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The remarkable ability of biological systems to adapt to new, unknown environmental conditions, learn from 
their experience, and extract relevant information from the world, is yet unparalleled by artificial systems. 
Software simulations are demanding in terms of computing power and are not suited for robotic 
applications. Analog neuromorphic hardware is compact and low-power but it is unprecise and 
inhomogeneous. Here we investigated the properties of neuromorphic hardware related to the intrinsic 
variability of its components. Inspired by theoretical analysis, methods of computer science and biological 
evidences, we developed a network that exploits the intrisic variability of the hardware implementation to 
improve classification performance.
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Introduction Classification with imprecise hardware
We use neuromorphic hardware in VLSI technolgy to
emulate spiking neural networks in real-time. We 
carried-out simulations to assess the effects of 
variability of the learning dynamics.

The stochastic plasticity slows-down the learning, 
only after multiple presentations the input 
pattern is stored.[4]
A slow-learning process maximizes memory 
capacity and prevents overfitting at the cost of 
learning time.
Several weak classifiers can be combined to 
improve performances and learning speed. [5]

We carried out non-spiking simulations of the network obtaining 
96% generalization performance. The performance of the single 
classifiers is comparable to their hardware, spike-based 
implementation and suggests the viability of the hardware solutions. 
The imprecise, analog circuits of our hardware are therefore 
compatible with machine-learning and neural-network theories that 
explain how variability in the classifier responses and simple pre-
processing can be used to solve typical machine-learning tasks.

Input stimuli are projected into a high-
dimensional space using a large 
population of neurons and random 
connections [2].
Classes become linearly separable.
The classifier comprises a single 
neuron receiving inputs through 
plastic synapses with stochastic STDP.

 

Fig.2 Scheme of the neural network for pre-processing and classification on VLSI.

Fig.4 A toy example of the stochastic 
plasticity at work. Middle: the "INI" pattern 
is converted into trains of spikes and 
stimulates 3472 VLSI synapses. Right: the 
evolution of synaptic connectivity (white, 
potentiated synapse; black, depressed). 
Bottom: resulting synaptic levels. 
Top-Left: Combinations of classifiers 
improve performances of the weak 
hardware classification.
Bottom-Left: Output histograms of the 
perceptron after learning. The neuron is 
considered selective for the target class.

Fig.3 Comparison between theory, 
simulations and hardware. Top-left: 
theoretical analysis of randomly connected 
neurons (LTU) showing the advantage of 
dense representations for mixed selectivity 
[2]. Bottom-left: peak selectivity is reached 
for dense representations in neuromorhpic 
hardware (coding level f=0.5). Top-right: 
Probabilities for potentiation and depression 
in a simulation of stochastic plasticity [6]. 
Bottom-right: Transition probabilities 
measured from the neuromorphic hardware.

Fig.1 With randomly connected 
neurons it is possible to solve 
the non-linear separability of 
the input classes. The XOR case 
is shown as an explanatory 
example.
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Neuromorphic hardware setups

Classification of real-world stimuli
A linear classifier (e.g. a perceptron) is a key element for memory formation in neural networks. We applied 
our approach to solve the task of classifying hand-written characters from the MNIST database [1].

Fig.3 Block diagram of the neuromorphic chip with plastic synapses 
(CMOS, 0.35um technology, ~10mm²)
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Compact, low-power, real-time, bio-
inspired computation [3]
Hybrid analog-digital implementation 
using standard VLSI, CMOS technology
Circuits for synapses with STDP and Leaky 
Integrate-and-Fire neuron models  
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