
VALIDATION of NEURAL NETWORKS ONTO FPGA

Laurent Rodriguez, Laurent Fiack and Benôıt Miramond
ETIS / CNRS UMR 8051 - ENSEA - Université de Cergy-Pontoise

6 avenue du Ponceau F-95000 Cergy-Pontoise Cedex, France

Abstract
Recent works in artificial neural networks simulation showed that sizable networks, of the order of thousands of mammalian neurons, are now achievable. In
the domain of microelectronics, rapid prototyping of complex hardware neural networks (hundreds) is still a major challenge for executing in real-time high-level
cognitive tasks onto FPGAs. This paper addresses the related problem of validating these complex networks when the observation on the chip interface of the
whole system, specially the high number of internal signals, is not feasible anymore.

CONTEXT OF HARDWARE NEURONS
Today, the fastest way to prototype Artificial Neural Networks into hard-
ware devices is to use Field Programmable Gate Arrays (FPGA). Beyond
the scalability problem, their integration onto FPGA raises the problem of their
validation, on-field, where the observation is limited to the chip pads.

In the context of the SATURN project[3], we used and extended the verification
methodology proposed by Adacsys to conserve the same verification process
from high to low level of description:

• at high-level, the models are developed in C++ language using the
Saturnin simulation framework, specialized in neural modeling.

• at RTL level, a VHDL description (fixed point version) of the high-level
model is developed. The same GUI is reused to inject stimuli and
read back the traces coming from the behavioral simulation. The
precision error can be measured and compared to the model results.

• after place and route synthesis, the system runs onto the FPGA. The
Ava-soft tool and its Hw transactor are used as communication channel
to write stimuli and read the traces coming from the device.

VALIDATION METHODOLOGY ONTO FPGA
Adacsys’s Hardware Verification and Debug Methodology has three major
phases through the entire process of FPGA design development. It enables
an easy silicon proven phase and allows to continually verify that any netlist
modification still complies in hardware with the initial specification [1]:

• Module and IP level hardware functional verification from RTL simu-
lation are made with an x10 000 acceleration factor.

• FPGA level bit stream file verification is done at speed with same
electric IO voltage on the application board.

• Application level at speed debug is made by internal signal observation
and is done with or without a dedicated debug board connected to the
available IOs.

APPLICATION TO SELF-ORGANIZING MAPS
We applied the verification methodology described in previous sections in the
domain of mobile robotics and more precisely on ANN models for visual per-
ception [2]. Following a bio-inspired approach, the controller of the robot has
been organized as multiple neural networks, called maps:

• the pre-processing maps: each map has been designed to extract a
specific characteristic from the visual input (edges, movements, texture
...). The related ANN does not use a learning process (the topology and
the synaptic weights have been determined explicitly),

• and the self-organizing maps, that implements a complex learning pro-
cess derived from the SOM general case.

Data preprossessing

GUI

SATURNIN

Serializer

Unserializer

AVA

Data in

Data out and debugging information

WorkstationFPGA

• The size of our Static Maps highly depends on the resolution of the
input camera. Onto the recent FPGA families the maximum number
of user I/O is around 1000 pins per device (1200 onto Virtex 7 series
and 840 onto the Stratix V series). The first property brought by our
method is to serialize automatically the input stimuli and output
traces between the workstation and the FPGA. By doing so, the size of
the design under test (the size of its interface) is not limiting anymore
but only slows down the debugging frequency.

• The entire network evolves as a non-linear process and the convergence
of the system depends on the initial state and on the initial parameter’s
value. The proposed design flow, with Ava-soft, allows to bring out
the internal signals from the design hierarchy. The user’s HDL code is
parsed in order to easily access to the chosen internal signals (the lateral
connection in the case of our dynamic map). The logic specific to the
communication (transactor) is added automatically. In all the cases, the
traces coming from the FPGA board are brought up to the Saturnin
GUI in order to conserve the same validation environment.

References

[1] Shakeel Jeeawoody, Erik Hochapfel, and Benoit Miramond. Best fpga
design practices to comply with new standards while reducing field failures.
In Sopia Antipolis Micro-Electronic, SAME 2012, october 2012.

[2] Laurent Rodriguez, Benôıt Miramond, Imen Kalboussi, and Bertrand
Granado. Embodied computing : self adaptation in bio-inspired reconfig-
urable architectures. In proc. of 19th Reconfigurable Architectures Work-
shop, page 6, june 2012.

[3] ANR SATURN team. The SATURN project - Self-Adaptive Technologies
for Upgraded Reconfigurable Neural computing, french research agency
(anr) http://projet-saturn.ensea.fr.

2013

