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« Pure mental information »
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Mental information is robust and durable, therefore 
must be redundant.

Communication model

Source coding Channel coding
Exuberant physical 

world
Parsimonious 

and robust 
mental world 
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Nervous information Mental information



Contrary to ancestral sensory and motor feed-
forward circuits, the neocortex can be essentially 

regarded as a very recurrent organized graph

The self-repeating unit (node) in the graph is 
the so-called microcolumn (∼ 100 neurons)
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microcolumn

column

macrocolumn

Functional area of the cerebral cortex
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The neocortex behaves like a distributed decoder!

Fixed point decoding Non confused, single thought

Astronomic number of combinations

Resilience

Binary signalization: (0 or 1)            (Neuron inactive or firing)

Importance of cycles

Importance of correlation

Large minimum distances             Easily separable thoughts

(inhibitory signals are only for control) 

Linearity                   Nonlinearity

H3
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The neocortex behaves like a distributed decoder!
Which one?
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Σ : variable processor

LDPC decoder Cortical decoder
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What is the code?

A redundant, distributed, graphical code !
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The fundamental brick: the clique
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What is the code?

V. Gripon and C. Berrou, “Sparse neural networks with large learning diversity”, IEEE 
trans. on Neural Networks, vol. 22, n° 7, pp. 1087-1096, July 2011

V. Gripon, V. Skachek, W. J. Gross and M. Rabbat, “Random clique codes”, ISTC’12, 
Gothenburg, Sweden, 2012
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In order to control the cliques, the graph is structured 
(as biologists have brought it to the fore!)
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l fanals per column,

M messages:

⇒ density d:

neural clique

cluster = column fanal = microcolumn

network = macrocolumn

2dlM ≈
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neural clique

cluster = column fanal = microcolumn

network = macrocolumn

Concatenation of simple and thrifty codes

a constant-weight 
code(*) with length l
and weight w = 1

(*) F. J. MacWilliams and N. J. A. Sloane, 
The theory of error-correcting codes, pp. 
526-527, North-Holland, 1979.

dmin = 2 only but easy to 
decode according to the 
winner-take-all(WTA) 
rule (max function)

k = log2(l) bits  ⇒

R =log2(l)/l
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Application to associative memory 

Gains compared to Hopfield 
networks (with the same 
amount of memory used):

diversity: 250

capacity: 20

efficiency: 20

(52%  instead of 2.6%)

number of messages (M)
0 50000

0

1

0.5
density

Retrieval error rate
of learnt messages when
half the corresponding fanals
are known. 4 iterations.

c = 8 clusters, l = 256 fanals

Messages of 8xlog2(256) = 64 bits
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Associative memory with blurred stimuli

c = 8 clusters, l = 256 fanals

Messages of 8xlog2(256) = 64 bits

Fanals are approximately known, in a 
certain vicinity [-s,+s].
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Associative memory with blurred stimuli
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c = 8 clusters, l = 256 fanals

Messages of 8xlog2(256) = 64 bits

s = 5

4 iterations



Robust associative memory
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c = 8 clusters, l = 256 fanals

Messages of 8xlog2(256) = 64 bits

Connections are 
randomly erased 
during the recovery 
process.

4 iterations



Sparse messages

B. Kamary Aliabadi, C. Berrou, V. Gripon and X. Jiang, “Storing sparse 
messages in networks of neural cliques”, submitted, 2012

M proportional to n2
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Application to dynamic power management in MPSoCs
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In collaboration with CEA-LETI



Application to dynamic power management in MPSoCs

Frequency Voltage

Workload Latency Local Temperature

From and towards
other units

Storing and retrieving a prefixed DVFS configuration 
from any WLT combination, at the global scale

One unit
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Conclusion

neuroscience information theory

Our objectives

• Implementing cognitive machines based on the properties of associative memories

• Contributing to the understanding of the biological long and short term memories,

• Find applications in electronics and telecommunications.

a very promising crossa very promising crossa very promising crossa very promising cross----fertilizationfertilizationfertilizationfertilization
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