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Abstract—Associative Memories (AM) are storage devices that
allow addressing content from part of it, in opposition of classical
index-based memories. This property makes them promising
candidates for various search challenges including pattern de-
tection in images. Clustered based Neural Networks (CbNN)
allow efficient design of AM by providing fast pattern retrieval,
especially when implemented in hardware. In particular, they
can be used to store and next quickly identify oriented edges
in images. However, current models of CbNN only provide good
performances when facing erasures in the inputs. This paper
introduces several improvements to the CbNN model in order
to cope with intrusion and additive noises. Namely, we change
the initialization of neurons to account for precise information
depending on Euclidean distance. We also update the activation
rules accordingly, resulting in an efficient handling of various
types of input noise. To complete this paper, associated hardware
architectures are presented along with the proposed computation
models and those are compared with the existing CbNN imple-
mentation. Synthesis results show that among them, several divide
the cost of that implementation by 3 while increasing the maximal
frequency by 25%.

I. INTRODUCTION

Oriented Edge Detection (OED) is often used as the first
step of image processing applications such as image classifi-
cation or image segmentation [1]. Traditional methods use a
bank of filters in which each filter is used to detect a type of
oriented edges [2]. These filters, stored in an indexed memory,
are applied separately on patches extracted from the input
image.

Recently, the authors in [3] proposed to use an associative
memory to detect oriented edges of several intensities. They
also present a fully-parallel hardware implementation for that
model. Unlike classical indexed memories where an explicit
address is required to access a data, associative memories are
capable to efficiently retrieve those data from part of them,
even with noisy inputs [4]. This capability makes associative
memories suitable for pattern recognition tasks like OED. In
OED, a set of patterns representing the oriented edges that
have to be detected in the image (equivalent to a bank of
filters) is stored in an associative memory. During the detection
step, patches are extracted from the input image and provided
to the associative memory which is responsible for detecting
the closest pattern. In this context, a patch is considered as
a possible noisy version of one of the patterns stored in the
associative memory. The associative memory is based on the

Clustered based Neural Network (CbNN) [5], [6], [7] and it
was shown that CbNN have a higher capacity compared to
classical models like Hopfield neural networks and Restricted
Boltzmann Machines.

In that same paper, the OED operation considers a particular
type of noise named erasure in which some pixels of the
original stored patterns might be missing from the patches.
In this paper, we enrich the decoding algorithm of CbNN
allowing to handle more complex types of noise. In particular,
we add more precise information to each neuron that takes
into account the euclidean distance.

An architecture was also proposed in that paper. However,
that architecture is not optimized in terms of available re-
sources utilization. Therefore, we also propose more opti-
mized hardware implementations for both the original and
the modified models. We study the impact of the proposed
modifications on those architectures.

The paper is organized as follows. In the second section, the
original model and its associated architecture are introduced.
The third section presents the improved models to handle the
new types of noise. The fourth section details the architectures
proposed for the modified models and shows the results of
their evaluations. The fifth section evaluates the different
models against the different types of noise and performs a
comparison with the classical euclidean distance. Finally, the
conclusion ends this paper.

II. ORIENTED EDGE DETECTION USING CBNN-BASED
ASSOCIATIVE MEMORY

In this section, we introduce oriented edge detection using
associative memories, Sparse-CbNN and its associated hard-
ware architecture.

A. Oriented Edge Detection

Let us consider an example where input image pixels can
take 256 levels of gray. Before the use of an associative
memory for a OED, an input image is preprocessed. During
that step, a Laplacian of Gaussian (LoG) filter is applied
on the input image to obtain an image in contrast level [8].
Then, sub-quantization and sub-sampling are used to reduce
the intensity and the position variations respectively. After that
preprocessing step, patches of size N ×N are provided to the
associative memory module.



(a) Original pattern (b) Erasure

(c) Intrusion (d) Additive

Fig. 1: Example of an original pattern and noisy versions of it.

In order to perform the OED, the patterns are stored in
the associative memory module. Those patterns represent gray
edges surrounded by black pixels as depicted in Fig. 1a. These
patterns are highly sparse since they are mostly composed of
zero values (black pixels). Due to this particular configuration
of patterns, classical CbNN [5], [6] cannot be used for OED
(CbNN retrieval performance is only optimal for uniform
independently distributed patterns). A variant of CbNN, named
Sparse-CbNN, has been proposed in [3] in order to cope with
these limitations. This variant is described hereafter.

B. Sparse-CbNN

A Sparse-CbNN is a neural network in which the neurons
are split into c clusters of ` neurons. Each cluster is associated
with an element of the input and each neuron is associated with
a possible value of an element except the value 0. A neuron
in a cluster can only be connected to neurons being in the
other clusters. Those connections are binary: either they exist
(′1′) or not (′0′). The set of binary connections are stored in
an adjacency matrix W where W(i,j)(i′,j′) is the connection
between ni,j and ni′,j′ , the ith neuron in the cluster j and the
i′th neuron in the cluster j′ respectively.

To store a pattern in a Sparse-CbNN, the neurons cor-
responding to the non-zero elements are activated and the
connections between them are set to ′1′. Fig. 2 depicts an
example of a sparse-CbNN with c = 6 clusters of ` = 9
neurons. Three patterns with 4 non-zero elements are stored
in this network.

To retrieve a pattern from a noisy version of it, Algorithm
1 is used. Traditionally, the initialization rule used during the
decoding process is the same as the one used during the storing
process, the neurons corresponding to the non-zero elements
are set to ′1′. The dynamic rule is named Sum-of-Max (SoM)
[9], [7] and computes a score for all the neurons of the network
as follows:

si,j = ei,j +
∑
j′ 6=j

max
i′
W(i,j)(i′,j′)ei′,j′ (1)
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Fig. 2: Sparse-CbNN (c = 6, ` = 9), 3 patterns having 4 non-zero elements
are stored, lines represent the connections set to one in the network (solid,
dashed and dot lines for pattern P0 = {n7,0, n5,3, n3,1, n7,4}, P1 =
{n3,1, n1,4, n6,2, n5,5} and P2 = {n5,1, n0,2, n5,5, n8,4} respectively),
the filled nodes represent two distinct activation with different noises (black
and gray nodes represent erasure and intrusion).

where ei,j ∈ {0, 1} is the state of the neuron ni,j . The
activation rule can be changed depending of the type of noise
and the desired performance in terms of error rate and speed
of the algorithm [10].

In [3], we only considered the erasure noise. This type of
noise leads to a noisy pattern in which one or several non-
zero elements of the original pattern have been set to 0. Fig.
1b depicts this type of error in the context of OED. In this
example, the missing pixel leads to the non-activation of a
neuron in the corresponding pattern during initialization. The
black nodes of Fig. 2 represent this situation. The original
pattern P2 is composed of neurons {n5,1, n0,2, n5,5, n8,4} and
the noisy pattern is composed of neurons {n5,1, n0,2, n5,5}. In
this example, neuron n8,4 has been erased.

To retrieve the erased symbols, the activation rule consists
of triggering the neurons that have the maximum score over all
the network after the application of the dynamic rule (1). This
activation rule is named Global-Winner-Takes-All (G-WtA),
[11]. In the example shown in Fig. 2, when SoM is used as
the dynamic rule, neurons n5,1, n0,2, n5,5 and n8,4 have a
score of 3, neurons n3,1, n1,4 and n6,2 have a score of 1 and
the others have a score of 0. The maximum score over all
the network being 3, the neurons that belong to the original
pattern are activated. We also have shown that in the case of
erasure noise, the process SoM + G-WtA can be replaced by a
friendly hardware boolean equation. To sum up this equation:
to be activated, a neuron must be connected to at least one
active neuron in each cluster that contains at least one active
neuron. As a consequence, clusters with no active neuron are
ignored.

C. Associated Hardware Architecture

A hardware architecture for the Sparse-CbNN was also
proposed in [3]. That architecture is fully parallel, i.e. the states
of all the neurons in network are computed at the same time
and within one cycle. This architecture is mainly composed
of interconnected identical modules, each one dedicated to



a cluster in the network. Each module contains two sub-
modules: a storing sub-module and a decoding sub-module.

While the storing sub-module stores and updates the con-
nections of the neurons in that cluster during storing phase,
the decoding sub-module associated with that cluster computes
their state during the decoding phase.

Data: Input Patch
Result: Closest pattern
Apply initialization rule;
while Stopping criterion do

Apply a dynamic rule;
Apply an activation rule;

end
Return the value of activated neurons;
Algorithm 1: Decoding algorithm of a CbNN for OED

III. MORE COMPLEX SCENARIOS

In this section, we present the required modifications to
handle additive and intrusion noise. Those noises lead to
more complex scenarios during decoding phase in which the
algorithm and the architecture presented in [3] cannot be
used. To handle these types of noise, we propose a new
initialization scheme along with corresponding dynamic and
activation rules.

A. Intrusion noise

The first noise we consider is called intrusion noise. An
intrusion occurs when at least one element at zero in the stored
pattern becomes non-zero. This is depicted in Fig. 1c where
there is only one intrusion. The consequence in the network is
the activation of a spurious neuron. Two cases can arise from
this example:
• Case 1 : the spurious neuron is not connected to a neuron

being part of the original pattern,
• Case 2 : the spurious neuron is connected to one neuron

being part of the original pattern. This case is represented
by the gray neurons of Fig. 2. Neuron n1,4 is activated
and connected to neuron n3,1 which is part of the original
pattern P0.

For these two cases, the boolean equation proposed in [3]
fails to retrieve the original pattern. In the first case, any neuron
is connected to all the active neurons. In the second case,
only one neuron is connected to all the other active neurons.
Using SoM + G-WtA allows to handle the case 1 but not the
case 2. If the dynamic rule SoM 1 is applied on the example
represented by the gray neurons of Fig. 2, the following scores
are produced: neuron n3,1 has a score of 5, neurons n7,0, n5,3
and n7,4 have a score of 4, neurons n1,4, n6,2 and n5,5 have a
score of 2 and all the others have a score of 0. By applying the
activation rule G-WtA, only the neuron n3,1 will be activated
after the first iteration and the others will be shut down.

To handle intrusion noise, we propose to use a different
activation rule named k-G-WtA. Instead of only activating
the neurons having the highest score, this rule activates the
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input=v1,j

(a) Hamming-like activation
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Fig. 3: Initialization of the neurons of cluster j having 5 neurons.

neurons having one of the k highest scores. In [10], the authors
show that k-G-WtA perform better than G-WtA when erasure
noise is considered. However, we found that k-G-WtA is also
efficient for intrusion noise. In the previous example, if k = 3,
the 3 highest scores are {5, 4, 4} and so neurons n3,1, n7,4,
n6,2 and n5,3 will be activated at the next iteration. The
parameter k is set to a high value, during the initialization
phase and is decreased at each iteration.

B. Additive noise

The second type of noise considered in this paper is the
additive noise. For this type of noise, a random value is added
to each non-zero element of the original pattern (see Fig.
1d). This leads to a much more complex scenario in which
the neurons being part of the original pattern still have to be
activated.

Previous works [5], [11], [7] on CbNN are mainly interested
in, given some inputs, finding the closest stored pattern accord-
ing to an inner metric that resembles the Hamming distance.
One of the reasons is that binary activations are particularly
suitable for this kind of metrics. Fig. 3a depicts the Hamming-
like activation inside a cluster j having 5 neurons, each value
vi,j is associated with neuron ni,j . The input value is equal
to v1,j leading to the activation of neuron n1,j . The activation
of a neuron is pictured by a red circle.

However, the additive noise modifies the values of the
symbols and therefore, it is necessary to take into account the
distances between the input values and the values associated
to the neurons. If we consider in the example of Fig. 3a that
for i ∈ {0, ..., 4} the values vi,j are in increasing order, the
neuron n0,j is more probable than the neuron n4,j to belong
to the original pattern.

In order to handle additive noise, we propose to add an
action potential pi,j to each neuron i in each cluster j. It is
obtained from the euclidean distance between the input value
and the value associated with a neuron. For each neuron ni,j ,
pi,j is given by:

pi,j = (max
i
vi,j)

2 − (vin,j − vi,j)2, (2)

where maxi vi,j is the maximal input that may receive the
network and vin,j the input value of cluster j. This action
potential is similar to the Parabolic kernel used in [12] to
initialize another type of neural network using binary con-
nections. After the computation of action potentials in each
cluster, we use them to activate the neurons in the network
and to compute the score of the neurons during the dynamic
rule of Algorithm 1.



During initialization, the s ≤ c neurons with the highest
action potentials are activated. Fig. 3b shows euclidean-like
activation on the same example as Fig. 3a for s = 3. The gray
levels that color the neurons represent the distance between
its associated value and the input value. Dark gray means that
the distance is small while light gray means that the distance
is high. The neurons associated with the 3 nearest values are
activated.

To take into account the action potential in the dynamic rule
we propose a new dynamic rule named Integer-SoM (I-SoM)
that computes the score of each neuron as follows:

si,j = ei,jpi′,j′ +
∑
j′=j

max
i′
W(i,j)(i′,j′)ei′,j′pi′,j′ . (3)

In other words, the score of a neuron is equal to the sum over
all the clusters of the maximum action potential of the neurons
for which it is connected. Once the scores are computed for
all the neurons, we use the k-G-WtA to activate the neurons
for the next iteration.

IV. HARDWARE ARCHITECTURES

This section presents the architecture we propose for the
enhanced model of associative memory. While the proposed
architecture in [3] for the Sparse-CbNN is parallel and fast,
it is costly in terms of hardware resources. In addition, all
the connections are accessed at the same time and therefore,
they are mapped onto independently-accessed registers. More
optimized architectures for the classical CbNN (i.e. not sparse
CbNN) have been proposed in the state of the art. The best
architecture in [13] computes the value of each neuron within
a constant latency (depending on the number of neurons in
each cluster or the number of clusters). It also takes advantage
of the symmetry of the adjacency matrix, i.e. it is only
required to store once the connection between two neurons
from different clusters. The best architecture proposed in [14]
and implemented in [15] computes the value of the neurons in
a relative short time by only focusing on the active neurons.
That architecture also maps connections onto block RAMs
instead of registers unlike the other architectures. However,
the connection between two distant neurons has to be stored
twice (for each cluster).

A. Baseline of the proposed architectures

Since [14] offers the best trade-off between speed and
resources, we propose architectures based on the same scheme.
These architectures contain four main modules (see Fig. 4):

1) The storing modules (one per cluster) contain c − 1
blocks RAM that store the connections between the
neurons of a cluster and the neurons of the others.

2) The scoring modules (one per cluster) that compute and
store the scores of the neurons.

3) The activation module (one for all the clusters) that
computes the next state of each neuron in the network.

4) The Serial Pass Modules (SPMs) that output the active
neurons in the clusters (one per cluster).
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Fig. 4: Overview of the proposed architecture

The storing modules and the SPMs are similar for all
the architectures while the scoring modules implement the
different dynamic rules. The boolean equation proposed in [3]
can be implemented as a dynamic rule in the scoring module.
When this boolean equation is used, no activation module
is needed since the boolean equation performs the neuron’s
activations. The activation module implements the k-G-WtA,
since the G-WtA is equivalent to the k-G-WtA with k = 1.

B. Serial Pass Module

A SPM retrieves the indexes of the active neurons in a
cluster. It takes as inputs the states of the neurons in that
cluster and outputs the index of its active neurons. The states
of the neurons in a cluster are stored in a binary vector of size
`. At each cycle, the address of a bit at ′1′ is produced and
that bit is set to ′0′ for the next cycles. Therefore, the number
of cycles needed to output all the active neurons of a cluster
j is equal to aj , the number of active neurons in that cluster,
with 0 ≤ aj < `. The number of cycles needed to output all
the active neurons in the network is equal to amax = max

j
aj ,

the maximal number of active neurons in a cluster over the
entire network.

C. Storing Module

Each index provided by the SPM of a cluster is sent to
the storing module associated to that same cluster. During the
storing, there are at most one active neuron for each cluster. In
a storing module having received an active neuron, the storing
is performed in two steps. Firstly, the connections associated
to that active neuron are read from the RAMs and secondly,
these connections are updated by setting to ’1’ the connections
with the active neurons in the other clusters.

During the decoding, there is aj active neurons in a cluster
j. At each cycle and in each storing module, the set of
connections corresponding to one of these active neurons is
distributed to the scoring modules of the other clusters. We
name the connections sent by an active neuron to a distant
cluster as the contribution of that neuron to that cluster.

D. Scoring module

Since each storing module sends a contribution to the distant
clusters at each cycle, each scoring module receives one
contribution coming from each distant cluster. Using those
values, each one computes the score of each neuron in its
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Fig. 5: Architectures of the different scoring modules

associated cluster depending on the chosen dynamic rule i.e.
the SoM (see (1)), the boolean equation used in [3] or the
proposed I-SoM (see (3)). In terms of complexity, the number
of connections between the storing modules and the scoring
modules is in the order of c2*l2.

1) Sum-Of-Max (SoM): For a cluster, the scoring module
implements (1) for each of its neurons. For each neuron i
of a cluster j and for a distant cluster j′, the max oper-
ation (max

i′
W(ij)(i′j′)ei′j′ ) is performed sequentially (since

one contribution from a cluster is sent at each cycle). That
operation handles a set of bits (W(ij)(i′j′)ei′j′ ). Therefore, it
can be implemented by using a logical OR (See Fig. 5a). Each
neuron is associated with c − 1 intermediate values for each
distant cluster. These values are stored in registers. When all
the contributions of every cluster have been sent, an additional
cycle is needed to compute the score of every neuron. The
score of a neuron is computed by performing the sum over
all the intermediate values associated with that neuron. This
is done in parallel thanks to a tree adder.

2) Boolean equation: Using this rule, the max operation
is performed using the same scheme as in the SoM imple-
mentation but the final sum (used in SoM) is replaced by a
logical AND (See Fig. 5c). In a Sparse-CbNN, some clusters
do not have any active neuron and have to be ignored. This
is performed by using a by-pass mechanism. To sum up this
mechanism, the intermediate register used to store the value
of a logical OR related to a distant cluster j′ is set to ’1’ if
that cluster does not have any active neuron.

3) Integer-Sum-of-Max (I-SoM): The implementation of the
I-SoM is nearly similar to the SoM implementation. It takes
into account the action-potential of the neuron and the logical
OR allowing to compute max

i′
W(ij)(i′j′)ei′j′ is replaced by a

comparator allowing to compute max
i′
W(ij)(i′j′)ei′j′pi′j′ (See

Fig. 5b. Therefore, the registers used to store intermediate
values are larger. One-bit registers are replaced by b-bit
registers, b being the number of bits used to encode the action-
potentials.

E. Activation module (k-G-WtA)

The k-G-WtA operation may easily require a lot of re-
sources (comparators to compute the maximal scores, mul-
tiplexers to retrieve the winners, etc.). However, efficient
architectures have been proposed in the literature to perform
such task within a short time. We use the algorithm proposed
in [16]. Starting from the most significant bits, this algorithm
analyses the bits of a given power of two to find the k-winners.
The k-winners are retrieved in m cycles, m being the number
of bits required to store the score of a neuron.

F. Architectural Results

The different exposed models were implemented by using
the scheme presented in the previous sections. Four architec-
tures were designed and the five architectures that are to be
compared are summed up in Table I:
• [3] is inspired by the original Sparse-CbNN model and

uses the Boolean equation.
• V1 is implements the same model but uses a different

scheme.
• V2 is inspired by the same model but uses the SoM +

G-WtA.
• V3 implements the enhanced model able to handle the

intrusion noise. It uses the SoM + k-G-WtA.
• V4 is based on the enhanced model able to handle the

additive and the intrusion noises. It uses the I-SoM +
k-G-WtA.

Those architectures were evaluated in terms of hardware
resources and maximal frequency. The number of bits used
in the block RAMs is not shown since it is the same for all
the architectures. It is equal to the total number of connec-
tions in the network. The architectures have being designed
by using VHDL. The simulation was performed by using
ModelSim from Altera while the architecture was synthesized
by using Altera Quartus and targeted the platform Stratix V
5SGXMABN3F45C2 FPGA, as in [3]. Results show that for



Initialization Dynamic Activation

[3] Hamming Boolean equation X

Arch. V1 Hamming Boolean equation X

Arch. V2 Hamming SoM G-WtA

Arch. V3 Hamming SoM k-G-WtA

Arch. V4 Euclidean I-SoM k-G-WtA

TABLE I: Rules used for the proposed architectures

every resource (ALMs and registers) and every network size,
V1 always gets the lowest resource usage (see Fig.6a and
Fig. 6b) and the best frequency (see Fig.6c) thanks to its less
complex computing operators (no adders or comparators). [3]
and V4 ALMs and registers occupation reaches the limit of
the figures which means they do not fit on the platform.

Fig.6a shows that in terms of ALMs, V4 is more costly than
the other architectures. This is mainly due to the increased size
of adders in V4 compared to V3/V2, while they are replaced
by logical AND in V1. However, the architecture proposed
in [3] is at least 3 times more costly than V1 while they
implement the same model. It is the same for V3/V2 while the
latter are able to handle intrusion noises. Those comparisons
show that using a more optimized baseline architecture to
implement the modified models was really necessary.

Fig.6b shows that the cost of V4 in terms of registers is
the highest one compared to the other architectures. That
difference is explained by an increased number of bits required
to store the scores of neurons. The number of registers in
V3/V2 is slightly higher than in V1 since the latter does not
store any score. The architecture proposed in [3] is at least
3 times more expensive than V1. This is due to the mapping
of the connections to block RAMs in V1 instead of registers,
unlike [3].

The energy consumption mainly depends on the frequency
(clock) and the logic and on the routing [17]. Therefore, V1,
V2 and V3 consume less energy compared to [3] since they
divide the logic by 3 while having an increasing the maximal
frequency only by 25%. However, V4 may consume more
energy due to its much increased resource cost, even with its
lower frequency.

G. Latency of the architectural variants

The overall latency of the proposed architectures is dis-
tributed among the scoring and the activation modules (except
for V1 for which there are no activation modules). Each scor-
ing module receives one contribution from an active neuron
at each cycle. The latency depends on amax, the maximal
number of active neurons in a cluster over the entire network.
Once all the contributions have been sent, an additional cycle
is needed to compute the sum of the intermediate values (see
Fig. 5). Thus the latency of the scoring module is equal to
θdec(amax + 1).

Concerning the activation module, the latency θact is equal
to m. For V2 and V3, the maximal score of a neuron is equal
to c and so m = log2(c). For V4, the maximum score is

equal to c multiplied by the maximal action-potential `2, thus
m = log2(c.`2). In comparison, the latency of the architecture
proposed by [3] is 1 but that architecture cannot implemented
large networks as shown in Fig.6a.

V. SIMULATION

In this section, we show the results of the evaluation of the
proposed models used in the context of OED with intrusion
and inversion noises. This evaluation examined the ability to
retrieve patterns as well as the total latency to perform that
task.

To evaluate the retrieval ability of Sparse-CbNN, we apply
the following procedure:

1) Storage of the set of patterns in the network,
2) Random selection of one pattern and application of the

noise on it to produce a noisy pattern,
3) Usage of each proposed model/implemented architecture

to retrieve the closest pattern,
4) Checking if the retrieved pattern is the closest pattern

(the retrieved pattern is compared with the result ob-
tained by using a brute force approach based on a given
distance).

The steps 2-4 are iterated and the error rate is computed by
taking the number of successes over number of trials. We use
two different sets of pattern. Set1 is composed of 8 ∗ 8 = 64
patterns of size 5 × 5 representing 8 orientations of ` = 8
intensities. Set2 is composed of 16 ∗ 8 = 128 patterns of size
7× 7 representing 16 orientations of ` = 8 intensities. For all
the architectures and experiments, the stopping criterion is the
number of iterations which is set to 4.

We began to evaluate the proposed models and associated
architectures for intrusion noise, then for additive noise and
finally for intrusion + additive noises.

A. Intrusion noise

For the intrusion noise, we compare architectures V1, V2
and V3 (V4 has been proposed for additive noise). Intrusion
noise is added by switching ε zero pixels in the original
pattern to a non-zero value. The value assigned to the switched
pixels is randomly selected from the ` possible values with the
probability 1

` . We consider that the closest pattern is the one
with the smallest Hamming distance with the noisy pattern. For
V3, we initialize k to 4 (number of iterations) and decrease it
by 1 at each iteration.

Fig. 7 depicts the error rate as a function of ε for Set1 and
Set2. As explained in section III-A, V1 is incapable to handle
intrusion noise and the error rate is always equal to 1. For
V2, the error rate grows in the same way for Set1 and Set2.
In fact, for V2, an error occurs when the value of the switched
pixel is equal to the value of the edge pixels (case 2 of section
III-A). So the error rate is equal to the probability that there is
one switched pixel equal to the value of the edge pixels. This
probability is 1− (`−1)ε

`ε . For V4, the error rate is equal to 0
for Set1 and slowly increases for Set2. That increase is due
to the fact that more orientations are stored in the network.
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Fig. 6: Synthesis results for the evaluated different architectures.
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Fig. 7: Error rate in function of intrusion noise ε, each point is the result of
10000 trials

We compute A = {ā(1)max, ..., ā
(4)
max} the average of amax

for each iteration it of Algorithm 1. From A, we derive
the average overall latency of each architecture. For all the
architectures (V1 to V3), for the two data set, we find
A = {1, 1, 1, 1}. The mean overall latency for architecture
V1 is thus equal to 8 for the two sets. For architectures V2
and V3, the latency also depends on the data set (the size of
the patterns leads to a particular c). For Set1 and Set2 the
latency of is thus equal to 13 and 14, respectively.

B. Additive noise

Concerning the additive noise, we compare V3 and V4. To
generate a noisy pattern, a random noise ξ ∼ N (0, σ2) is
added to each edge pixel. We consider that the closest pattern
is the one with the smallest euclidean distance with the noisy
pattern. For V3, we keep the same procedure for k. As in V4
more neurons are activated during network initialization, we
initialized k to 4N and decreased it by N at each iteration. N
is equal to 5 and 7 for Set1 and Set2, respectively. We simulate
V4 for 2 values of s (the number of neurons activated during
initialization).

Fig. 8 depicts the error rate depending on σ2 for Set1 and
Set2. Note that they show the same behavior. For V3, the error
rate grows quickly when the noise intensity increases. Using
V4 leads to a lower error rate than V3 for the two values
of s. However, for large value of σ, s = 8 leads to a lower
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Fig. 9: Examples for Set1, of patterns and the retrieval results: the first row
shows the random patterns, second row, the patterns retrieved by using V4
and s = 8, third row, the patterns retrieved with the euclidean distance

error rate than s = 4. That is due to the fact that the neurons
being part of the closest pattern have to be activated during
the initialization to retrieve this pattern.

We also evaluated the latency of the architecture V4 for
the two values of s. Like the V1, V2 and V3 architectures,
we did not notice any difference in V4 when using Set1
and Set2. However, the number of active neurons is more
important. For s = 8, A = {8, 4, 3, 2.16}, leading to an
average overall latency for Set1 and Set2 of 32.16 and 33.16
cycles respectively. For s = 4, A = {4, 3.8, 3, 2.1} leading
to an average overall latency for Set1 and Set2 of 27.16 and
38.16 cycles.

C. Intrusion plus additive noise

As a final evaluation, we used V4 to retrieve closest patterns
from random inputs. To generate the random patterns we



applied additive and intrusions noises to original patterns,
ε = 2 and σ2 = 1.5. Combining those two noises leads
to a high difference between the original patterns and the
generated patterns. We compared the result obtained with V4
with the closest patterns found with the euclidean distance.
Fig. 9 shows some cases for which euclidean distance and V4
do not retrieve the same pattern. Only the results for Set1 are
presented in this paper (similar results are obtained for Set2).
We can see that V4 performs better than euclidean distance in
the majority of the cases. It is not surprising since it is well
known that euclidean distance is not adapted for sparse signals.
This is due to the fact that it gives the same importance to any
dimension.

VI. CONCLUSION

In this paper, improved models and their associated hard-
ware architectures were presented. They allow to detect ori-
ented edges when the patterns in the inputs are noisy. The
proposed models are able to manage more types of noise than
the state of the art and the most advanced model performs
better than the euclidian distance for that task. Concerning
the architectures, even if they are more efficiently designed
compared to the first implementation of the Sparse-CbNN
model, they remain expensive in terms of computing resources.
Concerning that matter, more generic and performant architec-
tures for the Sparse-CbNN and more generally, CbNN inspired
models are under research. From a set of allocated computing
and memory resources, those are able to handle networks with
different sizes while taking in account the sparsity of the active
connections and active neurons in the network.
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