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Introduction
A key problem to study brain behavior is to understand how the neurons represent and bind sensory informations converging to the brain from different channels. Neurons exhibit and transmit
electrical activity that researchers try to model by different ways. While the most famous model has been developed by Hodgkin and Huxley (HH) [1], some of its derived models, as FitzHugh
Nagumo (FHN) [2, 3] or Morris Lecar (ML) [4, 5, 6] ones, despite their simplicity, give interesting results as different behaviors appear according to tunable parameters. In the present work, we
propose a complete electronic implementation of ML model of type I, candidate to become an experimental unit tool to study collective association of robust coupled neurons. Experiments on
this electrical neuron can enlighten the robustness of the obtained behaviors as it includes intrinsic and extrinsic noise. We present firstly the equation set of ML model, then the circuit design.
Finally, we compare our experimental results with the various theoretical predictions of this model.

The Morris-Lecar Model

The Morris-Lecar Equations
The Morris-Lecar model [4] of biological neuron was developed to reproduce the variety of
oscillatory behaviors with respect to the calcium Ca++ and potassium K+ conductances in the
giant barnacle muscle fiber. The Morris-Lecar model is a two-dimensional system of nonlinear
differential equations:
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Figure 1 : Equivalent circuit for the M-L model

Cm
dV
dt

= Iapp − ICa − IK − IL

ICa = gCaM∞(V ) · (V − VCa)

IK = gKW (V − VK )

IL = gL(V − VL)

V membrane voltage, Cm membrane capaci-
tance and Iapp current applied to the neuron.
ICa, IK and IL are the calcium, potassium and
leak currents respectively in µA/cm2, while
W represents the recovery variable.

Electronic Circuit
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Figure 2 : Global circuit where I1 to I8 are bias currents, I9 to I15 are offset currents and I16 to I21 are diode
currents.

Different Currents g

The calcium current ICa : To build the current ICa (see block A, Fig. 2), we use two Operational
Transconductance Amplifiers (OTA) LM13700 [7], whose gain can be controlled via either
bias current or diode current. To obtain the slope of the sigmoid function M∞(V ) according to
eq (3), we amplify a OTA 1 entry tension with an operational amplifier (OA) UA741. With the
OTA 2, we multiply both signals gCaM∞(V ) and (V − VCa).

The potassium current IK : To solve the problem of the differential equation (2), we build a
circuit with a capacitance C1 and a nonlinear resistance Rnl such as C1

dW
dt = Ia− Ib = Ia− W

Rnl .
Current Ia: it is given by block B1 in Fig. 2, which is composed by an OTA, an OA and current
sources.

Catenary curve 1000/Rnl: it is obtained by adding output currents of two OTAs, with in-
verted inputs, as shown in block B2.

Current Ib: it is produced with an analog multiplier (AD633) and a voltage-current converter
(see block B3).

Current Ik: to complete the production of Ik current, we use an OTA for the voltage
500gK (V − VK ) and a multiplier by W . Finally another OTA is used as a voltage-current
converter and negative multiplier by (−50) as shown in block B4 (see Fig. 2).

The leak current IL : Only one OTA, restricted to its linear zone, is enough to give IL (see block
C, Fig. 2).

Test of the Global Electronic Circuit

Bifurcation Diagram g
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Figure 3 : Bifurcation diagram, Iapp and Cm are tunable parameters. This figure shows the different areas of
bifurcation of codimension 2 (Cm, Iapp). With this circuit, we have managed to clearly distinguish between the
different areas of bifurcation. We do not draw the border that separates the region 4 and 5 because they are
very thin.

Conclusions and Future Works
It is worthwhile to remark that in our implementation of ML electronic neuron, TW (V ) is indeed
fonction of V according to Eq. (5). This improves the circuit given in [5]. Moreover, with OTA
technology, switching to microelectronics is easy. The large-scale simulation of the neuron
behaviors takes too much calculation time, but with electronic neurons, the real time results
can be obtained. The next stage will be to couple a sufficient number of such neurons and
to study their real dynamics to find a way to introduce them into the information transmission
science.

Exemple of Stable Cycle g
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Figure 4 : Region 9 of Fig. 3, Cm = 20µF ; Iapp = 68µA; Vin = −10mV ; Win = −96mV . Left: action potential
versus time, Right: phase plane. We compare these experimental results with numerical simulations of the
complete model ML (using a 4th order Runge-Kutta scheme). We found a nice agreement in Region 9 between
experiments and theory as well as for the other regions shown in Fig. 3.
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