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National Academy of Engineering Grand Challenge
Reverse-Engineering the Brain

- Determine how it performs its
magic.
- Should offer the benefits of:

- Helping treat diseases.
- Providing clues for new approaches to
computerized artificial intelligence.

- Understanding its methods will
enable engineers to simulate its
activities, leading to deeper insights
about how and why the brain works |
and falls.
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Neuromorphic Engineering

- Building Hardware and Applications Based on the Brain’s
Structure and Dynamics
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Neuromorphic Engineering

[Nuno da Costa, INI, 2008]

Main characteristics:
@ Exploits the physics of silicon to reproduce the bio-physics of neural
systems, using subthreshold analog VLSI circuits.
@ Develops multi-chip spike-based computing systems using asynchronous
digital VLSI circuits to encode and transmit signals between
computational nodes.

@ Employs these technologies to understand neural computation and to
build behaving systems able to carry out behavioral tasks in complex
environments, in real-time.

Giacomo Indiveri (INI) Neuromorphic spiking neural networks ini luzh|eth |zirich 6/43
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Neuromorphic Engineering: a brief historical perspective

Late '80s Max Delbrick, Richard Feynman, John Hopfield, and Carver
Mead at CALTECH started investigating the Physics of
Computation in biological, physical, and electronic systems.

Early '90s Carver Mead coined the term “neuromorphic”in 1990.

90’s and 2000’s Mead, Mahowald, Douglas, and generations of PhD students
and now professors developed hybrid analog/digital
microelectronic models of biological systems ranging from
single cells to full sensory-motor systems.

Today Attempting to move from sensory systems, to real-time behaving
ones that can learn and express cognitive abilities.

C. Mead.
Neuromorphic electronic systems. fr
Proceedings of the IEEE, 78(10):1629-36, 1990. iN NEUHUMOHH‘“C NGINEERII

B| Giacomo Indiveri and Timothy K Horiuchi.

Frontiers in neuromorphic engineering.
Frontiers in Neuroscience, 5(118), 2011.

http.//fronhersm.org/neuromorphio_engineering



Brain Computations

Massive parallelism (10" neurons)
Massive connectivity (10'° synapses)

Excellent power-efficiency
~ 20 W for 1076 flops

Low-performance components (~100 Hz)
Neuron fires an action potential = Digital signal
Low-speed comm. (~meters/sec)
Axon - Cable that carries the signal

Low-precision connections
Synapse > low probability of delivering message
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Converting Brain Circuitry to Electronic Circuitry
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Brain principles and Modeling Abstractions
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Neuromorphic Abstractions

- Neural Circuit Models

- Abstract away many molecular
and cellular details.

- Composed of:

Neurons for computation.

Synapses for learning and |
memory storage. Abstraction,

High

L Simulation
- Axons for communication. Spe
- Neuromodulatory systems to
control action selection and
learning.
- Still retain dynamics and Low

structure.
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Large-Scale Modeling at the Neural Circuit Level

+—— peak 30 my
. R ., ] presynaptic
post—— neuron
«_ reset ¢ 1 | I Ll |
wit) A'T A+{’_t"ff+ T 1 1 T T
W | \
Lt e,
{ sensitivy b ol LTP 1
—t } I

LTD
PNy ——

RS (regular spiking) r 1 neuron
0
interval, 1
wll AN Jl Jl=
Iﬂil I
RS FS RS LTS
-~~~ Mmeasured
5 —— simulated
F% (fast spiking)
\ 50 ms
|
vi)) AL

0



April 14,2013 Brain Principles and Modeling Abstractions 11

Hardware Architectures for Spike-Based
Computations

- Low-cost, high-performance graphics architectures (e.g.,
NVIDIA GPUs) opens the door for large-scale SNN simulations
on affordable, programmable platforms.

- GPUs have benefits and limitations
- Large fine-grained parallelism.
- Large off-chip memory bandwidth.
- Special Function Units.

- Optimization techniques to effectively map SNNs on to GPUs:
- Exploiting both neuronal and synaptic parallelism to maximize thread
level parallelism.

- Efficient representation of large-scale SNNs that improves the off-chip
memory coalescing.

- Minimizing thread divergence by delaying the execution of diverging
conditions by buffering them and running them concurrently later.
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Evaluation of Computational Performance in Randomly
Connected Networks

B Average Firing Rate ~7Hz
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Simulations run on a core i7 920 @2.67GHz and NVIDIA C1060

Nageswaran, et al (2009). A configurable simulation environment for the efficient simulation of
large-scale spiking neural networks on graphics processors. Neural Networks 22, 791-800.
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ffrontiers in ORIGINAL RESEARCH ARTICLE
NEUROINFORMATICS "ol 10.3389/1nni 201 00015

An efficient simulation environment for modeling
large-scale cortical processing

Micah Richert’, Jayram Moorkanikara Nageswaran?, Nikil Dutt? and Jeffrey L. Krichmar'**

' Department of Cognitive Sciences, University of California, Irvine, CA, USA
? Department of Computer Science, University of California, Irvine, CA, USA

Edited by: We have developed a spiking neural network simulator, which is both easy to use and com-
Andrew £ Davison, CNRS, France putationally efficient, for the generation of large-scale computational neuroscience models.

Reviewed by: _ The simulator implements current or conductance based Izhikevich neuron networks, hav-
Eilif Muller, Ecale Polytechnigue

Fédérale de Lausanne, Switzeriand ing spike—j[iming dependent pllasticiw and short-term plagticity. It. uses a standard network
Romain Brette, Ecole Normale construction interface. The simulator allows for execution on either GPUs or CPUs. The
Supérieure de Paris, France simulator, which is written in C/C++, allows for both fine grain and coarse grain specificity

Andreas Kirkeby Fidjeland, Imperial

Cologe London, UK of a host of parameters. We demonstrate the ease of use and computational efficiency of

this model by implementing a large-scale model of cortical areas V1, V4, and area MT. The

*Cormrespondence: . . -
Jeffrey L. Krichmar, Department of complete model, which has 138,240 neurons and approximately 30 million synapses, runs
Cognitive Sciences, University of in real-time on an off-the-shelf GPU. The simulator source code, as well as the source code

California, 2328 Social and Behavioral  for the cortical model examples is publicly available.

Sciences Gateway, Irvine, CA

92697-5100. USA. Keywords: visual cortex, spiking neurons, STDE short-term plasticity, simulation, computational neuroscience,
e-mail: jkrichma@uci.edu software, GPU

Code available at: http://www.socsci.uci.edu/~jkrichma/Richert-FrontNeuroinf-SourceCode.zip
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Functionality of our Simulation Environment

Functionalii Level of SﬁeCiﬁCiti Notes
STP enable/disable, iarameters Groui Defined Pre-sEaiticalli

Izhikevich parameters Group or Neuron

€T ncuron

Uses a callback to speci

Specified when making a connection

Maximum synaptic weight Group or Neuron Pair

Conductance time constants Grou

Spike injection Neuron Via a user-defined callback

Maximum firing rate Simulation To determine a maximum buffer size
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Large-Scale Simulation of Visual Cortex

Motor commands Attention, motion
planning

Intermediate

High-level object features,

Retina representations, feature group,
faces etc color etc.,
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Large-Scale Model of Cortical Visual Processing
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- 32x32 Resolution, 138,240 neurons; ~30 million synapses.
- Running in real-time on single GPU card.

- 64x64 Resolution, 552,960; ~120 million synapses.
- Running in real-time on GPU cluster.
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V4 Orientation Responses
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- V4 spiking neuron response to oriented gratings.



April 14,2013 Brain Principles and Modeling Abstractions 18

V4 Color Responses

Input Images
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Random-Dot Kinematogram Test

Brain Principles and Modeling Abstractions
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Motion Selectivity in Spiking Model of Area MT
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Attentional Modulation of Visual Cortex
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- Balance between goal-directed Increase reliability of neurons.

and sensory driven attention. Decorrelate noise between
- Avery, Nitz, Chiba, & Krichmar, neurons.

(2012). Simulation of Cholinergic Avery, Krichmar, & Dutt (2012).
and Noradrenergic Modulation of Spikir;g Neuron ,Model of Basal

Behavior in Uncertain ) :
Environments. Frontiers in Forebrain Enhancement of Visual

Computational Neuroscience. Attention. IJCNN.




Attentional Modulation in an Easter Egg Hunt
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Thanks to...

Team CARL Now — UC Irvine Team CARL Then — UC Irvine
Michael Jet
Ichael  Krichmar

Jay

Front row — Brent Miller, Andrew Zaldivar, Kris Carlson, Front row — Jay Nageswaran Moorikanikara, Mike Avery,
Michael Beyeler, Mike Avery, Jeff Krichmar Chelsea Guthrie, Micah Richert

Back row — Nikil Dutt, Nicolas OFOS, Derrik Asher, Liam Back row — Andrew Zadivar, Brian COX, Michael Wei, Jeff
Bucci, Wess Gates, Alexis Craig, Emily Rounds Krichmar

Supported by the National Science Foundation and the Defense Advanced Research Projects Agency.



April 14,2013 Brain Principles and Modeling Abstractions 24

Current Thinking
If you build it, they will come...

' <

FIELD oF DREAMS



for the neuromorphic killer app
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Understanding Through Building

Reverse Engineering the Brain through Neuromorphic Modeling

=

- The advent of new hardware, whic resembles the brain’s architecture,
complexity and dynamics is necessary for:

- True understanding of the brain and mind.
- Construction of artificial brains that are truly intelligent.
- Need to think about what nervous systems (and us) are good at:

- We are not good at mathematical algorithms, abstract thinking, and are unreliable.
- We are exceptional at fluid behavior, adaptation, perception, and building predictions.

Hardware and simulation tools will move us closer to meeting the grand
challenge of reverse-engineering the brain.
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