
MODELING AND SYNTHESIS OF A DYNAMIC AND PARTIAL RECONFIGURATION
CONTROLLER

S. Guillet*, F. de Lamotte*, N. Le Griguer*, É. Rutten**, J.-P. Diguet*, G. Gogniat*

*Lab-STICC, Université de Bretagne Sud, France,
{sebastien.guillet,florent.lamotte, nicolas.le-griguer,jean-philippe.diguet,guy.gogniat}@univ-ubs.fr

**LIG / INRIA Rhône-Alpes, France, eric.rutten@inria.fr

ABSTRACT

This paper presents a framework to integrate the formal syn-
thesis of a reconfiguration controller into a Model Driven
Engineering methodology used for reliable design of recon-
figurable architectures. This methodology is based on an
extension of UML/MARTE, GASPARD, and the aforemen-
tioned controller is obtained as a C code through a formal
technique named Discrete Controller Synthesis. Taking ad-
vantage of using both modeling and synthesis techniques,
the approach demonstrates an effective reduction of com-
plexity in the specification of such reconfigurable systems.
An application model of an image processing application is
presented as a case study.

1. INTRODUCTION

Designing adaptive Systems-on-Chip (SoC) has raised in
complexity and sophistication over the last few years, and
designing them to be safe is becoming even more complex.
Even if adaptive systems became a reality with the introduc-
tion of Dynamic and Partial Reconfiguration (DPR) tech-
nologies by Xilinx, autonomous reconfiguration has not much
been addressed. Designing correctness is an important issue
in critical SoCs, as a single error can lead to a financial, ma-
terial and/or human disaster. However, adding reconfigura-
tion concepts in such SoCs increases the design complexity
as adaptive systems need to be both secure and optimized
to address (often) contradictory constraints (i.e. quality of
service, energy consumption, etc.). Many studies, including
this one, are based on the hypothesis that the complexity will
continue to increase, and thus the need in terms of model-
ing and formal methodologies will become significant. This
is leading to a progressive usage of methodologies to apply
abstraction and modeling techniques such as Model Driven
Engineering (MDE) [1] and formal techniques to prove ex-
ecution properties in these systems. MDE allows to specify
a system both vertically (compilation flow) and horizontally

This work is supported by the ANR FAMOUS project
(ANR-09-SEGI-003)

(models for analysis, verification, performance...). The pro-
posed approach relies on such a methodology, starting from
different models of the SoC, concerning its application, its
architecture and association between software and hardware
components. Properties about execution states and reconfig-
uration possibilities are then extracted from these specifica-
tions to be used by a formal technique, which synthesizes
the code of a controller. The role of the controller is to en-
force these properties at runtime. Concerning the method-
ology, this paper will focus especially on how to specify a
Gaspard model in order to be ready for controller synthe-
sis. Discrete Controller Synthesis (DCS) is the formal tech-
nique chosen in this study to tackle the problem of complex-
ity in the reconfiguration specification. After presenting the
related work and tools, the control concepts are further de-
tailed and finally, an example of a Gaspard model containing
control information is shown.

2. RELATED WORK

2.1. Closed-loop control in reconfigurable architectures

Many research works contribute to the domain of reconfig-
urable embedded systems [2] [3], some of them use contin-
uous control techniques. This study is especially interested
in those which care about the closed-loop management of
reconfiguration. In [4], an FPGA-based PID motion control
system that dynamically adapts the behavior of a robot is
presented. Several designs can be swapped, and tradeoff be-
tween them are evaluated in terms of area, speed or power
consumption. It has to be noted that functional correctness
of all the designs is verified by experiment, and not by a for-
mal method. To assure the correctness of the execution of
embedded systems, analysis verification and control meth-
ods are needed. These methods are often based on model
checking, for example in [5] authors use such technique
for migration (reconfiguration) of algorithms from hardware
to software. Another approach is based on theorem prov-
ing, such as [6] that presents a framework for description
and verification of parametrized hardware libraries with lay-

978-1-4673-2256-0/12/$31.00 c©2012 IEEE 703

out information (explicit symbolic coordinates, neighboring
placement). The correctness of the generated layout is es-
tablished by proof in higher order logic using Isabelle theo-
rem prover. What these studies have in common is that each
time, the control system for reconfiguration must be entirely
specified by the designer, so that it can be verified or proven
afterwards. But a technique from discrete control theory,
discussed in the next section, allows for the control design
only by giving its constraints.

A closer approach to the current proposition is [7] where
a formal control technique, based on Discrete Controller
Synthesis, is used to control the communications between
system-on-chip components by filtering their inputs. But
the technique is only applicable in a class of applications in
hardware design where input filtering can be safely achieved.

2.2. Synchronous approach and Discrete Controller Syn-
thesis

The considered reconfigurable SoCs are a specialization of
autonomic computing systems [8], which adapt and recon-
figure themselves through the presence of a feedback loop.
This loop takes inputs from the environment (e.g. sensors),
updates a representation (e.g. Petri nets, automata) of the
system under control, and decides to reconfigure the system
if necessary.

Several works [9] [10] chose to describe these loops in
terms of Discrete Controller Synthesis (DCS) problems. It
consists in considering on the one hand, the set of possible
behaviors of a discrete event system [11], where variables
are partitioned into uncontrollable and controllable ones. The
uncontrollable variables typically come from the system’s
environment (i.e. ”inputs”), while the values of the control-
lable variables are given by the synthesized controller itself.
On the other hand, it requires a specification of a control ob-
jective: a property typically concerning reachability or in-
variance of a state space subset. Such programming makes
use of reconfiguration policy by logical contract. Namely,
specifications with contracts amount to specify declaratively
the control objective, and to have an automaton describing
possible behaviors, rather than writing down the complete
correct control solution. The basic case is that of contracts
on logical properties i.e., involving only Boolean conditions
on states and events.

Within the synchronous approach [12], DCS has been
defined and implemented as a tool integrated with the syn-
chronous languages: SIGALI [13]. It handles transition sys-
tems with the multi-event labels typical of the synchronous
approach, and features weight functions mechanisms to in-
troduce some quantitative information and perform optimal
DCS. It has been applied to the generation of correct task
handlers, adaptive resource management [10], reconfigurable
component-based systems [14], and integrated in a synchronous
language, named BZR [15].

da : Deployed Automata

mc : Macro Component

gscg : Gaspard State Graph Component
istate : StateValue ostate : StateValue

goA : Boolean

goB : Boolean

istate : StateValue

StateA StateB
when goB and not(goA)

when goA and not(goB)
all all

msc2 : Mode Switch Component
«VirtualIP»
MyVirtualIP

inData outData

mode : Mode

mode : Mode

ostate :
StateValueinit : StateValue

goA : Boolean

goB : Boolean

[-1]

inData outData

Fig. 1. Modeling of a deployed mode automata

StateA
: msc

: AImpl

StateB
: msc

: BImpl

Fig. 2. Associated collaborations of a MSC

«VirtualIP»
MyVirtualIP

inData outData

«SoftwareIP»
AImpl

inData outData

«SoftwareIP»
BImpl

inData outData

«implements» «implements»

«CodeFile»
AImpl.vhd

«CodeFile»
BImpl.vhd

«manifest» «manifest»

Fig. 3. Implementations of a VirtuaIP

BZR extends Heptagon, which is itself a synchronous
programming language, and includes a DCS usage from SI-
GALI within its compilation. BZR is used in this work, and
its compilation yields a correct-by-construction controller
(here in C language), which is then integrated into the re-
configurable platform.

Actual transformations into BZR goes beyond the scope
of this paper, and the interested reader should refer to [18]
to understand the formal concepts of these transformations.

3. GASPARD AND MARTE CONCEPTS USED IN
THE CURRENT METHODOLOGY

For the sake of simplicity, only the GASPARD and MARTE
elements concerned by control aspects are presented here.
More information about how to model and generate a SoC
(especially the architecture) from GASPARD can be found
in [17]. We use this MARTE based methodology which
adopts a component based approach to express dynamic as-
pects in a SoC. It makes use of UML collaborations and
variants of UML state machines, referred as Gaspard State
Graphs (GSG), embedded in Gaspard State Graph Compo-
nents (GSGC), which control Mode Switch Components (MSC).

704

A GSGC reacts to external events, and is always considered
as a controlling component, meaning that it outputs at least
one value, termed as a mode value, reflecting the implemen-
tation of a reconfigurable component. The interface of the
GSGC is represented by ports, stereotyped accordingly as
MARTE FlowPorts. The input ports of a GSGC can be ei-
ther event or state ports. Event ports serve in triggering a
transition in the associated GSG and are typed Boolean or
Integer. Values associated to state ports are termed as state
values and identify the different states in the associated state
graph. The input state port for a GSGC indicates the initial
state upon entering the GSGC. A GSGC also supports two
kinds of output ports: mode ports and state ports. The GSG
associated to the GSGC carries out transition functions on
the states and each state is associated to one mode. The out-
put mode port thus carries mode values to a Mode Switch
Component (MSC); which are determined by the transitions
of the state graphs. The output state ports are similar to the
input state ports and provide the next state of the GSGC (the
next state after a transition). Figure 1 illustrates an associa-
tion of a GSG with a GSCG into a Macro Component (MC).
This MC is also encapsulated in a Deployed Automata com-
ponent, showing the generic repetition between the input
and output states which is employed as a memorization of
the previous state. As for the GSC, it shows an example
with two states, one of them (StateA) being connected to
the initial pseudo state, and transition between them, trig-
gered by Boolean expression defined on events. A MSC,
associated to collaborations, is employed to switch between
different implementations of a virtual IP defined by an inter-
face. It takes a mode value as input and executes the corre-
sponding mode. Only one exclusive mode per MSC can be
selected at a time. Collaborations associated to MSCs spec-
ify the relation between some collaborating components, or
roles, each role providing a specific function. Figure 2 de-
picts the behavior of a MSC. For example, the collabora-
tion StateA shows the relationship between the MSC and
the mode/configuration AImpl. It indicates that the mode
value StateA switches from the current executing mode to
AImpl, which is an implementation of the virtual IP embed-
ded in the MSC. The second mode, StateB, is then omitted
along with the mode port of the MSC, due to the semantics
of UML collaborations. An IP component in MARTE repre-
sents an intellectual property or implementation, which can
be either software or hardware based in nature, and thus in-
herited by a concrete SoftwareIP or HardwareIP component
in MARTE. The actual technical implementation of an IP is
defined as a CodeFile reference which links it to the source
files of the IP, cf Figure 3. A VirtualIP component defines a
generic interface, implemented by one or more IPs, i.e. these
IPs have the same number of port, which have the same se-
mantics and type. The actual runtime implementation of a
VirtualIP component is selected by an associated MSC.

«VirtualIP»
Resolution

inVGA outVGA

«SoftwareIP»
High

inVGA outVGA

«SoftwareIP»
Medium

inVGA outVGA

«implements» «implements»

«CodeFile»
High.vhd

«CodeFile»
Medium.vhd

«manifest» «manifest»

«VirtualIP»
Filter

inVGA outVGA

«SoftwareIP»
Color

inVGA outVGA

«SoftwareIP»
BW

inVGA outVGA

«implements» «implements»

«CodeFile»
Color.vhd

«CodeFile»
BW.vhd

«manifest» «manifest»

«SoftwareIP»
Low

inVGA outVGA

«implements»

«CodeFile»
Low.vhd

«manifest»

Fig. 4. Resolution and Color VirtualIPs implementations

FilterTask : Deployed Automata

mc2 : Macro Component

gscg2 : Gaspard State Graph Component
istate : StateValue ostate : StateValue

goColor : Boolean

goBw : Boolean

istate : StateValue

Color BW
when goBw

when goColor
all all

msc2 : Mode Switch Component
«VirtualIP»
Filter

inVGA outVGA

mode : Mode

mode : Mode

ostate :
StateValueinit : StateValue

goColor : Boolean

goBw : Boolean

[-1]

inVGA outVGA

ResolutionTask : Deployed Automata

mc1 : Macro Component

gscg1 : Gaspard State Graph Component
istate : StateValue ostate : StateValue

istate : StateValue

msc1 : Mode Switch Component
«VirtualIP»
Resolution

inVGA outVGA

mode : Mode

mode : Mode

ostate :
StateValueinit : StateValue

[-1]

inVGA outVGA

goHigh : Boolean

goMedium : Boolean

goHigh : Boolean

goMedium : Boolean

goLow : BooleangoLow : Boolean

when goMedium or not(a)

when goHigh and c
High

all

Medium

all

when goLow or not(a)

when goHigh and c

Low

all

when goLow

when goMedium

Fig. 5. Application task graph

High Medium Low Color BW
: msc1

: High

: msc1

: Medium

: msc1

: Low

: msc2

: Color

: msc2

: BW

Fig. 6. Collaborations between the modes of msc1 and msc2
and their target implementations

3.1. GASPARD model

An example of a reconfigurable image processing applica-
tion is modeled in GASPARD. The interesting parts of this
model, containing control aspects, are presented here. The
considered system is composed of two reconfigurable tasks,
ResolutionTask and FilterTask, respectively resizing and fil-
tering images from a video stream. Each task has several im-
plementations (IPs), respectively High, Medium, Low and

705

Color, Bw. Figure 4 shows the implementation relations
between these IPs and their generic interface (VirtualIP).
When a control step is triggered (e.g. by pushing a but-
ton), the system receives five events from its environment
(eg. from dip switches): goHigh, goMedium, goLow, go-
Color and goBw, which are used to take transitions from
an implementation to another in both tasks. For example,
upon the reception of goMedium, the system is supposed to
go from whatever implementation of ResolutionTask to the
Medium implementation. Figure 5 shows the reconfigura-
tion behavior of the two tasks upon the reception of these
events, by using the semantics of Deployed Automata, Gas-
pard State Graphs and Mode Switch Components. Figure 6
shows the collaborations between the MSC and the actual
implementation of their VirtualIP, defined by the mode they
receive.

For the sake of having a control objective example, let’s
say that High resolution cannot be selected in concurrence
with the black and white mode, and let’s make the transi-
tions coming to High and going out of High controllable.
In Figure 5, two controllable variables, c and a, are used to
respectively inhibit transitions to High (if c is set to False)
and force transitions going out of High (if a is set to False).
These variables are identified as ”controllable” because they
don’t come from any port, so their values (True by default)
can only be set by the controller itself. So in this specifi-
cation, if nothing has to be controlled to fulfill the control
objective, c and a remain True and no transition is forced or
inhibited. The equation of the control objective is the only
part which is not yet present in the MARTE specification.
Transformations and execution of an equivalent representa-
tion (automata based) is shown in [18].

4. CONCLUSION AND FUTURE WORK

This paper presented a way to specify a reconfiguration con-
troller for a DPR SoC using a MARTE-based profile, GAS-
PARD in order to use the Discrete Controller Synthesis for-
mal technique. Controllers obtained through this method-
ology are guaranteed to always provide a correct configu-
ration to the system, with respect to constraints specified
by the designer, for every possible execution, thus freeing
the designer to test the system on this critical aspect. This
methodology is integrated in a conception flow from where
a complete platform can be designed and transformed into
an executable one. Both integration and execution of a con-
troller into a reconfigurable platform is presented in [18],
using an equivalent model of the one shown in this paper.
[18] formalizes the transformations and also demonstrates
how a decision system can be connected to the controller, to
make optimizations when several valuations of the control-
lable variables exist.

5. REFERENCES

[1] J. Vidal, F. de Lamotte, G. Gogniat, P. Soulard, and J.-P.
Diguet, “A co-design approach for embedded system mod-
eling and code generation with uml and marte,” DATE, 2009.

[2] J.-P. Diguet, Y. Eustache, and G. Gogniat, “Closed-loop
based self-adaptative hw/sw embedded systems: design
methodology and smart cam case study,” ACM Transactions
on Embedded Computing Systems, vol. 10, no. 3, 2011.

[3] D. Gohringer, M. Hubner, V.Schatz, and J. Becker, “Runtime
adaptive multi-processor system-on-chip: Rampsoc,” IPDPS,
pp. 1–7, April 2008.

[4] W. Zaho and B. H. Kim, “Fpga implementation of closed-
loop control system for small-scale robot,” ICAR, 2005.

[5] M. Borgatti, A. Fedeli, U. Rossi, J.-L. Lambert, I. Moussa,
F. Fummi, C. Marconcini, and G. Pravadelli, “A verification
methodology for reconfigurable systems,” Int. Workshop on
Microprocessor Test and Verification, 2004.

[6] O. Pell, “Verification of fpga layout generators in higher-
order logic,” Journal of automated reasoning, 2006.

[7] E. Dumitrescu, M. Ren, L. Pietrac, and E. Niel, “A super-
visor implementation approach in discrete controller synthe-
sis,” ETFA, 2008.

[8] J. O. Kephart and D. M. Chess, “The vision of autonomic
computing.” IEEE Computer, 2003.

[9] F. Boyer, G. Delaval, N. de Palma, O. Gruber, and E. Rut-
ten, “Discrete supervisory control application to computing
systems administration,” in INCOM, 2012.

[10] G. Delaval and É. Rutten, “Reactive model-based control
of reconfiguration in the fractal component-based model,”
CBSE, 2010.

[11] C. Cassandras and S. Lafortune, “Introduction to discrete
event systems,” Kluwer Acad. Publ., 1999.

[12] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. L.
Guernic, and R. D. Simone, “The synchronous languages 12
years later,” 2003.

[13] H. Marchand, P. Bournai, M. Borgne, and P. Guernic, “Syn-
thesis of discrete-event controllers based on the signal envi-
ronment,” Discrete Event Dynamic Systems, 2000.

[14] T. Bouhadiba, Q. Sabah, G. Delaval, and E. Rutten, “Syn-
chronous control of reconfiguration in fractal component-
based systems – a case study,” EMSOFT, 2011.

[15] G. Delaval and H. M. E. Rutten, “Contracts for modular dis-
crete controller synthesis,” in LCTES, 2010.

[16] S. Guillet, F. D. Lamotte, É. Rutten, G. Gogniat, and J.-P.
Diguet, “Modeling and formal control of partial dynamic re-
configuration,” ReConFig, 2010.

[17] I. R. Quadri, A. Gamatié, P. Boulet, S. Meftali, and J.-L.
Dekeyser, “Expressing embedded systems configurations at
high abstraction levels with uml marte profile: Advantages,
limitations and alternatives,” Journal of Systems Architecture,
2012.

[18] S. Guillet, F. D. Lamotte, N. L. Griguer, É. Rutten, G. Gog-
niat, and J.-P. Diguet, “Designing formal reconfiguration con-
trol using uml/marte,” ReCoSoC, 2012.

706

