Simulating the Brain without a Computer Achievements and Challenges of Brain Inspired Computing

Simon Friedmann

Kirchhoff-Institute for Physics Heidelberg University

22. March 2013

イロン イロン イヨン イヨン 三日

"Simulating the Brain"

Neuroscience

"Brain Inspired Computing"

Technology

Computing with a Physical Model

Physical model vs. software simulation

- Inherent dynamics perform computation
- Configurable dynamics

Classical computer

(Argonne National Laboratory, 2007)

- Numerically solve differential equations
- Programmable dynamics

Hardware model uses different scales

Accelerated time enables long-term learning studies

Time scales		
	Biological time	Hardware time $(\times 10^4)$
Plasticity	1 ms	$0.1\mu s$
Learning Trial	1 min	1 ms
Training	1 h	100 ms
Development	1 month	1 min

• Large-scale software simulations typically slower than biological time

Structure of a hardware system

The BrainScaleS wafer-scale system

Wafer-scale integration

max. 200k neurons 50M synapses 10000x speed-up < D >

Wafer-scale integration: Post-processing

Event processing: Neuron output

Event processing: Network

Event processing: Synapses

Challenges for hardware implementation

usability

イロト イポト イヨト イヨト

Challenge: Massively parallel neuron dynamics

Neurons in Cortex

Challenge

- About 20 · 10⁹ neurons in cortex
- Neurons show complex dynamics
- Need area & power efficient solution

Approach

- Neurons as physical model
- Analog computing

BrainScaleS neurons

BrainScaleS neurons

- Configurable: Different firing modes
- Reproduce behavior from biology

э

<ロ> <同> <同> < 回> < 回>

Challenge: High synaptic input count

(Paul De Koninck, 2004)

Challenge

- 10⁴ 10⁵ synapses per neuron in neocortex
- Much more synapses than neurons

Approach

- Simple synapses
- Combinable neurons

BrainScaleS neurons

224 synapses per column

max. 14k synapses per neuron

^{21 / 30}

Outlook: Multi-compartment neurons

Point Neuron

Multi-compartment Neuron

Outlook: Multi-compartment neurons

- Configurable resistances
- Routing matrix
- Implement dendritic tree
- \Rightarrow Biologically more realistic

- 4 回 ト 4 ヨ ト 4 ヨ ト

Challenge: Synaptic plasticity

Challenge

- Every synapse subject to change
- Plasticity is foundation of learning
- Timing dependency with millisecond precision

Approach

- Analog timing measurement
- Digital weight modification

BrainScaleS STDP

Synapse:

- Measure spike timing
- Exponential weighting
- Local accumulation on capacitors

BrainScaleS STDP

Evaluation:

- Configurable comparison operation
- e.g. compare difference to threshold

BrainScaleS STDP

Digital weight update:

- 4 bit weights
- Calculate new weight
- Uses look-up tables

Challenge: Usable by neuroscientists

Challenge

- Large configuration space
- Lots of technical detail
- Neuroscientists are not hardware engineers

Approach

- Network described in biological terms
- Modeling language PyNN
- Automatic configuration

Usage Workflow

Conclusion

- Goals: "Simulating the Brain" and "Brain inspired Computing"
- Workflow: Biology \rightarrow Model \rightarrow Hardware
- Acceleration: Important for studies of learning
- Improved neuron model in future systems