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System security is an increasingly important design criterion for many embedded systems. These systems
are often portable and more easily attacked than traditional desktop and server computing systems. Key
requirements for system security include defenses against physical attacks and lightweight support in terms
of area and power consumption. Our new approach to embedded system security focuses on the protection
of application loading and secure application execution. During secure application loading, an encrypted
application is transferred from on-board flash memory to external double data rate synchronous dynamic
random access memory (DDR-SDRAM) via a microprocessor. Following application loading, the core-based
security technique provides both confidentiality and authentication for data stored in a microprocessor’s
system memory. The benefits of our low overhead memory protection approaches are demonstrated using four
applications implemented in a field-programmable gate array (FPGA) in an embedded system prototyping
platform. Each application requires a collection of tasks with varying memory security requirements. The
configurable security core implemented on-chip inside the FPGA with the microprocessor allows for different
memory security policies for different application tasks. An average memory saving of 63% is achieved for
the four applications versus a uniform security approach. The lightweight circuitry included to support
application loading from flash memory adds about 10% FPGA area overhead to the processor-based system
and main memory security hardware.
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1. INTRODUCTION

Cost-sensitive embedded systems are used to executing end-user applications in a wide
range of computing environments which span a spectrum from handheld computing
to automotive control. These systems often contain little more than a microprocessor,
field-programmable logic, external memory, I/O (input/output) ports, and interfaces to
sensors. In addition to standard concerns regarding system performance and power
consumption, security has become a leading issue for embedded applications. The
portable nature of many embedded systems makes them particularly vulnerable to

Authors’ addresses: J. Crenne, R. Vaslin, G. Gogniat, and J.-P. Diguet, Université de Bretagne Sud-UEB,
France; R. Tessier and D. Unnikrishnan, University of Massachusetts, Amherst, MA 01003.

Corresponding author’s email: jeremie.crenne@lirmm.fr.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2013 ACM 1539-9087/2013/03-ART71 $15.00

DOI: http://dx.doi.org/10.1145/2442116.2442121

ACM Transactions on Embedded Computing Systems, Vol. 12, No. 3, Article 71, Publication date: March 2013.




71:2 J. Crenne et al.

a range of physical and software attacks. In many cases, attackers are uninterested in
the details of the embedded system design, but rather desire information about the sen-
sitive program code and data included in system memory storage. If left unprotected,
off-chip memory transfers from microprocessors can easily be observed and may reveal
important information. Some memory protection can be provided by simply encrypt-
ing data prior to external memory transfer. Although data encryption techniques are
widely known and used, simply modifying the values of data and instructions is gen-
erally thought to be insufficient to provide full protection against information leakage
[Anderson 2001].

The memory contents of embedded systems often require protection throughout the
various phases of system operation from application loading to steady-state system
operation. For microprocessors, application code is frequently kept in on-board flash to
facilitate system loading. Following system initialization, application code and data are
stored in external system main memory, which is usually interfaced to a microprocessor
via a vulnerable external bus. The sensitivity of stored information varies from highly-
sensitive to low importance, motivating configurable memory security which can be
adjusted on a per-task and per-application basis. The real-time performance demands
of most embedded systems indicate the need for a memory security approach which
is implemented in on-chip hardware, adjacent to the microprocessor. This hardware
implementation should just meet an application’s security needs while minimizing
area. Resource efficiency is typically a key for embedded computing in constrained
environments.

Our work includes the development of a new lightweight memory security approach
for embedded systems which contain microprocessors implemented within secure FP-
GAs. Our approach provides security to off-chip FPGA processor instruction and data
accesses during both application loading and steady-state operation. Our new tech-
nique differs from previous embedded system memory security approaches [Elbaz et al.
2006; Lie et al. 2003; Suh et al. 2005] by limiting logic overhead and storing security tag
information on-chip. After loading application code from flash memory, a security core
based on the recently-introduced Advanced Encryption Standard Galois/Counter Mode
(AES-GCM) block cipher [National Institute of Standards and Technology 2007] deter-
mines the appropriate data security level as memory accesses occur in conjunction with
an embedded real-time operating system. Our approach allows for the optimization of
security core size on a per-application basis based on memory footprint and security
level requirements. To facilitate secure application loading during system bootup, a
low overhead data decryption and authentication circuit has been implemented which
can reuse some of the hardware used for main memory protection.

To demonstrate the effectiveness of our approach, we evaluate the hardware overhead
required by the overall security system for four different multi-task applications, each
requiring different mixes of security levels. The four applications have been quantified
and tested using a Microblaze soft processor on a Xilinx Spartan-6 FPGA-based proto-
typing board. The Microblaze runs the MicroC/OS II operating system (OS) [LaBrosse
2002] to schedule tasks for each application. The improved security is achieved with
about a 13% reduction in application performance.

Overall, our work provides the following specific contributions.

—Our approach provides a low-overhead implementation of authenticated encryption
for FPGA-based embedded systems based on the AES-GCM policy approved by the
National Institute of Standards and Technology (NIST). The approach minimizes
logic and latency required for authentication and takes advantage of increased in-
ternal FPGA memory storage in contemporary FPGAs to store authentication infor-
mation.
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Fig. 1. High level model of a typical embedded system.

—Unlike previous encryption and authentication approaches for embedded systems
[Vaslin et al. 2008], the new AES-GCM based authenticated encryption is synchro-
nized and parallelized to enhance throughput.

—The overheads and performance of our authenticated encryption approach have been
fully validated in the hardware of an FPGA-based embedded system for both main
memory security and application loading from flash.

—The approach allows for a low overhead, flexible technique for providing selective
confidentiality and authentication to different parts of an application without the
need for processor instruction additions or significant operating system overhead.

Our approach can be used to protect any SRAM-based FPGA which supports bit-
stream encryption. This feature is available in all Altera Stratix II, III, IV, and V and
Xilinx Virtex II, -4, -5, and -6 family devices.

The paper is organized as follows. Section 2 describes data security issues for em-
bedded systems and previous approaches to address memory protection and secure
application loading. Section 3 provides details of the developed AES-GCM based secu-
rity core. Section 4 focuses on our mechanism for the low-overhead, secure application
loading. In Section 5, the integration of the new memory security core with a micropro-
cessor is described along with its use with four embedded applications. A description
and analysis of experimental results regarding steady-state memory protection are
provided in Section 6. Section 7 discusses results from secure application loading.
Section 8 concludes the paper and offers directions for future work.

2. BACKGROUND
2.1. System Model

The system model that is addressed by this work is shown in Figure 1. The embedded
system is connected to the external world via a communication port (e.g., an Ethernet
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connection, 802.11 wireless, etc). An on-board microprocessor executes one or more
applications which are stored in off-chip flash memory. Following power-up or system
reset, protected application code is loaded from the flash to the main memory (in this
case DDR-SDRAM) via the microprocessor implemented in the FPGA. This model has
been used in a series of previous embedded system studies [Lee and Orailoglu 2008;
Pasotti et al. 2003]. Generally, code execution is not performed from flash memory due
to high read latencies. The time needed to load the microprocessor-based application
from flash is dependent on the code size and the data fetch latency. During steady state
system operation, both program data and instructions are stored in DDR-SDRAM.
These off-chip accesses consist of both read and write operations.

The memory security approach described in this paper addresses two specific memory
protection scenarios based on the system model shown in Figure 1.

—System loading of a microprocessor application. To provide application code security,
flash memory contents must be protected against attack. Since application code is
stored in the flash, the same sequence is performed every time following system
reset.

—System main memory protection. Following application loading, both code and data
stored in DDR-SDRAM must be protected.

These memory security mechanisms must consume minimal area and power and
provide effective performance for embedded systems. Although Figure 1 shows a poten-
tial system capability to securely download new applications from an external source
to flash or DDR-SDRAM, this issue is not addressed by the work described in this
manuscript.

2.2. Embedded System Memory Threats

The system memory of an embedded system can face a variety of attacks [Elbaz et al.
2006] resulting from either the probing of the interface between a processor and the
memory or physical attacks on the memory itself (fault injection). Bus probing results in
the collection of address and data values which can be used to uncover processor behav-
ior. The encryption of data values using algorithms such as the Advanced Encryption
Standard (AES) or Triple Data Encryption Standard (3DES) prior to their external
transfer guarantees data confidentiality. Data encrypted with these algorithms can-
not be retrieved without the associated key. However, even encrypted data and their
associated addresses leave memory values vulnerable to attack. Well-known attacks
[Elbaz et al. 2006] include spoofing, relocation, and replay attacks. A spoofing attack
occurs when an attacker places a random data value in memory, causing the system
to malfunction. A relocation attack occurs when a valid data value is copied to one or
more additional memory locations. A replay attack occurs when a data value, which
was previously stored in a memory location, is substituted for a new data value which
overwrote the old location. Processor instructions are particularly vulnerable to reloca-
tion attacks since specific instruction sequences can be repeated in an effort to force a
system to a specific state. Specific approaches that maintain the authentication of data
from these types of attacks are needed to secure embedded systems. Authentication in
this context indicates that the retrieved data from a memory location is the same as
the data which was most recently written.

2.3. System Threat Model

The scope of our main memory security work is limited by the same threat model
assumed by earlier approaches [Elbaz et al. 2006; Suh et al. 2003; Lie et al. 2003]. The
following specific assumptions are made regarding the threat model.
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Table I. Security Against Brute Force Attack for Memory Protection

PE-ICE XOM AEGIS Yan-GCM
[Elbaz et al. 2006] [Lie et al. 2003] [Suh et al. 2003] [Yan et al. 2006]
Security 2% 21% or 21% 21% 21%

—The FPGA and its contents (e.g., a microprocessor) are secure and keys and other
configuration and user information in the FPGA cannot be accessed by either phys-
ical or logical attacks. These attacks include differential power attacks (DPA), side
channel attacks, and probing. The FPGA is the trusted area.

—The FPGA configuration bitstream is encrypted and stored external to the FPGA
(e.g., in on-board flash). The bitstream is successfully decrypted inside the FPGA us-
ing bitstream decryption techniques available from commercial FPGA companies. A
number of effective FPGA bitstream encryption [Xilinx Corporation 2005] and secure
bitstream download [Badrignans et al. 2008] techniques have been developed and
tested for commercial devices. An assessment of the ability of these encryption tech-
niques to protect FPGA contents has previously been performed [Altera Corporation
2008].

—Any on-board component outside the FPGA is insecure. These resources include
the DDR-SDRAM, the flash memory which holds application code, and flash memory
which holds the bitstream information. These components may be subject to physical
attacks which attempt to read and/or modify data in the components.

—The interconnections between the components and the FPGA are also vulnerable to
attack. Data on the interconnect can be observed or modified by an attacker.

Interconnect and components outside the FPGA are located in the untrusted area.
Our approach provides protection against replay, relocation, and spoofing attacks
caused by threats.

2.4. Related Work

A number of techniques have been developed that provide data confidentiality and
authentication to main memory in processor-based systems. For these systems [Elbaz
et al. 2006; Lie et al. 2003; Suh et al. 2005; Suh et al. 2003; Yan et al. 2006], confiden-
tiality is provided via data encryption using AES or 3DES. Data is encrypted prior to
off-chip transfer and decrypted following data retrieval from memory. Data authentica-
tion is typically maintained by hashing data values in a hierarchical fashion. The brute
force security level of these schemes, summarized in Table I, measures the likelihood
that an attacker could break the provided authentication using a changed data value
that could pass the authentication check (AC). This type of attack would likely consist
of a large number of attempts using varied data values. Even though these previous
solutions have been shown to be effective, the cost of security can be high in terms of the
memory space needed to store hash [Gassend et al. 2003], compressed hash [Suh et al.
2003], and AC tags for each data item and increased read latency due to the AC. Our
new approach limits authentication time, although it does require the on-chip storage
of security information. This overhead is quantified in Section 6. The use of AES-GCM
for accelerated authentication for external memory accesses was first proposed by Yan
et al. [2006]. This work involved the simulation of a full microprocessor-based system,
including a multi-cache level memory hierarchy. Our work focuses on quantifying both
the performance and area costs for AES-GCM based security for low-end computing
typically used in embedded systems.

A distinguishing feature of our new low-overhead approach is its ability to offer con-
figurable data security levels for different tasks in the same application. The confiden-
tiality and authentication approach in AEGIS [Suh et al. 2005] most closely matches
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our approach. AEGIS also allows for the selection of different security levels for differ-
ent portions of memory. However, new instructions are added to the processor for OS
use. These instructions take advantage of hardware security primitives to enter and
access operating system (OS) kernel primitives. Overall, this approach adds complex-
ity to both the processor architecture and the operating system. Although it appears
that other data confidentiality and authentication approaches [Elbaz et al. 2006; Lie
et al. 2003 Yan et al. 2006] could be easily extended to multiple tasks, selective security
based on memory addresses has not been reported for them.

2.4.1. Secure Application Loading. The secure application loading from flash memory
for processor-based systems has been extensively examined in the context of both
desktop [Arbaugh et al. 1997] and mobile devices [Dietrich and Winter 2008]. Like
our approach, the techniques primarily include code stored in flash memory which
is external to the processor [Heath and Klimov 2006]. This code is encrypted and
protected by additional authentication values stored in flash memory. Early secure
loading approaches [Arbaugh et al. 1997] integrated authentication with a processor’s
basic input/output system (BIOS) to ensure proper loading. This process is generally
thought to be overly complex for embedded systems [Dietrich and Winter 2008]. More
recent approaches, such as TrustZone [Alves and Felton 2004], overcome the need
for read-only memory (ROM) authentication by integrating the ROM onto the same
chip as the processor. Although effective, not all embedded systems use FPGAs which
contain embedded ROM. A recent reevaluation of secure application loading [Dietrich
and Winter 2008] for mobile platforms notes that software and hardware flexibility is
allowed in the implementation of secure loading implementations in embedded sys-
tems. The Trusted Computing Group (TCG) mobile working group defines a hierarchy
of loading activities including the initial retrieval of processor code. Our implemen-
tation focuses at this lowest level of this hierarchy, the fetching of code for the pro-
cessor from an external, unsecured location. Unlike earlier techniques, our approach
specifically targets minimization of required logic overhead in the initial stages of the
secure loading process and the use of synchronized authenticated encryption using
AES-GCM.

2.4.2. Relationship to the Authors’ Previous Work. This manuscript extends our previous
work in main memory security [Vaslin et al. 2008] by integrating main memory protec-
tion with secure application loading. These two security components complement each
other by allowing for resource sharing. The authentication of main memory security is
now performed using AES-GCM, a block cipher mode of operation which has previously
been proven to be secure [National Institute of Standards and Technology 2007]. Our
previous work used a less secure authentication approach performed by an abbreviated
AES operation.

3. MAIN MEMORY SECURITY ARCHITECTURE
3.1. Security Policy

Before discussing our approach for secure application loading from flash memory, se-
curity for system main memory is described. Our main memory security approach,
shown in Figure 2, relies on a hardware security core (HSC) fashioned from logic and
embedded memory which is able to manage different security levels depending on the
memory address received from the processor.

A memory segment corresponding to a user-defined software task can be determined
from compiled code or associated data. Depending on the security policy required by the
software designer, numerous memory segments can be built. Each memory segment is
defined by 4 parameters.
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Fig. 2. Main memory security system overview. Main blocks in the trusted area (FPGA) include the Security
Memory Map (SMM), AES in Galois Counter Mode of operation block (AES-GCM), timestamp (TS) memory,
and authentication check (AC) tag memory storage.

—The segment base address.

—The segment size.

—The segment security level.

—The kind of segment: code (read-only) or data (read-write).

A small lookup table security memory map (SMM) is included in the hardware se-
curity core to store the security level of memory segments associated with tasks. We
consider three security levels for each memory segment: confidentiality-only, confiden-
tiality and authentication, or no security. The implementation of the security policy in
the SMM is independent of the processor and associated operating system. The isola-
tion of the SMM from the processor makes it secure from software modification at the
expense of software-level flexibility. Although authentication-only is another possible
security level, we do not claim support for this level since we were not able to evalu-
ate it experimentally with our application set. Since the HSC directly works with the
memory segment address, no specific compiler or compilation steps are necessary.

3.2. Security Level Management

The use of an operating system with most embedded system processors provides a nat-
ural partitioning of application code and data. In Figure 2, the application instructions
and data of Task 1 have different security levels and require different memory seg-
ments. The availability of configurable security levels provides a benefit over requiring
all memory to perform at the highest security level of confidentiality and authentica-
tion checking. The amount of on-chip memory required to store tags for authentication
checking can be reduced if only sensitive external memory must be protected. Addition-
ally, the latency and dynamic power of unprotected memory accesses are minimized
since unneeded security processing is avoided.
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Fig. 3. Hardware security core architecture for a write request.

3.3. Memory Security Core Architecture

Our core for management of memory security levels is an extension of a preliminary
version [Vaslin et al. 2008] which provides uniform security for all tasks and memory
segments and uses one-time pad (OTP) operations [Suh et al. 2003] for confidential-
ity and an abbreviated AES sequence for authentication checking. Confidentiality in
our new system employs AES-GCM [McGrew and Viega 2004; National Institute of
Standards and Technology 2007] which has previously been proven to be secure. Un-
like other cipher modes of operation, such as cipher block chaining (CBC), electronic
code book (ECB), and counter mode (CTR), AES-GCM synchronizes and ensures confi-
dentiality and authenticity (authenticated encryption) and can be both pipelined and
parallelized.

Rather than encrypting write data directly, our approach generates a keystream us-
ing AES, which operates using a secret key stored inside the FPGA. In our implemen-
tation, a timestamp (TS) value, the data address, and the memory segment ID of the
data are used as inputs to an AES-GCM encryption circuit to generate the keystream.
This keystream is then XORed with the data to generate ciphertext which can be trans-
ferred outside the FPGA containing the microprocessor. The timestamp is incremented
during each cacheline write. The same segment ID is used for all cachelines belonging
to a particular application segment. Like previous OTP implementations [Suh et al.
2003], a benefit of this Execgcy policy based on AES-GCM versus direct data encryp-
tion of the write data can be seen during data reads. The keystream generation can
start immediately after the read address is known for read accesses. After the data is
retrieved, a simple, fast XOR operation is needed to recover the plaintext. If direct data
encryption was used, the decryption process would require many clock cycles after the
encrypted data arrives at the processor. One limitation of this approach is a need to
store the timestamp values for each data value (usually a cacheline) in on-chip storage
so it can be used later to verify data reads against replay attacks. A high-level view of
the placement of security blocks is seen in Figures 3 and 4.
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Fig. 4. Hardware security core architecture for a read request.

Figure 5 shows the AES-GCM operations necessary to cipher 256 bits of a plaintext
cacheline (a similar scheme is applied for deciphering). The figure shows two 128-bit
AES operations Eyyz., each using a 128-bit secret key, U Key. A 128-bit AES input in-
cludes the 32-bit timestamp (TS), the 32-bit data address (@), and the 64-bit memory
segment ID (SegID). The 0 || Len(C) value is a 128-bit word resulting from padding the
length of ciphertext C with zero bits. Two 128-bit ciphertexts and a 128-bit authenti-
cation tag are generated from the two 128-bit plaintext input values. The tag is not
ciphered since it is stored in secure on-chip embedded memory.

A step-by-step description of Execgcy protected data writes and reads based on
the AES-GCM block in Figure 5 are shown in Algorithms 1 and 2. From a security
standpoint, it is essential that the keystream applied to encrypt data is used only
one time. Since the keystream is obtained with AES, the AES inputs also need to be
used just one time. If the same keystream is used several times, information leakage
may occur since an attacker may be able to determine if data encrypted with the same
keystream have the same values. The use of the data memory address in the generation
of the keystream (Figures 3 and 4) protects the data value from relocation attacks. To
prevent replay attacks, a simple 32-bit counter or linear feedback shift register (LFSR)
counter is used for timestamp generation.

ALGORITHM 1: Cache Memory Write Request

— Timestamp incrementation: TS = TS + 2

— {Keystream, Tag} = AES — GCM{SegID, @, TS}
Ciphertext = Plaintext ® Keystream

Ciphertext = external memory

Timestamp storage : TS = TS memory(@)

— Authentication T ag storage : Tag = Tag memory(@)

o U LN
I
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Fig. 5. The AES-GCM architecture for an authenticated encryption operation of a 256-bit plaintext cache-
line. Multy denotes Galois field multiplications in GF(2128) by the hash key H, and incr denotes an increment
function. The symbol || denotes concatenations between words. This figure was adapted from National Insti-
tutes of Standards and Technology [2007].

As shown in Algorithm 1, the 32-bit TS value is incremented by 2 after each write to
the memory since two separate T'S values are used by the circuit in Figure 5. It is stored
in the Timestamp memory based on the data memory address. For each new cacheline
memory write request, the system will compute a different keystream since the value
of TS is updated. During a read, the original TS value is used for comparative purposes
(Algorithm 2). The retrieved TS value is provided to AES during the read request. This
value is fetched from the Timestamp memory using the data memory address. The
AES result will give the same keystream as the one produced for the write request and
the encrypted data will become plaintext after being XORed (step 5 in Algorithm 2).

The use of an AES-GCM core allows for provably secure data authentication without
a costly latency penalty. If two 128-bit AES cores are used to cipher or decipher 256-
bit data values (Figure 5), the authenticated encryption and authenticated decryption
process can be done in 13 cycles: 10 cycles for ciphering or deciphering and 3 cycles
for authentication. Each multiplication in GF(2'?%), when implemented using a fully
parallel datapath with XOR and AND operations, takes 1 cycle [National Institute of
Standards and Technology 2007]. XOR operations shown at Multy inputs in Figure 5
are implemented directly in the Multy core, so no additional cycles are required. This
cycle count does not include the bus-based memory read/write latency.
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ALGORITHM 2: Cache Memory Read Request

1 — TSloading: TS < TS memory(@)

— Tagloading : Tag < Tag memory(@)

— {Keystream, Tag} = AES — GCM{SegID, @, TS}
— Ciphertext loading : Ciphertext < external memory
— Plaintext = Ciphertext @© keystream

— Authentication checking : Tag = Tag

— Plaintext = cache memory

O O W N

Read-only data, such as processor instructions, do not require protection from replay
attacks because these data are never modified. No TS values are needed for these data
so the amount of on-chip T'S memory space can be reduced accordingly. Read-only data
may be the target of relocation attacks but the address used to compute the Execgenm
policy guarantees protection against these attacks. The use of TS and data addresses
for Execgear policy protects read/write data against replay and relocation attacks. If
a data value is replayed, the TS used for ciphering will differ from the one used for
deciphering. If a data value is relocated, its address will differ from the one used to
generate the keystream. In both cases, data authentication will fail and the deciphered
data will be considered invalid.

The need for unique TS creates a problem if the TS generation counter rolls over
and starts reusing previously-issued TS. A typical solution to this issue involves the
reencryption of stored data with new TS [Yan et al. 2006]. A solution which uses
multiple T'S generator counters [Yan et al. 2006] was proposed to address this issue. If
a TS counter reaches its maximum value, only about halfthe data must be reencrypted.
With our security approach, the same idea can be applied based on segment IDs. If a T'S
associated with a segment rolls over, the segment ID value is incremented. All the data
included in the segment are reencrypted with the new segment ID value. The use of
the segment ID in keystream generation helps avoid the issue of matching T'S values
in this case. If reencryption due to counter rollover is needed, only a portion of the
external memory is affected. Although not considered in the current implementation,
reencryption could commence in the background prior to counter overflow or larger T'S
values could be used for certain applications, limiting or eliminating down time. In our
prototype, a 32-bit TS is used, indicating a need to reencrypt only after 232 cacheline
writes for a given memory segment. This event is expected to occur infrequently.

The tag of the cacheline to be encrypted (step 2 in Algorithm 1) is stored in the au-
thentication check (AC) tag memory (step 6 in Algorithm 1). Later, when the processor
core requests a read, the tag result of the final XOR operation is compared with the AC
tag value stored in the memory (step 6 in Algorithm 2). If data is replayed, relocated, or
modified, the tag of the retrieved value will differ from the stored value, so the attack
is detected.

The storage required for AC tag values impacts the security level provided. To limit
this storage without compromising the security, between 64 and 128 of the most signif-
icant bits (MSB) of the tag are kept for a 256-bit cacheline. For an n-bit tag, an attacker
has a 1 out of 2" probability of successfully modifying the deciphered value and achiev-
ing the original tag value. NIST ensures the security of AES-GCM authenticated en-
cryption for tags of these sizes [National Institute of Standards and Technology 2007].

The sizes of the on-chip TS and AC tag memories represent an important overhead
of our approach which can vary widely on a per-application basis. These overheads are
calculated and analyzed for four applications in Section 6.3.
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4. SECURE APPLICATION LOADING

As described in Section 2.1, at system power up or reset, application code must be
loaded from flash memory. As part of the application loading process, the contents
of flash memory are copied to main memory by the system microprocessor as soon
as the processor’s registers are configured. To maintain both the confidentiality and
authentication of application code, instructions stored in flash must be appropriately
protected via ciphering and authentication checking. In our secure system, two distinct
scenarios are considered.

—Application code loading. In this scenario, the SMM is already loaded in hardware
so that only application instruction loading to main memory is needed. This scenario
may occur if the SMM is included in an FPGA bitstream.

—Application code and SMM loading. The SMM information must be loaded into a
memory-based table adjacent to the microprocessor and application code must be
loaded to main memory. SMM loading takes place first, followed by application code
loading.

The details of these two scenarios are now described.

4.1. Secure Application Code Loading from Flash Memory

Our secure application approach for loading code from flash memory (Figure 6) uses
an AES-GCM core in a similar fashion to the Execgey technique for main memory
described in the previous section. In general, secure loading is less constrained than
main memory protection leading to AES-GCM optimization. Since data writes and
replay attacks are not an issue for embedded system flash memory, the segment-based
timestamp and per-cacheline AC approach used for main memory exhibits unnecessary
overhead for flash-based code. The need for address and segment data as AES-GCM
inputs is eliminated. Thus, our new Loadgcy policy only uses a single initial 32-bit
timestamp and a 96-bit initialization vector (IV) which is unique for each application.
These values replace the input to Ey., and incr in the upper left of Figure 5. Except for
AES secret keys and the IV/TS inputs, the same AES-GCM circuitry used for Execgeny
main memory security is reused for Loadgcy application instruction loading.

ALGORITHM 3: Application Loading

1 — The IV is copied to the AESgcy running the Loadgcys policy

2 — The TS is copied to the AESgcy running the Loadgey policy

Pipelined loop (for all application code)

3 — T he encrypted application code is copied to the AESgcy running the Loadgey
policy

4 — T he encrypted application code is decrypted with the Loadgey policy

5 — T he decrypted data is encrypted with the AESgcy running the Execgey policy

6 — T he encrypted data is copied in main memory

End Loop

7 — T he application tag is compared with the one generated by the AESgcy running the
Loadgey policy. If the two tags match, the application is securely loaded and can be safely
used for secure execution

A secure hardware architecture for application code loading for an embedded system
(Figure 6) uses both Loadgcy and Execgeyy policies to securely load instructions from
the flash to the main memory. This process can be done in a pipelined fashion with
multiple or shared 128-bit AES cores used for the Loadgcy and Execgey policies. As
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Fig. 6. Secure hardware architecture for application code loading. The SMM configuration is a part of the
FPGA bitstream.

shown in Figure 6, while Loadgcys circuitry deciphers data from the flash, Execgen
policy write operations (outlined in Algorithm 1) are applied to the instructions before
they are stored in main memory. Steps 3, 4, 5, and 6 in Algorithm 3 are performed
repetitively instruction-by-instruction in a pipelined fashion until the application is
loaded. When loading is complete, the 64-bit ciphered tag located in flash is checked
against the tag generated by the AES-GCM block running the Loadgc s policy to ensure
application loading authentication (Step 7). Unlike the Execgcys policy, which needs
multiple tags to be stored in a secure on-chip memory (one per protected cache line),
the single 64-bit tag stored in flash is used to authenticate application loading.

4.2. Application Code and SMM Loading from Flash Memory

Most microprocessor platforms require the capability to load and execute different
applications at different times. This issue requires not only the initialization of an
application, but also the SMM on a per-application basis. As mentioned in Section 4.1
for FPGA-based processors, the flexibility could be provided by loading a different bit-
stream which has an alternate SMM configuration for each application. An alternative
strategy is to load both the SMM entries and the application code from flash memory.

The SMM configuration for an application is stored in flash memory in an appli-
cation header (Figure 7). Like application code, headers provide important security
information and must be protected. Figure 7 exhibits the layout of a memory block in
flash which includes a protected application header and application code. The header
contains information which is necessary to perform application loading including the
SMM configuration, the application size, and the initial main memory load address.
The header size will vary depending on the size of the SMM configuration. Specific
components for the tested implementation include the following.

—A 96-bit initialization vector (IV).
—A 32-bit timestamp (T'S).
—A 64-bit authentication check tag for SMM configuration.
—A SMM configuration containing the following.
—A 32-bit application address (@).
—A 32-bit application size.
—64-bit values for each segment. Each value indicates the segment security level.
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Fig. 7. Detailed flash application header, necessary to protect an application with the Loadgc s policy.

The information in the block is loaded into the SMM using the Loadgcys policy, ne-
cessitating the inclusion of an IV and a TS specifically for the SMM. Following the
configuration of the SMM, the steps for secure hardware application loading, described
in Section 4.1, are followed to complete system load. In the case of an Execgcy policy
architecture, the TS memory size, the AC tag memory size, and the number of memory
segments supported by the SMM must be large enough to support the storage require-
ments of a target application. This approach is used to avoid the need to develop a new
FPGA bitstream for each protected application.

5. EXPERIMENTAL APPROACH

An FPGA-based system including an architecture based on a Xilinx Microblaze pro-
cessor [Xilinx Corporation 2009] was developed to validate our approach. Our security
core and associated memory was implemented in FPGA logic and embedded memory
and interfaced to the processor via a 32-bit processor local bus (PLB). In separate
sets of experiments, the Microblaze was first allocated instruction and data caches of
512 bytes and then 2 kilobytes (KB). The widely-used MicroC/OS-II [LaBrosse 2002]
embedded operating system was used to validate our approach. MicroC/OS-II is a scal-
able, preemptive and multitasking kernel. The OS can be configured by the designer
during application design to use only the OS features that are needed. A priority-based
scheduling approach is used to evaluate which one of up to 64 tasks runs at a specific
point in time. MicroC/OS-II uses a hardware timer to produce ticks which force the
scheduler to run.

To explore the impact of the security management on performance and area, four
multi-task applications were used.
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Fig. 8. Application memory protection details by protection level. The three protection levels include confi-
dentiality and authentication (Conf. and Auth.), confidentiality-only (Conf. only), and no protection.

—Image processing (Img). This application selects one of two values for a pixel and
combines the pixels into shapes. Pixel groups that are too small are removed from the
image. This process is sometimes called morphological image processing [Dougherty
and Lotufo 2003].

—Video on demand (VOD). This application includes a sequence of operations needed
to receive transmitted encrypted video signals. Specific operations include Reed
Solomon (RS) decoding, AES decryption, and Moving Picture Experts Group 2
(MPEG-2) decoding with artifact correction.

—Communications (Com). This application includes a series of tasks needed to send
and receive digital data. Specific operations include Reed Solomon decoding, AES
encryption, and Reed Solomon encoding.

—Halg. This application can perform selective hashing based on a number of common
algorithms. Supported hash algorithms include Message Digest (MD5), secure hash
algorithm (SHA-1), and SHA-2.

The security requirements of portions of the application were estimated based on
their function. Other security assignments than the ones listed could also be possible,
although they are not explored in this work. For the image processing application,
image data and application code used to filter data is protected, but data and code
used to transfer information to and from the system is not. For the video on demand
application, deciphered image data and AES specific information (e.g. the encryption
key) is considered critical. Also, the MPEG algorithm is considered proprietary and its
source code is encrypted, while MPEG data and RS code and data are left unprotected.
For the communications application, all data is considered sensitive and worthy of
protection. In order to guarantee correct operation, the code must not be changed, so
confidentiality and authentication checking is applied to all code. Application data is
only protected for confidentiality. Halg application code is only encrypted (confidential-
ity) and application data has no protection. For example, a company may wish to protect
its code from visual inspection. Since there is no need for authentication checking for
this application, no storage for TS or tag values is needed.

Figure 8 summarizes the tasks, external memory count, and number of memory
segments for the applications. As noted in Section 3.1, memory segments may be of
variable sizes. All four applications were successfully implemented on a Spartan-6
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SP605 evaluation platform ([Xilinx Corporation - DS160 2010; Xilinx Corporation -
UG526 2010) containing a XC6SLX45T FPGA device, 128 MB of external DDR3 mem-
ory, and 32 MB of flash memory. Area and embedded memory counts were determined
following synthesis with Xilinx Platform Studio 12.2.

6. EXPERIMENTAL RESULTS FOR MAIN MEMORY SECURITY

For comparison purposes, a Microblaze-based system without a security core was syn-
thesized to a Spartan-6 based FPGA. An XC6SLX45T FPGA contains 43,661 look-up
tables (LUTSs), 54,576 flip-flops (FFs), 116 18-kilobit (Kb) block RAMs (BRAMs), and
58 digital signal processing (DSP) slices. Our base configuration includes data and
instruction caches, a timer, flash memory controller, DDR-SDRAM memory controller,
and a Joint Test Action Group (JTAG) interface. After synthesis with XPS 12.1 it was
determined that the base configuration with 512 byte caches consumes 3,610 LUTs
and 2,647 FFs, and operates at a clock frequency of 75 megaHertz (MHz). A base con-
figuration with 2 KB caches requires 3,335 LUTSs, 2,538 FF's, and 4 additional 18-Kb
BRAMs. It operates at 86 MHz.

As stated in Section 3, the availability of a security core which allows for different
security levels for different memory segments provides for security versus resource
tradeoffs. In our analysis we consider three specific scenarios.

—No protection (NP). This is the base Microblaze configuration with no memory pro-
tection.

—Programmable protection (PP). This Microblaze and security core configuration pro-
vides exactly the security required by each application memory segment (Section 5).

—Uniform protection (UP). This Microblaze and security core configuration provides
the highest level of security required by a memory segment to all memory segments.
Since all segments use the same security level, the SMM size is reduced.

The logic overhead of the security core in the programmable protection case is not
constant since the size of the SMM depends on the number of defined security areas.
For the uniform protection case, logic overhead variations result from differences in
the control circuitry required for the AC tag storage.

6.1. Area Overhead of Security

As shown in Table II for configurations with 512 byte caches, in most cases the hardware
security core (HSC) logic required for programmable protection is similar to uniform
protection. A detailed breakdown of the size of individual units in the HSC is provided
in Table III for both uniform and programmable protection. It is notable that the
resources required for AC tag storage for the programmable protection version of VOD
is reduced versus uniform protection since the amount of AC tag storage is reduced.
For the Halg application, authentication checking is not performed for either uniform
or programmable protection so no additional hardware is needed. The used percentage
of total FPGA logic resources for each unit is also included in the table.

The Execgcy implementation includes two 128-bit AES units with a single 128-bit
key (as shown in Figure 5). The AES blocks (labeled Ey ke, in Figure 5) are implemented
using a balance of BRAMs, DSP slices, and logic slices [Drimer et al. 2010]. Although
not shown in Table III, 16 BRAMs and 32 DSP slices are necessary for the two required
128-bit AES cores. Memory overheads associated with the approach are discussed in
Section 6.3.

6.2. Performance Cost of Security

The run time of each Microblaze-based system for each application was determined
using counters embedded within the FPGA hardware. Table IV shows the run time of
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Table Il. Architecture Synthesis Results and Overall XC6SLX45T Device Logic
Resources Usage for Different Security Levels

Uniform Programmable
protection protection
Arch. uB + HSC HSC uB + HSC HSC
LUTs FFs | LUTs | FFs LUTs FFs | LUTs | FFs
Img. 512 7095 | 3769 | 3485 | 1122 7237 | 3796 | 3627 | 1149
16.3% | 6.9% | 8.0% | 2.1% || 16.6% | 7.0% | 8.3% | 2.1%
Img. 2k 6820 | 3660 | 3485 | 1122 6962 | 3687 | 3627 | 1149
15.6% | 6.7% | 8.0% | 2.1% || 15.9% | 6.8% | 83% | 2.1%
VOD 512 7229 | 3796 | 3619 | 1149 7209 | 3792 | 3599 | 1145
16.6% | 7.0% | 83% | 2.1% || 16.5% | 6.9% | 82% | 2.1%
VOD 2k 6954 | 3687 | 3619 | 1149 6934 | 3683 | 3599 | 1145
159% | 6.8% | 83% | 2.1% || 15.9% | 6.7% | 82% | 2.1%
Com. 512 | 7080 | 3768 | 3470 | 1121 7120 | 3776 | 3510 | 1129
16.2% | 6.9% | 7.9% | 2.1% || 16.3% | 6.9% | 8.0% | 2.1%
Com. 2k 6805 | 3659 | 3470 | 1121 6845 | 3667 | 3510 | 1129
15.6% | 6.7% | 7.9% | 2.1% || 15.7% | 6.7% | 8.0% | 2.1%
Halg 512 6186 | 3598 | 2576 951 6153 | 3596 | 2543 949
14.2% | 6.6% | 59% | 1.7% || 14.1% | 6.6% | 58% | 1.7%
Halg 2k 5911 | 3489 | 2576 951 5878 | 3487 | 2543 949
13.5% | 6.4% | 59% | 1.7% || 13.5% | 6.4% | 58% | 1.7%

Table IIl. Detailed Breakdown of Hardware Security Core (HSC) Logic Resource Usage

71:17

Uniform
protection
App. Total AESGem AC Tag Storage SMM Ctrl.
LUTs | FFs LUTSs FFs LUTSs FFs LUTs | FFs LUTs | FFs
Img. 3485 | 1122 2065 798 473 154 23 3 924 167
8.0% | 2.1% 4.7% 1.5% 1.1% 0.3% 0.1% | 0.0% 2.1% | 0.3%
VOD | 3619 | 1149 2065 798 604 177 29 3 921 171
8.3% | 2.1% 4.7% 1.5% 1.4% 0.3% 0.1% | 0.0% 2.1% | 0.3%
Com. | 3470 | 1121 2065 798 470 153 20 3 915 167
7.9% | 2.1% 4.7% 1.5% 1.1% 0.3% 0.0% | 0.0% 2.1% | 0.3%
Halg | 2576 951 2065 798 0 0 21 3 490 150
59% | 1.7% 4.7% 1.5% 0.0% 0.0% 0.0% | 0.0% 1.1% | 0.3%
Programmable
protection
App. Total AESgcey Core || AC Tag Storage SMM Ctrl.
LUTs | FFs LUTs FFs LUTs FFs LUTs | FFs LUTs | FFs
Img. 3627 | 1149 2065 798 473 153 214 31 875 167
8.3% | 2.1% 4.7% 1.5% 1.1% 0.3% 0.5% | 0.1% 2.0% | 0.3%
VOD | 3599 | 1145 2065 798 473 153 161 27 900 167
82% | 2.1% 4.7% 1.5% 1.1% 0.3% 0.4% | 0.0% 2.1% | 0.3%
Com. | 3510 | 1129 2065 798 475 154 61 10 909 167
8.0% | 2.1% 4.7% 1.5% 1.1% 0.3% 0.1% | 0.0% 2.1% | 0.3%
Halg | 2543 949 2065 798 0 0 12 1 466 150
5.8% | 1.7% 4.7% 1.5% 0.0% 0.0% 0.0% | 0.0% 1.1% | 0.3%

Note: Percentage values indicate the used fraction of available XC6SLX45T FPGA resources.
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Table IV. Application Execution Time and Performance Reduction

No Uniform Programmable
protection protection protection
Arch. Time (ms) || Time (ms) | Overhead || Time (ms) | Overhead
Img. 512 150.5 188.0 24.9% 173.4 15.2%
Img. 2k 131.3 156.9 19.5% 146.9 11.9%
VOD 512 13691.5 16806.4 22.8% 15619.8 14.1%
VOD 2k 11940.3 13751.2 15.2% 13453.5 12.7%
Com. 512 69.1 84.1 21.6% 78.7 14.0%
Com. 2k 60.2 66.7 10.8% 65.4 8.6%
Halg 512 8.6 10.2 18.9% 9.9 15.1%
Halg 2k 7.5 8.7 15.9% 8.6 14.4%
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Fig. 9. Performance overhead of uniform and programmable protection versus no protection for four appli-
cations.

each application in each configuration and an assessment of performance loss versus
the base configuration. Experiments were performed for all three security approaches
using both 512 bytes and 2 KB caches. The 32-bit PLB bus requires six 75 MHz cycles
for both reads and writes. The extra latency caused by our security approach for the
prototype implementation is 7 cycles for a 256-bit cacheline read and 13 cycles for a
cacheline write. The cacheline write overhead is primarily due to the 10-cycle 128-
bit AES operation in Execgepy. The read overhead is reduced due to an overlap in
Execgey and bus read operations. The percentage performance loss due to security is
higher for configurations which include smaller caches. This is expected, since smaller
caches are likely to have a larger number of memory accesses, increasing the average
fetch latency. Some per-application variability is seen. Both image processing and VOD
applications show a substantial performance reduction (25% and 23%, respectively)
with uniform protection even though both contain data segments which require no
protection. The use of programmable protection allows these data segments to have
less of an impact on application performance. More modest performance reductions
(15% and 14%, respectively) are reported for these configurations. The overall effects
of our approaches on performance are summarized in Figure 9.

Note that for the 2 KB cache versions of the communications application, the perfor-
mance loss for the programmable protection version is only 2% less than the uniform
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protection version. Figure 8 shows that all data and code for this application must
be protected with either confidentiality or confidentiality and authentication, so the
benefit of programmability is limited.

6.3. Memory Cost of Security

As stated in Section 5, the memory overhead of main memory security is the result of on-
chip storage of TS and authentication tags. Equation (1) (Security memory equations)
provides the formulae needed to obtain the required amount of on-chip memory to store
these values.

For our experimentation, the cacheline size is 256 bits, the AC tag size is 64 bits,
and the TS size is 32 bits. Using the values from Figure 8, it is possible to determine
the size of required on-chip memory based on the selected security policy. An example
of TS and tag overhead calculation is shown for the image processing application with
programmable protection. Figure 10 assesses the on-chip memory overhead of security.
For the VOD application, 150 KB of on-chip memory are saved by using programmable
protection rather than uniform protection. The large savings primarily result from
the presence of a large unprotected memory segment in the VOD application which
does not require protection. Note that the programmable protection version of the
Halg application does not require any memory storage since no data values require
authentication protection and T'S values are not needed for read-only application code.

Equations 1 - Security Memory Equations

Size of AC Tag memory for code:
1 — AC overhead = -2Ctessize

cacheline—size

2 — AC code = total code x AC overhead

Size of AC Tag memory for data:
3 — AC data = total data x AC overhead

Size of TS memory for data:
4 — TS overhead = —LSsiz

cacheline size

5 — TS data = total data x TS overhead

Example for image processing with programmable protection:
AC overhead = % = 0.25

AC code = 25KB x 0.25 = 6.25 KB

AC data = 33KBx 0.25 = 825 KB

T S overhead = 32 = 0.125

256
TS data = (33KB + 10KB) x 0.125 = 5.4KB

6.4. Comparison to Previous Approaches

In general, the performance of our approach compares favorably to previous security
approaches shown in Table I. Although AEGIS [Suh et al. 2003] exhibited a smaller TS
storage overhead of 6.25%, its integrity check storage overhead of 28% is similar to ours.
A significant difference between the two approaches is the integrity checking latency.
While AEGIS relies on SHA-1 which has a latency approaching 80 cycles, our new
approaches uses recent AES-GCM authentication which requires 3 cycles for 256-bit
inputs. The PE-ICE (Parallelized Encryption and Integrity Checking Engine) approach
[Elbaz et al. 2006] has a reported 33% memory overhead and a 15% performance
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Fig. 10. On-chip security memory footprint for timestamp (TS) and authentication check (AC) tags for
uniform protection (UP) and programmable protection (PP). The arrows indicate the percentage on-chip
memory savings for programmable versus uniform protection.

penalty for a reduced brute force security level of 2% Our brute force security level

of 2% (discussed in Section 3.3), although less than XOM (eXecute Only Memory) and
AEGIS, is still appropriate for a number of embedded applications, as indicated in
Appendix C in National Institute of Standards and Technology [2007]. Our approach
requires on-chip AC tag storage which may be limiting for some embedded platforms
where most segments must be protected. XOM, PE-ICE, Yan-GCM, and AEGIS allow
for a combination of on-chip and off-chip storage of security information. However, the
recent expansion in on-chip memory for FPGAs limits the impact of this issue. The
brute force security level of our approach could be doubled to 21—128 if on-chip AC storage
is doubled, although that option was not explored in this work.

7. EXPERIMENTAL RESULTS FOR APPLICATION LOADING SECURITY

The following results consider the area and performance costs related to securely
loading and executing a given application. The two memory loading cases considered
in Section 4, application code only and application code and SMM loading, are described
for systems requiring both uniform and programmable protection.

7.1. Example Hardware and Delay Costs for Application Code Loading from Flash

The Xilinx board described in Section 5 was used to validate our secure system ap-
proach. In our developed prototype, application code is read from the flash, decrypted
using the Loadgcys policy, and reencrypted using the Execgcys policy. The performance
and flash memory cost of Loadgcy policy varies on a per-application basis. The load
time is directly related to the size of the protected application. In this experiment, all
data fetches and operations from flash take place at 85 MHz. A total of 580 cycles are
required to read 256 bits from flash memory in 8-bit chunks. Table V shows a break-
down of the time needed to perform application loading from the flash up to the point
the code is sent to the DDR-SDRAM. Results are shown for no protection, uniform
protection, and programmable protection for the four designs evaluated in Section 6.
Code fetch delays from flash memory are shown for the no protection case. Loadgcy
policy decryption and Execgcayr encryption delays are also shown for the other two
cases. In our implementation, the same AES cores are multiplexed between Loadgcm
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Table V. Secure Loading Time for Application Code Transferred from Flash to the Output of the Execgc s

Core
No Uniform Programmable

protection protection protection

App. | Time (ms) Time (ms) Time (ms)
Load | Exec | Total | Overhead Load | Exec | Total | Overhead
Img. 19.84 || 20.36 | 1.51 | 21.87 10.21% || 20.36 | 1.05 | 21.41 7.92%
VOD 37.32 || 38.30 | 2.87 | 41.17 10.32% || 38.30 | 2.41 | 40.71 9.07%
Com. 1746 || 17.92 | 1.34 | 19.26 10.33% || 17.92 | 1.34 | 19.26 10.33%
Halg 22.48 2291 1.73 | 24.64 9.62% 2291 1.73 | 24.64 9.62%

Note: Load indicates the amount of time to load the application from flash and decrypt/authenticate
it using the Loadgcys policy. Exec indicates the amount of time needed to reencrypt and generate
authentication tags for the application using the Execgcys policy.

Table VI. Flash Application Header Overheads

Application header and SMM
Application Size (bytes)
Img. 128
VOD 112
Com. 64
Halg 48

and Execgcy operations, and for security needs, two distincts 128-bits keys are used,
one for each policy circuitry. A total of 1024 LUTSs are needed for Loadgcys control and
AES-GCM multiplexing. The combined time of a pipeline of these steps is limited by
the fetch time from flash, so the overall application loading time is roughly equivalent
to the flash load time for each application. There is a 9% load time penalty on average
for the applications due to the need for memory protection.

7.2. Example Hardware and Delay Costs for Application Code and SMM Loading from Flash

The area overhead required for application-specific SMM loading is minimal compared
to the cost of securing memory. The extra flash storage required to hold application
header information, including the SMM configuration, for each application is shown
in Table VI. Compared to the target applications, the load time and decryption for
this additional information is negligible. Since the SMM must be writable to support
configuration, an 18-Kb internal FPGA BRAM is used to hold the 15 SMM memory
segments needed by the largest application of our testbench. The LUT count of the
SMM control module is increased from 214 (Table III) to 252.

8. CONCLUSIONS AND FUTURE WORK

In this paper we present a security approach for external memory in embedded sys-
tems. The approach provides a low-overhead implementation of authenticated encryp-
tion for embedded systems based on the NIST-approved AES-GCM policy. The approach
minimizes logic required for authentication and takes advantage of increased internal
FPGA memory storage. Selective confidentiality and encryption is provided for different
parts of an application without the need for additional microprocessor instructions or
extensive operating system modifications. The benefits of our security core are demon-
strated and quantified using four embedded applications implemented on a Spartan-6
FPGA. The size and performance penalties of the lightweight circuitry included to
support secure application loading from external memory are also quantified.

Several opportunities exist for future work. Our approach could be evaluated for
authentication-only main memory security in addition to the three levels described
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here. The work could be extended to target ASICs by considering secure key distribution
techniques and fixed size tag and SMM storage. A detailed analysis of appropriate tag
and SMM storage size for a variety of applications would be required. An additional
optimization would be to store some or all TS and tag values off-chip. A complicated
mechanism would be required to ensure that this information is not compromised by
an attack.
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