function of Dsyst and n
by putting equation (8) equals to equation (17).

Ddec =
Dsyst(n+ 1)

n
(18)

Finally, An can be expressed as a function of n by putting the
equation of Ddec above into equation (16).

An =
a.n2 + b.n+ c

n
(19)

where a = Cdem.Adem.Dsyst.α

c = Cdec.Adec.Dsyst

b = a+ c

The derivative function of the equation 19 is then computed.
Only one extremum (next) is found.

next =

√
c

a
=

√
2.itdec.cyclesdec.Fdem.Adec

itdem.cyclesdem.Fdec.Adem.α
(20)

The second derivative function is also computed at next. It shows
a positive value corresponding to the minimum area (Anext) of the
receiver. Finally, Anext can be expressed as:

Anext = a+ c+ 2
√
a.c (21)

For a given configuration, next is determined with equation
(20). With the obtained value of next, the number of DemProc
and DecProc which minimizes the area can be calculated using
equations (13) and (14). The number of processors is then rounded
up to guarantee the throughput constraint. Note that, due to the
sub-bloc initialization issue [9], the number of DecProc is limited
by the maximum number of frame sub-blocs that can be extracted
from the entire frame. If the number of processors determined is
upper that this limit, their number is saturated in accordance to
the maximum level of available parallelism and the corresponding

number of DemProc is computed with respect to the throughput
requirement.

Based on the set of equations above it is now possible to analyze
how the system can be tuned both at design-time and at run-time
to meet performance requirements for a given configuration.

D. Design-time sizing

Platform sizing at design-time allows designers to determine
the hardware configuration which minimizes the total area of the
chip. This objective has been considered as it strongly impacts
the cost of the chip. The design space of potential configurations
is too large to allow designers to efficiently explore all possible
architecture alternatives. So first, the designer needs to list the
critical configurations that will be executed on the platform. These
configurations will require the largest number of operations to
demap and decode a frame. Then, equations (20), (13) and (14)
are successively used to determine for each critical configuration
the architecture alternative which minimizes the total area. Finally,
The number of processors implemented on the chip is the maximum
number of DemProcs and DecProcs among the different hardware
configurations.
E. Run-time sizing

Platform sizing at run-time allows to determine the hardware
configuration which optimizes the resources usage. Several objec-
tives can be addressed using equations previously described. When
a configuration has to be executed on the platform, the architecture
alternative which optimizes the objective can be determined using
the proposed equations. Configuration parameters are used to
determine next which optimizes the objective. Then, next is used
in equations (13) and (14) to compute the required number of
DemProcs and DecProcs. If the number of processors required
to perform the configuration is lower than the platform capacity,
which is defined at design-time, unused cores can be for example
switched-off as they will not be use during the execution of the
current configuration.

In this section, we have proposed formal equations to explore the
alternative architectures of a heterogeneous multiprocessor receiver.
These equations have been applied on a particular optimization
objective in order to optimize the total area used for a given
configuration. We have also explained how to consider such a
solution both at design-time and at run-time. The next section
presents the results of this method on a typical heterogeneous multi-
ASIP receiver.

V. CASE STUDY AND RESULTS

A. Multi-ASIP platform

In order to apply and evaluate the proposed approach we consider
the heterogeneous multi-ASIP receiver platform presented in [7].
This platform integrates two types of ASIPs which perform the
main functions of iterative demodulation and turbo decoding.
The first, called DemASIP [10], is dedicated to the Max-Log-
MAP Demapping Algorithm. This ASIP can be used for multiple
modulation schemes adopted at the transmitter side. The DemASIP
provides support for BPSK to 256-QAM constellation for any
mapping style with or without SSD. Depending on the modulation
scheme, the time to demap one symbol evolves from 6 to 258 clock
cycles. The second called DecASIP [6], performs the Max-Log-
MAP Decoding Algorithm. It supports convolutional turbo codes

Conf. Mod. Throughput Freq. itdem itdec Rc

(Mbps) (MHz)
1 QPSK 200 300 8 8 1/2
2 16-QAM 200 300 6 6 1/2
3 64-QAM 200 300 1 8 1/2
4 64-QAM 200 300 1 9 2/3

Table II
USE CASE CONFIGURATIONS

up to eight-state double binary turbo codes or sixteen-state simple
binary codes. It is able to decode a symbol in 1.75 clock cycles
in turbo-demodulation scheme and in 0.75 clock cycle when only
turbo-decoding is applied.

Based on this platform and in order to demonstrate the benefits
of the proposed approach, a representative use case has been
developed.

B. Use Case Study
The considered use case targets at the output of the channel

decoder a throughput of 200 Mbps with BER performance between
10−5 and 10−6 for an SNR range from 3dB to 13dB. It can
correspond to future wireless HD Media service in mobility context
(e.g. during a train trip).

In order to find the suitable system parameters of the flexible
communication system model of Fig. 2 with respect to this use
case, extensive simulations were conducted. Results of this step
(out of the scope of this paper, cf. sub-section III-B) correspond to
the configurations described in Table II. The frequency of each
ASIP is 300 MHz. The other parameters evolve depending on
the environment conditions: Conf. 1 corresponds to severe channel
conditions (i.e. lowest SNR) whereas Conf. 4 corresponds to good
channel conditions (i.e. highest SNR).

C. Results
The first step of platform sizing is performed at design-time. For

this purpose, the method described in sub-section IV-D is used to
determine the best hardware sizing for the critical configurations
which will be performed on the platform. For the scenario previ-
ously explained, the critical configurations are Conf. 1 and Conf.
2. They require higher number of iterations than Conf. 3 and Conf.
4 (Table II). These configurations determine the maximum number
of ASIPs which needs to be implemented on the chip. Table III
shows the comparison between the number of processors and the
total area of the chip using the proposed method and an approach
where next is not defined. In that last case, the designer may not
be able to efficiently tune the ratio between the time to demap a
frame and the time to decode a frame in order to minimize the
total area of the chip. A manual exploration based on the designer
experience can still be performed in order to test several ratio but
such an approach is time consuming and there is no guarantee to
find the best one. Thus a default value of n = 1 is generally used.
n = 1 means that the time to demap a frame is equal to the time
to decode a frame. The last row of Table III corresponds to the
number of processors that have to be implemented to support the
highest requirements. It is determined by selecting the maximum
number of processors needed to perform critical configurations. For
this case, results show that using our formal equations allows to
save 9.6% of the total area by implementing 55 DemASIP and 23
DecASIP instead of 72 DemASIP and 18 DecASIP when a default
value of n is used.

Conf. proposed method no exploration Gain
n NbdemASIP NbdecASIP Area (in mm2) n NbdemASIP NbdecASIP Area (in mm2) (in %)

1 0.63 53 23 8.75 1 64 18 9.1 3.8
2 0.51 55 19 8.35 1 72 13 9.15 8.7

Chip - 55 23 8.95 - 72 18 9.9 9.6
Table III

DESIGN TIME: APPLICATION OF THE PROPOSED METHOD ON THE TWO CRITICAL CONFIGURATIONS OF THE CONSIDERED CASE STUDY.
Adec = 0.15mm2 AND Adem = 0.1mm2 (90nm CMOS).

Conf. n NbdemASIP NbdecASIP Active area
(in mm2)

1 0.63 53 23 8.75
2 0.51 55 19 8.35
3 0.91 29 9 4.25
4 1.1 24 9 3.75

Table IV
RUN TIME : APPLICATION OF THE PROPOSED

METHOD.Adec = 0.15mm2 AND Adem = 0.1mm2 (90nm CMOS).

Once platform sizing performed, various required configurations
(Table II) can be selected at run-time. The number of ASIPs that
the configuration mode requires can be calculated at run-time on
a GRC processor (Global Receiver Controller, Fig. 3). As the
complexity of the proposed approach is very low (constant time),
it allows a very efficient analysis of the best configuration at run-
time. This point will be mandatory to meet real-time constraints for
future adaptive communication systems. Once a new configuration
has been computed the whole platform can be reconfigured.The
reconfiguration mechanism itself is out of the scope of this paper
but the general schedule can be sketched. The ASIPs that will be
used to perform the new configuration can be loaded with appro-
priate parameters and program whereas the rest of the ASIPs will
be idle. Once the right configuration is available the computation
starts. Depending on the context the unused ASIPs can be for
example powered down to reduce the total power consumption.
Table IV shows the number of ASIPs necessary to perform the
different configurations using our approach to reduce the active
area. Results demonstrate a significant reduction of the active
area when configuration corresponding to low requirement are
performed. For example, in the case of Conf. 4, only 3.75 mm2 of
the chip have to be activated while 8.75 mm2 are necessary for the
highest requirements corresponding to Conf. 1. Such an approach
allows to build optimization strategies for example to tune power
consumption or to minimize platform aging.

VI. FINAL DISCUSSION AND CONCLUSIONS

Heterogeneous multiprocessor platforms for iterative demapping
and channel decoding provide high performance and high flexi-
bility to perform several configurations. Moreover, they provide
promising solutions to be integrated in future flexible baseband
receivers. Unfortunately, the first degree of flexibility of a multi-
processor system (i.e. the number of processors used for a given
configuration) is currently not taken into account. The platforms
are generally statically sized at design-time to reach a given
maximum requirement and used, at run-time, without changing
the architecture configuration. In this context, the proposed work
provides an efficient method for platform sizing which could be
used both at design-time and run-time. Depending on the actual
requirements, this method allows a dynamic sizing at run-time
which optimizes the resources management of the platform.

In this paper we propose an approach for efficient sizing of

heterogeneous flexible multiprocessor for iterative demapping and
channel decoding. In fact, for a given communication requirement
many architecture alternatives exist and selecting the right one at
design-time and at run-time is an essential issue. The proposed
approach defines the mathematical expressions which exhibit the
number of heterogeneous cores and their features. It has been
applied on a flexible multi-ASIP hardware platform for iterative
demapping and channel decoding. Results analysis demonstrates
a reduction of the chip area of 9.6% compared to an approach
in which alternative architectures presented in this paper are not
explored. Future work targets the model extension with more func-
tionalities, like equalization, and the application of the proposed
sizing approach on a dynamic reconfigurable platform and to build
optimization strategy to dynamically adapt the configuration.

REFERENCES

[1] F. Clermidy, C. Bernard, R. Lemaire, J. Martin, I. Miro-Panades,
Y. Thonnart, P. Vivet, and N. Wehn, “MAGALI: A Network-
on-Chip based multi-core system-on-chip for MIMO 4G SDR,”
in Proc. of IEEE International Conference on IC Design and
Technology (ICICDT), 2010, pp. 74 –77.

[2] U. Ramacher, “Software-Defined Radio Prospects for Multistan-
dard Mobile Phones,” Computer, vol. 40, no. 10, pp. 62 –69,
2007.

[3] J. Declerck, P. Raghavan, F. Naessens, T.V. Aa, L. Hollevoet,
A. Dejonghe, and L. Van der Perre, “SDR platform for 802.11n
and 3-GPP LTE,” in Proc. of International Conference on
Embedded Computer Systems (SAMOS), 2010, pp. 318 –323.

[4] C. Brehm, T. Ilnseher, and N. Wehn, “A scalable multi-ASIP
architecture for standard compliant trellis decoding,” in Interna-
tional SoC Design Conference (ISOCC), 2011, pp. 349 –352.

[5] T. Vogt, C. Neeb, and N. Wehn, “A reconfigurable multi-processor
platform for convolutional and turbo decoding,” in Proc. of In-
ternational Workshop on Reconfigurable Communication-centric
Systems-on-Chip (ReCoSoC), 2006, pp. 16–23.

[6] P. Murugappa, Al-Khayat R., A. Baghdadi, and M. Jézéquel, “A
Flexible High Throughput Multi-ASIP Architecture for LDPC and
Turbo Decoding,” in Proc. of Design, Automation and Test in
Europe Conference & Exhibition (DATE), 2011.

[7] A. R. Jafri, A. Baghdadi, and M. Jezequel, “FPGA Prototype
of Flexible Heterogeneous multi-ASIP NoC-based Unified Turbo
Receiver,” in University Booth of the Design, Automation and
Test in Europe Conference & Exhibition, DATE’11, 2011.

[8] S. Haddad, A. Baghdadi, and M. Jézéquel, “Reducing the Number
of Iterations in Iterative Demodulation with Turbo Decoding,” in
Proc. of International Conference on Software, Telecommunica-
tions and Computer Networks (SoftCOM), 2011.

[9] O. Muller, A. Baghdadi, and M. Jézéquel, “Parallelism Efficiency
in Convolutional Turbo Decoding,” EURASIP Journal on Ad-
vances in Signal Processing, 2010.

[10] A. R. Jafri, A. Baghdadi, and M. Jezequel, “ASIP-Based Uni-
versal Demapper for Multiwireless Standards,” IEEE Embedded
Systems Letters, vol. 1, no. 1, pp. 9–13, 2009.

