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1. INTRODUCTION

New dynamically reconfigurable architectures represent a promising opportunity to
improve the sensitive issues of heat dissipation and energy efficiency in future Systems-
on-Chip (SoC). However, the control of the dynamicity of such systems is one of the
biggest challenges with which designers must cope. Moreover, the increasing complex-
ity of SoC makes even more difficult the design of safe embedded systems, which is
critical as they tend to be ubiquitous. This increasing complexity calls for both for-
mal methods and high-level specification formalisms with automated transformations
towards lower-level descriptions. In this context, the present study offers a modeling ap-
proach to enforce reconfiguration constraints in an integrated and automated solution.
Specifically, a UML/MARTE! model—that is used to specify real-time embedded

Thttp://www.omg.org/spec/MARTE/1.1/.
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Fig. 1. Configuration processing flowchart. Fig. 2. MDE flow.

systems—is first enhanced with control information and then transformed into a syn-
chronous specification, named BZR, to be synthesized by a formal tool (SicaLi). This lat-
ter sebsequently performs Discrete Controller Synthesis (DCS) [Ramadge and Wonham
1989].

Figure 1 shows the execution model targeted by this approach. Suppose that a system
contains a global execution loop that starts by taking events from the environment.
Then these events get processed by a task (reconfiguration controller) that chooses the
system’s configuration. Finally, this configuration order gets dispatched through the
system’s tasks following its model of computation, and another iteration of the loop
can start again. Many systems follow this kind of execution model. For example, this is
the case for many image processing applications that perform image transformations
and receive events from the environment to adapt their behavior. If a system can be
represented using this execution model, then the proposition of this work can help to
design and formally obtain its reconfiguration controller task.

The whole proposition is described in Figure 2 as it is integrated in a UML modeller
named Papyrus. This tool is used to specify MARTE models augmented with new
control information. The justification of MARTE as the entry point for modeling goes
beyond the scope of this contribution. Even if the following methodology is based on
MARTE, the modeling language in itself could easily be replaced by another one, as
long as the new one also has the ability to define automata and synchronous boolean
equations. However, the interested reader could refer to Gamatié et al. [2011] in order
to read more about the ability of MARTE to model embedded systems.

Augmented MARTE models are automatically transformed into a synchronous pro-
gram (in the BZR language), which becomes a defined-by-constraint behavior model.
This BZR program is a formal specification on which DCS performs an exhaustive
state space exploration to build a correct-by-construction executable controller (in C)
that forces the model to remain in a correct set of states with respect to the predefined
constraints. This controller can then be integrated into a Xilinx platform project.

It should be noted that the aim of this work is not to replace High-Level Synthesis
(HLS)-based methodologies; instead it can be very complementary. Kundu et al. [2011]
especially shows the complementarity of HLS and formal verification techniques like
model checking. HLS can be seen as stepwise transformation of a high-level design
into an RTL design, starting by capturing the behavioral description in an intermedi-
ate representation, usually a control dataflow graph. Thereafter, HLS is usually divided
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Extending UML/MARTE to Support Discrete Controller Synthesis 27:3

into several subtasks to solve technical problems, typically: allocation, which consists
of determining the number of resources that need to be allocated to synthesize the
hardware circuit; scheduling, to determine the timestep or the clock cycle in which
each operation of the design is executed; resource selection, to determine the resource
to execute an operation from several resources of different types and areas and tim-
ings; binding and optimization, to map an operation to functional units, variables to
registers, and data/control transfers to interconnection components; and control syn-
thesis, which generates a control unit (usually a final state machine) that implements
the schedule. The HLS domain has been widely explored and mature HLS tools have
emerged such as the Spark framework [Dossis 2011; Gupta et al. 2004] that uses formal
transformations to perform HLS.

Now, if a system can be proven technically correct using such methodologies, does it
still satisfy a given functional property? This key question is usually tackled by model
checking: the properties to be verified are formulated using a formal language and then
a model of the system is given and the formal lang-age tests automatically whether
this model satisfies the properties for all its possible executions. While model checking
requires the definition of a complete system (its behavior) for a given property to be
verified, DCS only requires a partial definition based on a notion of controllability,
that is, a behavioral specification using controllable variables whose values must be
set by a program named the controller. DCS actually goes beyond checking a property:
it automatically provides the code of the maximal permissive controller (if it exists)
whose role is to constrain the system only when necessary (i.e., to fulfill this property)
by appropriately valuating its various controllable variables at runtime. So, in this
work, the various technical problems usually solved by HLS are abstracted soas to focus
only on functional properties to enforce regarding the compositions of reconfigurable
hardware tasks.

This article is organized as follows: after presenting the related work and tools,
MARTE control elements are presented, then MARTE transformations are detailed,
and finally, a controller is synthesized from the mapped formal representation and
integrated to be executed on the platform showing a reconfigurable image processing
application.

2. RELATED WORK

Much research contributes to the reconfigurable embedded systems domain. Some,
like Diguet et al. [2011], use continuous control techniques. This study is especially
interested in those that care about the closed-loop management of reconfiguration.

In Zhao et al. [2005], an FPGA-based PID motion control system that dynamically
adapts the behavior of a robot is presented. Several designs can be swapped and trade-
offs between them are evaluated in terms of area, speed, or power consumption. It has
to be noted that functional correctness of all the designs is verified by experiment, and
not by a formal method. To assure the correctness of the execution of embedded sys-
tems, analysis verification and control methods are needed. These methods are often
based on model checking, for example, in Borgatti et al. [2004] the authors use such
techniques for migration (reconfiguration) of algorithms from hardware to software.
Another approach is based on theorem proving, such as Pell [2006] that presents a
framework for description and verification of parametrized hardware libraries with
layout information (explicit symbolic coordinates, neighboring placement). The cor-
rectness of the generated layout is established by proof in higher-order logic using the
Isabelle theorem prover. What these studies have in common is that, each time, the
control system for reconfiguration must be entirely specified by the designer so that
it can be verified or proven afterwards. But a technique from discrete control theory,
discussed in the next section, allows for the control design only by giving its constraints.
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A closer approach to the current proposition is Dumitrescu et al. [2008] where a for-
mal control technique, based on DCS, is used to control the communications between
system-on-chip components by filtering their inputs. But the technique is only appli-
cable in a class of applications in hardware design where input filtering can be safely
achieved, and it does not target dynamic reconfiguration problems but communication.

The considered reconfigurable SoCs are a specialization of autonomic computing
systems [Kephart and Chess 2003] that adapt and reconfigure themselves through the
presence of a feedback loop. This loop takes inputs from the environment (e.g., sensors),
updates a representation (e.g., Petri nets, automata) of the system under control, and
decides to reconfigure the system if necessary.

Describing such a loop can be done in terms of a DCS problem. It consists in con-
sidering, on the one hand, the set of possible behaviors of a discrete event system
[Cassandras and Lafortune 2006], where variables are partitioned into uncontrollable
and controllable ones. The uncontrollable variables typically come from the system’s
environment (i.e., “inputs”), while the values of the controllable variables are given by
the synthesized controller itself. On the other hand, it requires a specification of a con-
trol objective: a property typically concerning reachability or invariance of a state-space
subset. Such a programming makes use of reconfiguration policy by logical contract.
In other words, specifications with contracts amount to specifying declaratively the
control objective, and have an automaton describing possible behaviors, rather than
writing down the complete correct control solution. The basic case is that of contracts
on logical properties, that is, involving only boolean conditions on states and events.

Within the synchronous approach [Benveniste et al. 2003], DCS has been defined
and implemented as a tool integrated with the synchronous languages, namely, SicaL1
[Marchand et al. 2000]. It handles transition systems with the multi-event labels
typical of the synchronous approach, and features weight function mechanisms to
introduce some quantitative information and perform optimal DCS.

It has been integrated in a synchronous language named BZR [Delaval et al. 2010].
This language includes a DCS usage from SicaLl within its compilation. BZR is used
in this work and its compilation yields a correct-by-construction controller (here in C
language) that is then integrated into the reconfigurable platform.

In Guillet et al. [2012], we showed a design flow going from a hypothetical extended
MARTE model where control information is extracted and transformed into a BZR
program, which is then compiled to produce reconfiguration controllers. MARTE was
used over other modeling standards mainly because it is based on UML, is lightweight,
and provides higher abstraction levels. More details about the abilities of MARTE in
SoC modeling and advantages compared to the other standards and profiles can be
found in Quadri [2010]. This article is an improvement over this last work, as it shows
both the complete design methodology based on MARTE and also how MARTE has
been extended to support control specification for DCS.

3. MARTE CONTROL MODEL

This section is focused on control specification only. It justifies an extension, named
RecoMARTE, of the MARTE metamodel for further control synthesis operations.
Let’s suppose we have the following models represented in MARTE, from which we
will only consider an abstract view (to focus on control aspects): application model, ar-
chitecture model, and allocation model. The application model is a task graph, each task
being a MARTE RtUnit that contains execution semantics (such as input consumption
and output production at each call). The architecture model is a set of components
(MARTE HwResource) communicating together through ports. And, finally, the alloca-
tion represents the mapping of tasks on hardware components (e.g., a task is executed
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on a processor, meaning that it is a software task; or a task is allocated to a hardware
component identified as a black box, meaning that it is a hardware task).

Let’s take an example based on a reconfigurable image processing application. The
considered system is composed of two reconfigurable hardware tasks, namely filter
and resolution, filtering and resizing images from a video stream, respectively (refer to
Figure 3). Each task has several implementations (IPs), respectively color, bw, and high,
medium, and low. These implementations are abstracted as MARTE configurations,
which are UML composite structures representing configuration aspects of the system.
Such a component is an explicitly defined configuration of subcomponents, connections,
flows, end-to-end flows, as well as property values, etc., that must be instantiated when
the configuration is active.

Each MARTE configuration is linked to a mode using its mode property. A mode
is itself defined in a ModeBehavior, which is basically a UML state machine (states
connected by transitions using boolean equations as triggers) declaring an interface
(events as inputs and an active mode as output). Figure 4 illustrates their state ma-
chine view and Figure 7 shows their component view. For more information about the
semantics being used by ModeBehaviors in this methodology, the reader can refer to
André et al. [2007] that, among other things, describes how timed events can be used in
MARTE for behavior modeling (e.g., state machine modeling) to reflect the synchronous
semantics of SyncCharts [André 1996]. When a mode (state) is activated, the configura-
tion defined in a MARTE configuration linked to this mode must be instantiated, which
is a way to represent dynamicity in MARTE. Figure 5 shows the case for Configuration
HighMode: an implementation named high is instanciated on the resolution task when
high mode is activated.?

When specifying a MARTE configuration, the designer is able to attach specific non-
functional properties—or weights—(e.g., energy consumption, quality of service, etc.)
characterizing the configuration using MARTE NFPs, which are basically typed and
valued attributes given to a configuration. However, in order to verify constraints using
these values, one must be able to combine and compare them, but such a mechanism

2The internal representation is just an abstraction here; this information is not needed to solve the control
problem.
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does not exist in MARTE; thus an extension of the NFP concepts is proposed and illus-
trated in Figure 6, which shows the extension and its usage in a model to define two
weight types (QoS and power). A valuation of these weights for the MARTE configura-
tion HighMode is shown in the structural view of Figure 5. An NfpMeasure extends the
notion of NfpType allowing the designer to attach appropriate operations to combine
values of a certain type of NfpMeasure, to compare them, and to insert a default value
when none has been defined for a given configuration.

Using this NfpMeasure concept, let’s say the designer gives the following values?® of
QoS and power for these MARTE configurations:

Color | Bw | High | Medium | Low
QoS 5 8 5 10 11
Power 8 7 8 20 17

Applying verification techniques to ensure temporal properties regarding several
ModeBehaviors—like state invariance* or state reachability’>—implies that these
ModeBehaviors can be synchronized, that is, their inputs and outputs are given and
emitted at the same discrete instants, respectively. One of these verification techniques,
named DCS, also requires that some of their inputs are controllable, meaning that their
values are given only by a resolver that is the function obtained through the applica-
tion of DCS on such a model. The aim of this function is to set correct values of these
controllable variables at each discrete instant so that—combined with all inputs—the

3Such values could come from profiling or simulation tools, for example.

4The system can be forced to stay in states that comply with the ensured temporal properties.

5A state is reachable if a correct path to it (each step of this path being compliant with the ensured temporal
properties) exists from the initial state.
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Fig. 7. MARTE RtUnit extension (lower left) and usage example for a controller definition.

system cannot take a transition into a state that would not comply with the specified
temporal properties.

Synchronizing ModeBehaviors can be represented in MARTE using an RtUnit that
encapsulates them and presents their inputs/outputs on its own interface (synchro-
nizing them by definition). Adding temporal properties to such an RtUnit can still be
done in standard using MARTE NfpConstraints that can be of two types: (1) contract,
representing a boolean constraint to enforce (i.e., to keep ¢rue) for all executions of
the RtUnit, or (2) required, representing a boolean constraint supposed to be ensured
(i.e., true) when using the RtUnit. Identifying controllable variables can be done using
the following methodology: the designer adds an internal component into the RtU-
nit to control and creates a connection from an output port of this component to a
ModeBehavior for each controllable variable. This internal component knows both the
current state of its encapsulating RtUnit and its input values at every step: it is the
resolver function that the designer is looking for.

To complete the model for DCS, one must identify which component is the resolver
inside a RtUnit to control, as well as the NfpMeasures to take into account if some of
them are used in related NFP constraints (temporal properties to assume or to enforce).
This cannot be done using the standard. Figure 7 shows the metamodel extension of
the RtUnit component, named controller, and its usage for a controller definition.

The controller RtUnit (MyController) depicted in this last figure shows that, when
it is triggered (e.g., by pushing a button), it receives five events from its environment
(e.g., from dip switches): goHigh, goMedium, goLow, goColor, and goBw that are used to
take transitions from an implementation to another in both tasks resolution and filter,
whose reconfiguration behaviors are given by the ModeBehaviors ResolutionMode and
FilterMode. Controllable events, a and ¢, are also produced each time the RtUnit
is triggered, coming from an internal component named resolver that is the actual
resolver function interface.
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Two NFP constraints are attached to the controller RtUnit, one required and one
of type contract, respectively referred as H and F in the next section. The hypothesis
‘H is set to true, meaning that each controllable variable combination is correct, and
the control objective F (contract) states that the total weights combination of QoS and
power for each mode of a configuration should always remain, respectively, higher than
14 and 16 units for all possible executions/reconfigurations. These combinations can be
computed automatically using the information given in the NfpMeasures definitions:
QoS and power can both be composed and compared using, respectively, the addition
and the lower-than or equal-to operations on integers.

If it exists, a resolver obtained through DCS is able to keep the system in states
where F remains true (given the fact that 7 is ensured to be true) for all possible
executions by setting the correct values of a and c¢. They are used here to, respectively,
inhibit transitions to high (if ¢ is set to false) and force transitions going out of high
(if a is set to false). So, in this specification, if nothing has to be controlled to fulfill
the control objective, ¢ and ¢ remain ¢rue and no transition is forced or inhibited.
The next section shows the transformation of such an extended MARTE model into a
synchronous representation based on the BZR language on which DCS will be applied.

4. MARTE TO SYNCHRONOUS REPRESENTATION

From a MARTE model using the previously described extension, several transforma-
tions are performed to obtain a controller specification (in BZR) ready for discrete
controller synthesis. This section presents the mapping between such a MARTE model
to a BZR program. The synchronous background related to BZR is first recalled, then
an example of a MARTE model with control elements is shown with its targeted trans-
formation result, and finally the transformations are formalized.

4.1. Synchronous Background

Definition 4.1 (Labeled Transition System (LTS)). An LTS is a tuple S = (9, qo,
Z,0,T), where Q is a finite set of states, q¢ is the initial state of S, Z is a finite
set of input events (produced by the environment), O is a finite set of output events
(emitted towards the environment), and 7 is the transition relation that is a subset of
OxBool(Z) x O* x Q, where Bool(7) is the set of boolean expressions of Z. If we denote by
B the set {true, false}, then a guard g € Bool(Z) can be equivalently seen as a function
from 27 into B.

Each transition has a label of the form g/a, where g € Bool(Z) must be true for
the transition to be taken (g is the guard of the transition) and where a € O* is a
conjunction of outputs that are emitted when the transition is taken (a is the action
of the transition). State ¢ is the source of the transition (g, g, a, q') and state ¢’ is the

destination. A transition (q, g, a, ¢’) will be graphically represented by (¢ Lt q).

The composition operator of two LTS put in parallel is the synchronous prod-
uct, noted ||, and a characteristic feature of the synchronous languages. The syn-
chronous product is commutative and associative. Formally, we have (Q1,qo.1,Z1,
O1, T1)11(Q2,qo.2, L2, 02, T2) = (Q1 X Q2,(g0.1,902),71 U I3, 01 U Oz, T) with 7 =

(Ni=180)/ Ny @) / / ’ i
(((qy, gg) =& Nt By a;, a)I(qr LU q;) € T'r(qr,q;) € q x q¢'}. Note that this

synchronous composition is the simplified one presented in Altisen et al. [2003] and
supposes that g and a do not share any variable that would be permitted in synchronous
languages like Esterel.

Here (q1, q2) is called a macrostate, where q; and g9 are its two component states. A
macrostate containing one component state for every LTS synchronously composed in
a system S is called a configuration of S.
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Definition 4.2 (Discrete Controller Synthesis (DCS) on LTS). A system S is speci-
fied as an LTS, more precisely as the result of the synchronous composition of several
LTS. F is the objective that the controlled system must fulfill while H is the behav-
ior hypothesis on the inputs of S. The controller C obtained with DCS achieves this
objective by restraining the transitions of S, that is, by disabling those that would
jeopardize the objective F, considering hypothesis . Both F and H are expressed as
boolean equations.

The set 7 of inputs of S is partitioned into two subsets, namely, the set Z¢ of con-
trollable variables and the set Zy of uncontrollable inputs. Formally, 7 = Z¢ U Zy and
Zc NIy = ?. As a consequence, a transition guard g € Bool(Z¢ U Zyy) can be seen as a
function from 27¢ x 270 into B.

A transition is controllable if and only if (iff) there exists at least one valuation of
the controllable variables such that its guard is false; otherwise it is uncontrollable.
Formally, a transition (q, g, a, q’) € T is controllable iff 3X € 2%¢ such that VY € 27, we
have g(X,Y) = false.

In the framework of this document, the following function S, = make_invariant(S, E)
from Sicari [Marchand et al. 2000] is used to synthesize (i.e., compute by inference) the
controlled system S, = S N C, where E is any subset of states of S, possibly specified
itself as a predicate on states (or control objective) F and predicate on inputs (or
hypothesis) H. The function make_invariant synthesizes and returns a controllable
system S,, if it exists, such that the controllable transitions leading to states q; ¢ E are
inhibited, as well as those leading to states from where a sequence of uncontrollable
transitions can lead to such states ¢; ¢ E. If DCS fails, this means that a controller of
S does not exist for objective F and hypothesis H.

In this context, the present proposition relies on the use of DCS to synthesize a
controller C that makes invariant a safe set of states E in an LTS-based system where
E is inferred by boolean equations defining a control objective and a hypothesis on the
inputs. The controller C given by DCS is said to be maximally permissive, meaning
that it doesn’t set values of controllable variables that can be either true or false while
still compliant with the control objective. Actually, the BZR compiler defaults these
variables to true but this type of decision is too arbitrary and the current proposition
(that relies on BZR) also proposes a way to integrate a custom decision module, de-
fined by a function interface in C that can be implemented by the designer. This way,
when the controller states that more than one configuration is accessible, this decision
module can safely choose one of them to optimize the transition choices inside E. The
actual implementation of such a module goes beyond the scope of this article so will be
assimilated to a simple random choice.

Definition 4.3 (Potential Transition). A transition is potential if the current state is
its source and at least one authorized values combination for the controllable variables
(if there are any) associated to the uncontrollable input values allows its guard to be
evaluated to true.

Definition 4.4 (System Equivalence). Two systems S and S’ sharing the same states
and the same initial state are equivalent with respect to (wrt) an objective F and a
hypothesis H they have in common iff, for all correct execution wrt H:

—objective F is guaranteed in both S and S’; and
—every potential transition for each step of execution in a system is also potential in
the other.

Two equivalent systems only differ on the final potential transition choice at each step,
this choice being always correct wrt 7 and H.
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2| returns(canHighColor, canHighBw, canMediumColor, 9| canMedium = (high A (goMedium v (=a)) v (low A (goMedium)) v
canMediumBw, canLowColor, canLowBw) , (medium A =((goHigh A ¢) v (goLow)))
10| canLow = (medium a (goLow)) v (high A (goLow)) v
3| atLeastOne = (((false -> pre(canHighColor)) A okHighColor) A ' (low A ~((goMedium) v (goHigh 4 c)))
((true -> pre(canMediumColor)) A okMediumColor) " 11| canColor = (bw A (goGolon) v (color A ~(goBW))
((false -> pre(canLowColor)) A okLowColor) A '
((false - pre{canHighBIW)) A okHIGhBIW) A + 12 canBW = (color A (goBW)) v (bw A ~(goColor)) i
((false -> pre(canMediumBW)) A okMediumBW) '
((false -> pre(canLowBW)) 1 okLowBW)) " 12| canHighColor = canHigh A canColor 7

13| canHighBW = canHigh A canBW
4 | atMostOne = (~( ' 14| canMediumColor = canMedium  canColor

(okHighColor A (okMediumColor v okLowColor v okHighBW v okMediumBW v okLowBW)) A " 15| canMediumBW = canMedium A canBW
(okMediumColor  (okLowColor v okHighBW v okMediumBW v okLowBW)) o '
(okLowColor A (okHighBW v okMediumBW v okLowBW)) A + 16| canLowColor = canLow A canColor
(okHIghBW A (okMediumBW v okLowBW)) o ' 17| canLowBW = canLow A canBW
(okMediumBW A okLowBW))) ' -
- 18 (QoS,Power) = if(okMediumBw) then (18,27) else ( n
5 | assume(atLeastOne  atMostOne) ] ' if(okMediumColor) then (15,28) else (

if(okLowBw) then (19,24) else (

6 | enforce((canHighColor v canMediumColor v canLowColor v canHighBW v canMediumBW v . iitokl owColor) then (16,25) alse (

canLowBW) A ((Q0S = -(16)) v (Power = -(14))))) ' iffokHighBw) than (13, 15) elss (
if(okHighColor) then (10,16) else ((0,0))))))

7 | with(a,c)

Fig. 8. Target transformation to BZR. Circled numbers are references to equations.

Definition 4.5 (State and Configuration Accessibility). A state of an LTS is acces-
sible if at least one transition going to it from the current state is potential (which
includes by default the case where this state is the current state and no outgoing tran-
sition is potential). A configuration, or macrostate of a system, is accessible if each
state of its composition is accessible.

5. DECISION INTEGRATION AND WEIGHT CONSTRAINTS

Soas to better understand the next equations, Figure 8 shows the transformation
result of the previous MARTE model into BZR. Each circled number in this figure is a
reference to a corresponding equation. To avoid redundancies, the transformation of the
two ModeBehaviors from Figure 4 is shown in Figure 10, which gives their graphical
representation. This transformation is also explained in the following equations.

As can be seen from Definition 4.1, a direct mapping from a MARTE ModeBehavior
is trivial: a mode is a state, a ModeTransition is a transition, and a ModeBehavior is
an LTS; inputs of the LTS come from both the inputs and controllables sections of the
controller proposition in MARTE. Finally, the control objective and hypothesis come
respectively from the contract and hypothesis sections of the controller specification.
But this simple mapping into an LTS with a contract and a hypothesis is not satifying
as it does not take advantage of the transition choice when several transitions from a
state are possible (i.e., when multiple configurations are allowed by the controller). This
is why this part shows how to transform such an LTS into one that can be connected
to a decision module able choose between several reconfiguration propositions.

Let S = (9, q,Z, O, T) be a system defined as an LTS or a synchronous composition
of several LTS, and F its control objective guaranteed wrt a hypothesis H. The objec-
tive is to build a system S’ = (9, qo, Z’, O, 7'), equivalent to S wrt F and H (refer to
Definition 4.4), integrating a decision system that makes a choice on accessible config-
urations at each step.

5.1. Modifying Inputs and Outputs

S’ encapsulates both the inputs and outputs of S and extends them in order to take
into account the configuration’s accessibility as output and the choice of an accessible
configuration as input. Let n be the number of configurations given by all possible
combinations of the states of the LTS of S, and m be the number of LTS of S. Let
1<i<nandl < j<m LetDand P be two boolean sets with card(D) = card(P) = n,
where d; € D corresponds to the choice given by the decision system where only one
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configuration is chosen at each step, formally: Vd; € D, {d; = false|i # x,1 < x < n},
(hence all decision inputs are false except for the one reflecting the chosen configura-
tion : d,), where x is the chosen configuration identifier (id) and p; € P reflects the
accessibility of the configuration for which the id is i. At least one configuration must
be accessible so formally 3p; € P, p; = true. The inputs and outputs 7’ and O’ of S’ are
defined as

7' =7UD, withZTnNnD =4,
O =0UP, withONP =409, (1)

7 being equal to Z¢ U Zy and where the controllables Z¢ can be seen in the with
part of Figure 8. Each configuration accessibility boolean p; is defined by an equation
evaluating the potentiality of all transitions going to each state of the configuration i.
This equation is true if all concerned states are accessible. So let p; € P, and s;; be a
boolean reflecting the accessibility of a state j of the configuration i. Then p; is defined
by

pi=N\_ s 2)
with each s;; defined by

true if q is the current state
false otherwise

Si; :\/{(g/\bq)|(qg—m>q’)e7’} . by :{ (3)

To ensure that, at each step, at least one accessible configuration exists wrt F, this
property has to be added as a control objective so that DCS can enforce it. Thus, the
control objective 7' of S’ is specified by

F=\/_pnrF.peP 4)

It has to be noted that, if 7 is enforced, then F is also enforced implicitly for &',
which is important because S’ is supposed to be equivalent to S wrt F.

5.2. Correct Decision as Input

Now that a way to output the next accessible configurations has been specified, pro-
cessing the final configuration choice (coming as input from a decision module) should
be defined. The decision system is seen as a black box from the point of view of DCS,
only its inputs (P) and outputs (D) are known. However, it is necessary to specify some
behavior hypothesis from this system in order to give the following formal information
to DCS: (1) at least one accessible configuration, given in the previous step, should be
given as input (at least one boolean of D is true); and (2) at most one configuration is
chosen (at most one boolean of D is true).

The hypothesis H' of S’ extends the hypothesis H of S in order to indicate the previous
properties. The pre operator, as defined in synchronous languages, allows here to refer
to the values of configuration accessibility (values of P) at the previous step. Formally,
let atLeastOne and atMostOne be two equations defining, respectively, (1) the fact that
at least one accessible configuration is chosen and (2) at most one configuration is
given.

‘H' = H A atLeastOne A at MostOne (5)

Thus, H, atLeastOne, and atMostOne should always be true. Let z be the identifier
of the initial configuration, 1 = z = n, atLeastOne is specified by

atLeastOne = ((true — pre(p,)) Ad,) VvV (\/((false — pre(p;)) A dL-)) Ji#£z, (6)
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which means that, at the first step, the initial input given by decision sets d, to true,
then for the next steps d; or d, should be ¢true only when pre(p;) or pre(p.) is true. And
atMostOne is given by

n—1 n
atMostOne = — \/ dy A \/ d, |- (7
x=1 y=x+1

5.3. Modifying the LTS Transitions

In order to finalize a step execution, it is necessary to modify the LTS transitions of S’
so that they react only on occurrence of inputs coming from the decision system (inputs
from the specification of S are entirely processed by the previous equations defining
P). The LTS should also be modified in order to output, besides their original outputs,
a set of boolean values named B allowing to identify their current state that is needed
to evaluate b, in the specification of a state accessibility.

Let Sy, and S, (with 1 = 2 = m) be, respectively, an LTS of S and a transformation of
Sy, as an LTS of S’. Let By, be a set of boolean variables and n;, = card(B) = card(Qy).
The transformation of each S; is specified by

VSr = (Ok, Qop» Zies Ok, T), Sy, = (Qk, Q0. D, O'r, T'1)
Bool(7)/0';,

with O, = O, U B, 7', C (Q
being defined by

, (ViLideDlaicQaieai)/@ Uit by )
Th=1|q qr

P if gr, = qp. qr; € Q.
U false otherwise '

Q), O}, being a conjunction of 0, and 77

g/ /7
(Qk &5 qk> € Tk} ,

The result of this transformation is shown on the transitions of the automata from Fig-
ure 10, which now reacts only on decision inputs (and not original inputs e.g., goHigh,
goColor, etc.). Finally, in accordance with the synchronous composition principle, tran-
sitions 77 of S’ are determined by

T’:{(qwq/>

This transformation proposition has shown the way to instrument an equivalent
version S’ of S wrt Definition 4.4. This version allows the designer to implement her own
decision system without interfering with the control objectives as long as it complies
with the control interface, consisting of:

(qr LUK ar) € T’ (qr. q3) € q % q’} :

—a set of booleans P for configuration accessibility as input; and

—a set of booleans D containing one and only one final choice (one boolean set to true)
as output among accessible configurations given at the previous step (so there is a
direct correspondence between D and P).

5.4. Weights Computation

To complete the transformations of a MARTE specification into BZR, weights combina-
tions (i.e., weights of all configurations, defined as nonfunctional properties) have to be
computed. Types of weights appear in the specification, but the actual way to combine
and compare them is a technical detail implemented directly in the transformations.
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\ MB }_{ RAM \ \ Ethernet H UART \
TBitstreams lLogs

Fig. 9. Target platform.

This way, the designer can use the already implemented types and operations or im-
plement his own by extending the type system as long as he follows the following rules.
Let W be the set of types of weights. Each type ws € W is associated to a partially
ordered set V, together with a binary operation «, on this set, a neutral element ¢/ (so
that when a weight value is not given, the neutral element is used), and a partial-order
relation <, on this group.

The objective being to compute the combination of the weight values vy, of each mode
qp, of a configuration (for all configurations) so that global weight constraints can be
set, variables vy for each weight type w/ are defined in S” by the following equations.

- false otherwise

" : ’ gla
Ywre W, vp = {*f v | bwc} g, = {true g eq. (g = q)eT (8)

Computation of these global weight values happens offline during the model trans-
formations, so every vy variable is statically defined.

Currently, BZR only proposes the order relation “lower or equal” on integers and
floats, so every type and operation defined in the transformations’ type system must be
mappable to pure float or integers, and weight constraints (as can be shown in point 4
of Figure 8) can only use “lower or equal” on these mappings. However, . operations
are actually useful when implementing the decision module to make optimizations, as
it becomes possible to compare configurations with them.

With these mechanisms, a designer can define MARTE models with the control
extension to specify a reconfiguration behavior based on weights and states, and can
connect a system-specific decision component. The next section shows the execution of
the given example.

6. EXPERIMENT

The generated BZR from Figure 8 is compiled and DCS (happening during compilation
by calling SicaL1) succeeds, which means that a controller has been found and its code
in C is given. The decision module itself is generated by default as a random choice
and all this C code is then deployed on a concrete FPGA-based application system that
conforms to the execution model presented in Figure 1. The platform is a XUPV5 board
based on a Xilinx Virtex V FPGA, and provides two video ports that we use to capture
images from a camera and display on a screen. The global architecture of the system
is presented in Figure 9.
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STEP 1
System | okHighColor ——] Controller |- canHighcolor —| Decision |- okHighcolor—s|
|- okHighBw ————=1 |- canHighBw —— |- okHighBw ———{
- Resolution FSM
— |- canMediumColor — |- okMediumColor —{
ColorFSM ‘
|- okMediumBw ——> |-c: —s |- okMediumBw —{
|- okLowColor ———4 color = true |- canLowColor ——] |- okLowColor ———{
ow = false
|- okLowBw ———>1 |- canLowBw ———{ |- okLowBw ———{
mgh false
medlum true
\DN false
|- goHigh ——]
\okMedlumColor v
E
I gocolor ——]
goBu HighColor = ((medium A (goHigh » ¢)) v (...)) A ((bw A (goColor)) v (color A ~(goBw)))
© canHigh = TRUE T canColor = TRUE
' STEP 2 y
System |- okHighColor—| Controller |- cantiighColor——| Decision L okrighcolor ——»|
|- okHighBw ———>1 N |- canHighBw —— |- okHighBw ———{
< ResolutionFSM
|- okMediumColor —»4 |- canMediumColor —{ |- okMediumColor —s{
g T e ColorFSM l
v—— (High ) ) _ | ttciumn —
|- okLowColor ——{ fow = false color = true |- canLowColor ——| - okLowColor ——»
okHighColor v bw = false
- okLowBw ——1 / phrvtitn |- canLowBw ——| |- okLowBw ——
|- goHigh ———
- goMedium —— ‘
I goLow ———f
I gocolor ——]
| goBw ————| cantighBw = ((...) v (high A ~((goMedium v ~(2)) v (goLow v ~(@) A (...)
T canHigh = FALSE, because a 1s set 10 FALSE
canMediumBw = ((high » (goMedium v =(a))) v (...)) » ((color » goBw) v (...))
& canMedium = TRUE, (a= FALS?) T canBw = TRUE
canLowBw = ((high A (goLow v ~())) v (...)) A ((color A goBw) v (...))
E CanBw = TRUE. (@ = FALSE) T CanBw = TRUE

Notation : True_variable ~ False_variable ((lnitialstate )) (Accessedstate) |

Fig. 10. Two first execution steps.

6.1. Architecture

This architecture is composed of two parts, namely, an operative part that is the video
pipeline, implementing the application, and a command part consisting of a micropro-
cessor architecture on which the controller runs.

On the video pipeline, the two hardware tasks have been implemented on partially
reconfigurable (PR) zones. The first zone receives the resolution IP (high, medium, or
low) and the second receives the filter that either provides a grayscale or color image
(respectively with bw and color IPs). The first zone is directly fed by the data from
the camera. For the display, a third IP named reassembler has been designed. This
processor writes the current frame on the framebuffer of the video output, ensuring
good synchronization. Since it depends on the resolution used—the image size can
vary—it adds padding to the image according to a parameter of the resolution IP.

The microprocessor architecture is based on a Microblaze configured through EDK.
Control of the video pipeline is done through two channels. The first one is a Bus2IPS
IP used to send parameters to the IPs in the pipeline; in this application, we can change
the position and size of the input image in the video stream. The second one is through
the ICAP, which can change the configuration of a PR zone. An Ethernet controller is
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used to download the bitstream from a server [Bomel et al. 2009]. Finally, a GPIO has
been synthesized to send events to the controller. To sum up, the controller program
reads the request from the GPIO, chooses a configuration for the PR zones, downloads
the bitstreams, and applies them through the ICAP.

6.2. Execution

Controller steps are triggered by a push button, while the event values are taken from
the states of switches, so five switches are dedicated to the events goHigh, goMedium,
goLow, goColor, and goBw. The two first execution steps of the controller are shown
in Figure 10 (timeline going from top to bottom). It should be noted that, to really
comply with the MARTE controller specification, the decision module should output
mode values for the system instead of a boolean for each configuration. Actually, a
module (also generated) has this role but is not represented here for space reasons.

On the first step, the system gives the initial values of the decision reflecting the
initial configuration; here okMediumColor is set to true, which is correct with re-
spect to the fact that the atLeastOne equation (refer to point 2 of Figure 8) requires
okMediumColor to be true at the first step, and only this variable is true, which respects
the hypothesis defined by the atMostOne equation (refer to point 3 of Figure 8). The
system also gives the inputs coming from the environment (i.e., the switches values);
here only goHigh is arbitrarily set to true.

Given these inputs, the controller as of yet takes no transition (because it is already
in configuration [Medium, Color]) and computes the other equations dedicated to the
outputs. From these other equations, only one is true, namely, canHighColor, because,
given the current configuration and only goHigh from the environment being true and
also because the controller keeps the default values of the ¢ controllable variable to
true, the only accessible configuration for the next step is [High, Color].

Given this is the only possible configuration, the decision process doesn’t do much for
the present step and just provides back a true value for okHighColor as the identifier of
the chosen configuration for the next step. This choice is then given as a reconfiguration
order performed by the Microblaze, which downloads the bitstream high from the
bitstream server and reconfigures the downscaler after the current image from the
VGA stream is processed.

A second control step can then be prepared by setting new switch states (for example,
to set goHigh and goBw to true) and pressing the push button. The system sets the
new inputs of the controller: the current configuration given by the decision process in
the previous step (okHighColor), as well as the current inputs from the environment
given by the switch states.

Given these inputs, the controller takes transitions to the configuration [High, Color]
and computes the output equations. However, this time, it should not go to [High, Bw]
even if the inputs goHigh and goBw are true, because this would jeopardize the control
objective. Indeed, combining the weights of high and bw provides a QoS of 13 units
(5 + 8) and a power of 15 units (8 + 7). The controller is prepared for this situation and
autonomously sets the controllable variable a to false, thus forcing it to go out of the
state high in the next step. So, canHighColor is evaluated to false because a is set to
false, which has the border effect of setting canMediumBw and canLowBw to true.

Now, given these two possibilities provided by the controller, a decision must be set to
choose between them. Here, the decision system retains (remember, this choice is seen
as random) the configuration [Low, Bw] by setting okLowBw (and only this variable)
to true to the system. And finally, the system propagates the new configuration by
downloading and setting the partial bitstreams low and bw.

From this example, we understand that the next steps will continue to follow this
execution pattern of providing both the current configuration and the switch values to
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the controller that will compute the available configurations and let the decision process
inform the system about the configuration choice that performs reconfigurations.

7. CONCLUSION AND PERSPECTIVES

This article presented a way to specify a reconfiguration controller for a DPR SoC—
using an extension proposition (RecoMARTE) of the MARTE metamodel—and syn-
thesize it using the discrete controller synthesis formal technique. To the best of our
knowledge, this is the first experiment that introduces DCS to secure configuration
transitions in the context of reconfigurable computing. The proposed transformations
have been implemented using the SDMetrics Open Core®, and an associated toolbox
that can be found online’ allows to design RecoMARTE models in Papyrus® and to
transform them into simulable and executable reconfiguration controllers.

As usual when speaking about state combination, this approach has its limits due
to the state explosion problem when solving the controller using DCS. State space
exploration comes at this price, as does proof of correctness on such a representation. To
the best of our knowledge, a less expensive methodology than DCS is not yet availabel
to solve the controller of an abstract control model.

Regarding performance, the controller timings are about 0.1 ms (maximum) for less
than 10,000 instructions executed in sequence, which is usually far more than what is
obtained in reality (especially in this exemple). Actually, only the decision part of the
control loop could easily exceed this number, but this reponsibility is up to the designer,
not DCS. This timing is almost inisignificant compared to the hardware reconfiguration
cost, which is usually between 10 and 20ms, added to the bitstream downloading from
the network upon request in our example (20 to 40ms). Moreover, the reconfiguration
is coarse grained and this video processing example runs at 24fps, thus letting a fair
amount of time for reconfiguration to happen.

This methodology is integrated in a design flow from where the reconfiguration
controller can be designed and transformed into an executable one. RecoMARTE, the
MARTE-based profile used in this study, provides a clear definition of control and
configurations. Including its modeling and transformation concepts into MARTE is an
interesting perspective to allow designers to create standard and consistent models.

As a perspective for the BZR compiler, the integration of the decision module into the
control step, instead of being externally defined, would also be a great improvement.
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