

PENNSTAT

Vijaykrishnan Narayanan

This presentation includes work supported in part by DARPA, Intel Science and Technology Center on Embedded Computing, National Science Foundation and Semiconductor Research Corporation

Collaborators: Laurent Itti, USC; Kevin Irick, PSU, D. Khosla, HRL, Yang, HRL; M. Peot, Teledyne, B. Desimone and T. Poggio, MIT, J. Tstosos, York and all my students

Cameras Everywhere!

Tracking, Vehicle Navigation, Augmented Reality

NEW Garden Fresh Salads

BRIGHTEN UP YOUR DAY WITH A CRISP CHICKEN CAESAR, CHICKEN BLT OR CHICKEN, APPLE & CRANBERRY SALAD

Form1

SmartView Digital Display

Visual Cortex Inspiration

- Can we build vision systems that detect and recognize objects as efficiently as mammals ?
 - Accuracy Complex scenes with clutter
 - Speed Mammals require ~150milliseconds
 - Power less than 20 Watts?

Smart Cameras & Accelerators

Available Accelerators (abbreviated)

Network connectivity allows advanced video analytics tasks to be distributed across many low-cost nodes obviating the need for prohibitively expensive backend computing infrastructure

Arithmetic (add, sub, mult, div,)	Difference of Gaussians	Image Pyramid
Convolution/Correlation	Saliency (AIM and Itti) GIST	Retina Preprocessing
Color Space Conversion	Skintone Detection	SURF
Bounding Box Extraction (Connected Component)	Face Detection	Brute Force Matcher
Histogram	Support Vector Machine	Density Estimation
Image Statistics (mean and std)	HMAX Classifier	Gabor Edge Feature Extractor
2D and 3D FFT	Function Approximation (log, tanh, sigmoid)	Image Subsampling and Interpolation

High-level analytics are dispatched to a scalable cloud infrastructure

Integrated camera and computation platform allows processing to be performed directly on video stream reducing network load to backend cloud infrastructure

Library of optimized software and hardware modules support advanced video analytics on a small-footprint lowcost platform

Smart Camera Architecture Platform

Accelerator Requirements

- Allows for Hardware Re-Use and Run-time Configurability
- Scalable Accelerator Sub-System Composed of Multiple IP
- Programming Model

Automation Tools: From Specs to System

Automation Tools: From Specs to System

Models for Mammalian Vision

System Overview

System Implementation Results

Implemented neuromorphic systems to detect and classify ten object classes

Higher Energy Efficiency

Better Object Recognition

Neuromorphic Baseline Tower Team Team Team Team Team (2 MP at 30 fps) C D Е A В 0.2 0.1 Average WNMOTDA (All Classes) Helicopter (2 MP at 30 fps) 0 -0.1Tower Helicopter \wedge TAILWIND (10 MP at 5 fps) TAILWIND -0.2 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 Energy Use (nJ / bit)

Neuromorphic approaches detect and classify well, and use 4 orders of magnitude less energy

Still 2-3 orders less energy-efficient than brain !!

Attention

Bottom-up Saliency Model [1]

Attention Pipeline

- New Instruction fetched from Instruction Queue.
 - Configures pipeline registers, data flow, selection logic.
 - Repeat all instructions, per frame.

Pipe_id=0, config_data= 32'h00000A /32'h00000B /32'h00000C 32'h00000A-> bypass steerable bypass reichardt and use Gaussian pyramid 32'h00000B-> use steerable bypass reichardt along with Laplacian pyramid 32'h00000C-> bypass steerable use reichardt and use Gaussian pyramid

Attention: Object Detection

Performance Comparison in Frames per sec (FPS) for 640x48					
	CPU[1]	GPU [2]	Proposed Accelerator		
	Intel Xeon dual- core CPU (2.8 GHz)	Nvidia GeForce 8800 (GTX) (1.35 GHz)	1 x Virtex6 SX475T FPGAs (100 MHz)		
CIO	19.48	94.25	169.55		
CIOFM	14.99	NA	100.06		

- Spatial Saliency (CIO) Speedups of 8.7X over CPU, 1.8X over GPU and 1.89X over FPGA implementations.
- Full Saliency (CIOFM) Speedups of 6.6X over CPU impl.
- Power Efficiency (FPS/Watt): 11.2X over GPU

Video Analytics Accelerator Platform

Configurable On-chip Communication Infrastructure + Embedded Video Analytics Accelerators

Classification Model: HMAX

- Riesenhuber & Poggio, 1999
- A cortical model for object classification, that models the ventral path in the visual cortex.

Enhanced HMAX Recognition System

Experimental Setup

HMAX Accelerator

CPU: 12-Core Xeon CPU @ 2.4 GHz, GPU: Nvidia Tesla M2090 board (T20A GPU @ 1.3 GHz) FPGA: 4 Virtex-5 SX240 FPGAs

Compared to a single threaded 2.4GHz CPU, the accelerator delivers 73X speedup and 25.8X more power efficiency

Object Recognition

Action Recognition

System Overview

# of scene	# of object classes	HMAX-only	Gist + HMAX
categories	per category	Accuracy	New Accuracy
4	3	69.17 %	77.92 %
	2	77.50 %	84.38 %
3	3	72.22 %	82.22 %
	2	83.33 %	92.50 %

Scene Category	Object Class	
	car	
highways	stop sign	
	motorbikes	
	ketch	
beaches	ferry	
	crab	
	panda	
forests	leopards	
	beaver	
	cup	
buildings	laptop	
	chair	

Algorithmic Choices

Couple walking on a beach

Social Impact

Thank you

QUESTIONS ?