Date 2013 / NeuComp Grenoble March 22, 2013

When neural networks meet error-correction coding: new perspectives in associative memories

Claude Berrou,

Vincent Gripon, Xiaoran Jiang and Behrooz Kamary Aliabadi

« Pure mental information »

02 29 00 13 06

9**x**8 = 72

Maître Corbeau, sur un arbre perché,...

$$H = -\sum_{i=1}^{n} p_i \log_2(p_i)$$

Communication model

Mental information is robust and durable, therefore must be redundant. H1

Contrary to ancestral sensory and motor feedforward circuits, the neocortex can be essentially regarded as a very recurrent organized graph H2

The self-repeating unit (node) in the graph is the so-called microcolumn (~ 100 neurons) Functional area of the cerebral cortex

HЗ

Binary signalization: $(0 \text{ or } 1) \longleftarrow (\text{Neuron inactive or firing})$

(inhibitory signals are only for control)

Astronomic number of combinations

Fixed point decoding \longleftrightarrow Non confused, single thought

Large minimum distances \longleftrightarrow Easily separable thoughts

Resilience

Linearity

Importance of cycles

Importance of correlation

The neocortex behaves like a distributed decoder! Which one?

LDPC decoder

Cortical decoder

- + : parity processor
- $\boldsymbol{\Sigma}$: variable processor

What is the code?

A redundant, distributed, graphical code !

What is the code?

The fundamental brick: the clique

V. Gripon and C. Berrou, "Sparse neural networks with large learning diversity", *IEEE trans. on Neural Networks*, vol. 22, n° 7, pp. 1087-1096, July 2011
V. Gripon, V. Skachek, W. J. Gross and M. Rabbat, "Random clique codes", *ISTC'12*, Gothenburg, Sweden, 2012

Concatenation of simple and thrifty codes

Application to associative memory

c = 8 clusters, l = 256 fanals

Messages of $8 \times \log_2(256) = 64$ bits

Associative memory with blurred stimuli

c = 8 clusters, l = 256 fanals Messages of $8 \times \log_2(256) = 64$ bits

Fanals are approximately known, in a certain vicinity [-s,+s].

Associative memory with blurred stimuli

c = 8 clusters, l = 256 fanals Messages of $8 \times \log_2(256) = 64$ bits

s = 5

Robust associative memory

c = 8 clusters, l = 256 fanals

Messages of $8 \times \log_2(256) = 64$ bits

Sparse messages \cap C $^{\circ}$ \bigcirc |O|0 0 $^{\circ}$ \bigcirc (\bigcirc Ø \cap \cap d $\overline{0}$ 0 0 0.9 ′ ₀ 0 Ο \bigcirc , _0, C \cap С $\overline{0}$ ⊌ Ο \sim \circ \circ b $^{\circ}$ 0 0 0 0 $^{\circ}$ 0

M proportional to n^2

B. Kamary Aliabadi, C. Berrou, V. Gripon and X. Jiang, "Storing sparse messages in networks of neural cliques", submitted, 2012

Application to dynamic power management in MPSoCs

In collaboration with CEA-LETI

DE LA RECHERCHE À L'INDUSTRIE

Application to dynamic power management in MPSoCs

Storing and retrieving a prefixed DVFS configuration from any WLT combination, at the global scale

Conclusion

a very promising cross-fertilization

Our objectives

- Implementing cognitive machines based on the properties of associative memories
- Contributing to the understanding of the biological long and short term memories,
- Find applications in electronics and telecommunications.

