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#Université de Bretagne Sud, Lab-STICC (UMR 6582), 56321 Lorient, France
∗Institut Mines-Telecom; Telecom Bretagne; Lab-STICC (UMR 6582), Technopole Brest-Iroise, 29238 Brest, France

# ahmed.abdmouleh,emmanuel.boutillon,laura.conde-canencia@univ-ubs.fr
∗ charbel.abdelnour,catherine.douillard@telecom-bretagne.eu

Abstract—This paper is dedicated to the optimisation of Non-
Binary LDPC codes when associated to high-order modulations.
To be specific, we propose to specify the values of the non-zero NB-
LDPC parity matrix coefficients depending on the corresponding
check node equation and the Euclidean distance of the coded
modulation. In other words, we explore the joint optimisation
of the modulation mapping and the non-binary matrix. The
performance gains announced by a theoretical analysis based on
the Union Bound are confirmed by simulations results. We obtain
an 0.2-dB gain in the high SNR regime compared to other state-
of-the-art matrices.

I. INTRODUCTION

Since their rediscovery in 1996, Low-Density Parity-Check

(LDPC) codes designed over GF(2) have shown performance

close to the Shannon limit for long code lengths [1] [2]. For

moderate or small lengths, error performance can be improved

by extending LDPC codes to high-order Galois Fields GF(q),
q > 2 [3]. These so-called Non-Binary (NB) LDPC codes retain

the benefits of steep waterfall region (typical of convolutional

turbo-codes) and low error floor (typical of binary LDPC).

Compared to their binary counterparts, NB-LDPC codes gen-

erally present higher girths, which leads to better decoding

performance. Different works have also revealed the interest

of NB-LDPC in MIMO systems ([4] [5] [6]).

Another advantage of NB-LDPC codes concerns their associ-

ation with high-order q-ary modulations: by encoding directly

over the q-ary constellation alphabet, binary-to-NB mapping

and demapping operations are not needed, unlike for binary

codes. In other words, NB symbol likelihoods are calculated

directly and input to the NB decoder, without any marginaliza-

tion [7]. Note that the demapping operation is costly in terms

of complexity and introduces performance loss that would have

to be partially countered by a proper choice of mapping or fully

recovered by costly iterations over the demapper and decoder.

For these reasons, NB-LDPC codes constitute a promising

solution for high spectral efficiency coding, even if they present

the drawback of high decoding complexity [8].

For finite code lengths, the construction of NB-LDPC ma-

trices is generally solved in two different steps [9]. First, the

positions of the non-zero entries of the parity check matrix

H are optimised in order to maximize the girth of the code

and minimize the impact of cycles when using the Belief

Propagation (BP) algorithm on the associated Tanner graph.

In [10] [11], it is widely accepted that good graphical codes

have large girth and a small number of short cycles. This

optimisation can be efficiently achieved with the Progressive

Edge Growth (PEG) algorithm [12] or one of its variants. The

second step in the matrix construction consists in choosing the

values of the non-zero entries. This can be done either randomly

from a uniform distribution (among the non-zero elements of

GF(q)) [12] or carefully to meet some design criteria [13].

In [9] the problem of the selection and matching of the parity-

check matrix non-zero entries with the code was considered.

The authors proposed to optimise the position of the non-zero

entries based on the binary image representation of matrix H
and to maximise the minimum Hamming distance of the binary

image of the code. Also, in [9], the authors showed the interest

of NB-LDPC codes with minimum connectivity on the symbol

nodes dv = 2, where dv represents the variable node degree.

However, when considering the association of NB codes

and q-ary modulations, mapping symbols of a code optimised

for Hamming distance into NB modulation signals does not

guarantee that a good Euclidean distance structure is obtained.

Squared Euclidean and Hamming distances are equivalent only

in the case of binary modulation or four-phase modulation.

Binary modulation systems with codes optimised for Hamming

distance and soft decision decoding have been well established

since the late 1960s for power-efficient transmission at spec-

tral efficiencies of less than 2 bit/sec/Hz. For higher spectral

efficiencies, the association of powerful error-correcting codes

and high-order modulation has been largely considered in the

literature, see for example [14] [15] [16] [17], among many

others.

In this paper we propose to optimise the NB-LDPC coded

modulation through a matrix optimisation that is aware of the

modulation and mapping. In others words, the optimisation

criterion is not the Hamming distance of the binary image
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of the code as in [12] [13] [9], but the Euclidean distance of

the modulated codewords. To the best of our knowledge, this

problem has never been considered in the literature for NB-

LDPC codes. Our approach assumes that the positions of non-

zero entries in the parity check matrix H are already defined and

we focus on the determination of the values of non-zero entries

when the NB-LDPC code over GF(q) is directly associated to

a q-ary Quadrature Amplitude Modulation (QAM).

The paper is organised as follows: Section II presents nota-

tions and some key definitions to describe our work. Section III

introduces a theoretical analysis of the decoding performance

based on the Union Bound. The evaluation of the distance

spectrum of a code is considered in section IV where we also

introduce a method to simplify the calculation of the Union

Bound. We then consider in section V the properties of the

Euclidean distance for Gray-mapped QAM modulations. Our

contribution is then described in Section VI where we optimise

the distance spectrum of non-binary coded modulations leading

to better results than those in the state-of-the-art. Section VII

presents simulation results to show the interest of our approach.

Finally, section VIII concludes the paper.

II. NOTATIONS AND DEFINITIONS

Let us define a (N,K) NB-LDPC code over GF(q) with code

length N and information length K. Its parity check matrix H
has N columns and N −K rows. The code is assumed to be

regular where each row has a number of non-zero entries equal

to dc and each column has dv = 2 non-zero entries. Assuming

a full rank matrix, the code rate is given by r = 1 − dv/dc.

The non-zero entries of H are denoted by hm,n, where m is

the row index and n the column index.

We assume that each symbol in GF(q) is associated with

an element of the q-ary constellation M through a mapping

function π: GF(q) → R
2 such that for each x ∈ GF(q), π(x) =

(πI(x), πQ(x)) ∈ R
2. Note that πI(x) and πQ(x) represent the

in-phase and the quadrature amplitudes of the modulated signal,

respectively. For example, if M is a 64-QAM, then both πI(x)
and πQ(x) belong to the set {−7,−5,−3,−1, 1, 3, 5, 7}. Figure

1 provides three different mappings that are considered in our

study for the 64-QAM.

The propose approach consists in optimising the coefficients

of one row of the matrix [13], i.e. a single parity check equation

of the code expressed as:

dc
∑

k=1

hkxk = 0, (1)

where hk ∈ GF(q), k = 1 . . . dc, are the non-zero entries

and xk ∈ GF(q), k = 1 . . . dc are the dc variables of the

parity check equation. Note that this equation defines a code

over GF(q)dc and that we denote by C the set of dc-uple

x = (xk)k=1...dc
in GF(q)dc that verify (1).

Let the Euclidean distance D(x, y) between two elements x
and y in GF(q) be the Euclidean distance between π(x) and

π(y) in R
2. Note that for a given modulation, D(x, y) depends

on the mapping function π. The Squared Euclidean distance

D2(x, y) is then expressed as:

D2(x, y) = |πI(x)− πI(y)|2 + |πQ(x)− πQ(y)|2. (2)

Let us also define the Euclidean distance between two

codewords (x,y) ∈ C2 as:

D2
C(x,y) =

dc
∑

k=1

D2(xk, yk). (3)

Finally, let the Distance Spectrum (DS) of a code C be the

enumeration of all the possible distances between two different

codewords and the number of distinct ordered couples at each

of those distances. The DS function SC(d) can then be defined

as:

SC(d) = |{(x,y) ∈ C2, D2
C(x,y) = d2}|. (4)

where |.| represents the cardinality of a set.

III. DECODING PERFORMANCE OF THE ELEMENTARY

CHECK NODE

The dc symbols of an element x ∈ C are transmitted through

an Additive White Gaussian Noise (AWGN) channel. The

received message is thus r = π(x) +w where w is a complex

vector of size dc, with each coordinate being the realization of

a complex Gaussian noise of variance σ2 = N0/2, where N0 is

the power spectral density of the AWGN. For a given Signal-to-

Noise Ratio (SNR), the probability P (x → y) of transmitting

x and decoding y 6= x when using a Maximum Likelihood

(ML) decoder is given by:

P (x → y) = Prob(||r− π(x)||2 > ||r− π(y)||2). (5)

Since we consider the AWGN channel, this probability can be

expressed as:

P (x → y) = Q

(

DC(x,y)

2σ

)

, (6)

where Q(u) is the Q-function defined as:

Q(u) =
1√
2π

∫ +∞

u

e
−t

2

2 dt. (7)

The probability of error on a received codeword Pe(σ) is thus

upper bounded (Union Bound inequality) by Ub(σ): Pe(σ) ≤
Ub(σ), with

Ub(σ) =
1

|C|
∑

x∈C

∑

y∈C/x

P (x → y) =
1

|C|
∑

d

SC(d)Q(
d

2σ
),

(8)

where |C| represents the cardinality of set C.

For large SNRs, equation (8) can be approximated by only

using the first (dominating) terms in the Union Bound which

concern the codewords at minimum distances.
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(a) Mapping 1: DVB-T2 (b) Mapping 2 (c) Mapping 3

Fig. 1: Gray mappings for coded modulations C1, C2 and C3

IV. DISTANCE SPECTRUM EVALUATION

The exact evaluation of the DS of a code is a computationally

intensive task. For a check node of degree dc, the first dc − 1
inputs can be set arbitrarily to any value of GF(q), while the

last one is determined by (1), thus |C| = qdc−1. The evaluation

of all couples has a complexity of |C|(|C|− 1)/2. For instance,

for values of q = 64 and dc = 4, more than 3.4×1010 distances

have to be evaluated. Fortunately, the Q function decreases

very rapidly and only the first terms in the DS are useful to

accurately estimate the Union Bound for high SNRs.

Let us consider the following approach: we define du as the

maximum value of the Euclidean distance for which the DS

is exactly evaluated (in others words, if d ≤ du, then SC(d)
should be exactly evaluated) and δ the minimum Euclidean

distance between two points of the constellation M. For each

point π(x) in M, we define its near neighborhood as the set

V (x) expressed by:

V (x) = {y ∈ GF(q)/D(x, y)2 ≤ d2u − δ2}. (9)

Since two distinct codewords x and y of C satisfy (1),

then x and y differ at least by two distinct symbols among

the possible dc symbols. From this property, we deduce that

having DC(x,y)
2 ≤ d2u implies that yk ∈ V (xk) for k =

1 . . . dc (the proof can be done by contraposition). Thus, for

a given codeword x, estimating the codewords y ∈ C such

that DC(x,y) ≤ du requires a maximum of vdc−1 distance

evaluations, where v is the maximum cardinality of V (x), i.e.,

v = max{|V (x)|, x ∈ GF(q)}.

For the example previously introduced with q = 64, dc = 4,

and a 64-QAM constellation, let us set du = 4. The minimum

distance in the 64-QAM constellation is δ = 2. Therefore,

the neighborhood V (x) of x should contain all points of the

constellation at a distance smaller or equal to
√

d2u − δ2 =
√
12

from x. Since 2
√
2 <

√
12 < 4, V (x) = {y ∈ GF(64)} such

that |πI(x) − πI(y)| ≤ 2 and |πQ(x) − πQ(y)| ≤ 2. In that

case, |V (x)| ≤ 9, x ∈ GF(64) and hence v = 9. Enumerating

the set of points y of C at a distance smaller than or equal to

du = 4 from a given point x of C requires a maximum number

of distance computations equal to vdc−1 = 93 = 729. Then,

the exact evaluation of the first terms of the DS is bounded by

643×93 ∼= 1.91×108, which is computationally more tractable.

V. EUCLIDEAN DISTANCE IN CODED MODULATIONS

The Galois Field GF(q), with q = 2r, can be defined by the

set of polynomials over Z/2Z[α] mod P [α], where P [α] is an

irreducible polynomial of degree r. In that case, each element

of GF(q) can be represented by a binary vector of size r as

x = (x0, x1, . . . xr−1)2, with x = x0α
0+x1α

1 . . .+xr−1α
r−1.

The non-null elements of GF(q) can also be represented as

x = αµ, µ = 0 . . . q − 2.

In the case of a Binary Phase-Shift Keying (BPSK) modula-

tion, the binary representation (x0, x1 . . . xr−1) of x ∈ GF(q)
is used to modulate r BPSK symbol as si = (1 − 2xi),
i = 0 . . . r − 1. Then, the Euclidean distance D(x, y) between

two symbols of GF(q)2 is exactly twice the Hamming distance

dH(x, y) between the binary representation of x and y. By ex-

tension, DC(x,y) is also twice the Hamming distance dH(x,y)
between the binary representation of the two codewords. This

means that the coefficients hk, k = 1 . . . dc in (1) should be

chosen so as to optimise the Hamming distance of the code.

This approach was proposed in [9]. For GF(64), dc = 4, and

P [α] = α6+α+1, the best coefficients found are {hk}k=1...4 =
{α0, α9, α22, α37} (the order has no importance). With these

optimal coefficients, the minimum Hamming distance between

two codewords is 3 and there are exactly 20 codewords at

distance 3 of the all-zero codeword (see [9]).

When using a q-ary modulation, there is no longer any direct

connection between Hamming distance and Euclidean distance,

except if a Gray mapping (for q-QAM modulation) or Gray-

like mapping (for q-APSK modulation) is used. Considering,

for example, the mapping in Fig. 1a, x = (x0, x1, . . . , x5)2
is associated with π0(x) = (π0

I (x), π
0
Q(x)), where π0

I (x) =
G(x0 + 2x2 + 4x4) and π0

Q(x) = G(x1 + 2x3 + 4x5),
with {G(i)}i=0...7 = {+7,−7,+1,−1,+5,−5,+3,−3}. For

example, x = (100101)2 is assigned to π0(x) = (G(1 + 2 ×
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0+4×0), G(0+2×1+4×1)) = (G(1), G(6)) = (−7, 3). For

a 64-QAM Gray-mapped constellation, the following properties

are satisfied for all (x, y) ∈ GF(64)2:

• Property 1: D(x, y) = 2 ⇒ dH(x, y) = 1, for example

x = (100101)2 and y = (100111)2 in Mapping 1 (Fig.

1a)

• Property 2: D(x, y) = 2
√
2 ⇒ dH(x, y) = 2 (correspond-

ing to two points in opposite positions in a square of side

δ = 2). For example, x = (100101)2 and y = (100011)2
in Fig. 1a.

Thus, we can deduce:

• Property 3: dH(x, y) = 2 ⇒ D(x, y) ≥ 2
√
2

• Property 4: dH(x, y) ≥ 3 ⇒ D(x, y) ≥ 4.

From these properties, we can infer that, if the Hamming

distance between two codewords x and y in C2 is greater than

or equal to 3, then DC(x,y) ≥ 2
√
3.

To summarize, using a 64-QAM Gray-mapped constellation

and a parity check equation that guarantee a minimum Ham-

ming distance of three yields a code with a minimum Euclidean

distance of 2
√
3. In order to reduce the number of couples with

an Euclidean distance of 2
√
3, we first investigate the impact

of Gray mapping. In fact, shuffling the binary representation

of x before applying the mapping π0 leads also to a Gray

mapping. More formally, we define the mapping π0
σ , where σ

is a permutation in the set {0, 1, . . . , 5} as π0
σ(x) = π0(σ(x)),

with σ : GF(64) → GF(64), x = (x0, x1, . . . x5) →
σ(x) = (xσ(0), xσ(1), . . . xσ(5)). Note that a permutation of the

binary representation does not affect the Hamming distance,

i.e., ∀(x, y) ∈ GF(64), dH(x, y) = dH(σ(x), σ(y)) but does

affect the Euclidean distance after mapping, and can therefore

eventually improve the spectrum of the coded modulation.

Mappings in Fig. 1b and 1c can then be obtained from Mapping

1 (Fig. 1a) through this kind of permutation.

VI. JOINT OPTIMISATION OF MAPPING AND NB-LDPC

MATRIX COEFFICIENTS

In this section, we propose to jointly optimise both mapping

and check node coefficients. To this end, we start by performing

an exhaustive search among possible mappings for the dc-

uple of coefficients that optimise the DS, or in practice, that

minimise the first two terms in SC(d).
If we consider again the example for the 64-QAM with q =

64 and dc = 4, the exhaustive search for each mapping should

minimise SC(2
√
3) and SC(2

√
4) in the DS, since these two

terms are considered as the dominating terms that determine

the high SNR regime performance of the coded modulation.

Table I presents three different coded modulations Ci, i =
1, 2, 3, each one defined by a mapping πi, i = 1, 2, 3 as de-

scribed in Figure 1 and a set of dc = 4 coefficients hk ∈ GF(q),

k = 1 . . . dc. These C’s have been chosen as follows: C1 uses the

DVB-T2 Gray mapping [18] and coefficients (α0, α9, α22, α37)

as proposed in [9]; C2 uses the same coefficients as C1 and

Mapping 2 (Gray mapping that maximizes SC(2
√
3) in DS).

Note that this corresponds to the worst case, or equivalently

the mapping that should show the worst performance for

the coded modulation, and it is considered for comparison

purposes. Finally, C3 is our proposed combination of mapping

and coefficients, i.e. Mapping 3 in Fig. 1 with coefficients

(α0, α8, α16, α42), obtained after an exhaustive search which

consists in calculating the two first terms of DS for a large

number of possible mapping/coefficients combinations. Note

that C3 significantly reduces SC(2
√
3). A reduction around

25% compared to the optimised NB-LDPC code in [9] ( C1
) and around 58% compared to C2. This reduction should

have a positive impact on the NB-LDPC coded modulation

performance as we shall see next.

TABLE I: First terms of DS for coded modulations C1, C2 and

C3
Code Mapping σ Coeff. of (1) SC(2

√
3) SC(2

√
4)

C1 {5, 4, 3, 2, 1, 0} α{0,9,22,37} 516,096 3,868,672

C2 {3, 0, 2, 1, 5, 4} α{0,9,22,37} 909,312 2,910,208

C3 {4, 2, 1, 0, 5, 3} α{0,8,16,42} 385,024 3,499,008

VII. SIMULATION RESULTS

We first consider the performance of a single parity check

code of size dc = 4 in GF(64) associated to a 64-QAM

modulation for coded modulations C1, C2 and C3. Fig. 2 presents

curves that correspond to the Union Bound calculation with

SC(2
√
3) and SC(2

√
4), i.e. the first two terms in DS, as

well as the Maximum Likelihood (ML) decoding performance

curves expressed in Frame Error Rate (FER), i.e. Monte-Carlo

simulations with a stopping criterion of 100 errors. From this

figure we can first observe that the Union Bound is an accurate

approximation for SNR values greater than 16 dB and becomes

an exact bound in the high SNR regime region starting from

about 20 dB.
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Fig. 2: Union Bound and FER performance for the Single Parity

Check (SPC) coded modulations C1, C2 and C3.

We now consider a regular GF(64)-LDPC code of length

N = 48 symbols, with dv = 2, dc = 4 (coding rate 1/2).

The positions of the non-zero matrix coefficients are the one
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proposed in [9], the mapping and the coefficient values are

those in Table I which are randomly assigned to the non-zero

positions at each row in the matrix, i.e. for a single check node.

We consider the L-Bubble EMS decoding algorithm [19] [20]

with a number of significant values nm = 25 and 20 decoding

iterations 1. The demapping step follows the principle described

in [22] for simplified intrinsic Log-Likelihood Ratio generation.

Fig. 2 shows that C3 outperforms C1 and C2, specially in the

high SNR regime region. To be specific, a gain of 0.2 dB (0.15

dB) at a FER = 2×10−8 with respect to C2 (C3) is achieved with

the proposed solution. Note that this performance gain does

not entail any additional complexity at the transmitter nor at

the receiver compared to existing schemes, as the enhancement

comes from the matrix construction and the Gray mapping

choice. Also note that even if the proposed approach is based

on an exhaustive search to optimise the DS properties of the

coded modulation, this step is performed only once during the

code design.
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Fig. 3: Decoding performance of a N = 48 GF(64)-LDPC code

with coded modulations C1, C2 and C3.

VIII. CONCLUSION

In this paper we have considered the design of advanced

high-spectral efficiency communications with error-decoding

performance. We focused on high-order NB-LDPC coded mod-

ulations where the order of the Galois Field and modulation

order coincide. We based the NB-LDPC matrix optimisation

on the analysis of a single check node to find the best

GF(q) values for the dc coefficients for a given modulation

mapping. To show the good agreement between the theoretical

analysis and the simulation results, we calculated and compared

the Union Bound with the ML decoding curves. Finally, we

presented simulation results to show how the NB-LDPC coded

modulation designed with the proposed method outperforms the

state of the art.

1The coding matrices and the simulation software are available in [21]
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