Restricted Clustered Neural Network for Storing Real Data

Robin Danilo
Université de Bretagne Sud,
Lab-STICC
Lorient, France
robin.danilo@univ-ubs.fr

Lab-STICC
Lorient, France
laura.conde-

canencia@univ-ubs.fr

ABSTRACT

Associative memories are an alternative to classical indexed
memories that are capable of retrieving a message previ-
ously stored when an incomplete version of this message
is presented. Recently a new model of associative memory
based on binary neurons and binary links has been proposed.
This model named Clustered Neural Network (CNN) offers
large storage diversity (number of messages stored) and fast
message retrieval when implemented in hardware. The per-
formance of this model drops when the stored message dis-
tribution is non-uniform. In this paper, we enhance the
CNN model to support non-uniform message distribution
by adding features of Restricted Boltzmann Machines. In
addition, we present a fully parallel hardware design of the
model. The proposed implementation multiplies the perfor-
mance (diversity) of Clustered Neural Networks by a factor
of 3 with an increase of complexity of 40%.

1. INTRODUCTION

In conventional computer architectures, data storage is
performed by using indexed memories which require explicit
addresses to access contents. On the other hand, associative
memories allow retrieval of content from partial or noisy ver-
sion of input data. They are thus suitable for tasks such as
nearest neighbor search, mapping and set implementations,
and data intrusion systems.

Recently a new model of associative network (parallel im-
plementation of associative memory) known as Clustered
Neural Networks (CNNs) has been proposed [4, 5]. This
network is composed of a fully interconnected neuron layer.
When the distribution of messages is uniform, this model
offers a large storing diversity (number of messages stored)
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with a good message retrieval ability (probability to retrieve
a message). Based on binary units, binary connections and a
simple decoding algorithm, this associative network model
allows efficient fully-parallel hardware implementations [7,
8, 3]. However, like other models of associative networks [9],
diversity strongly depends on the distribution of stored mes-
sages. Recent work [2] proposed specific strategies to handle
non-uniform distributions. However, these strategies imply
to add material that increases the hardware complexity of
the architecture.

In this paper, we propose a new approach and its fully-
parallel hardware implementation to handle non-uniform dis-
tributions in CNN. Our method is similar to Restricted Boltz-
mann Machines [11, 6]: a hidden layer is added to the net-
work and only the connections between the hidden layer
and the input layer are permitted. The resulting network is
named Restricted Clustered Neural Network (R-CNN).

The paper is organized as follow: In section II, CNN and
non-uniform distributions are briefly discussed. In section
111, the proposed model and its fully hardware implementa-
tion are presented. In section IV, R-CNN is simulated and
compared with CNN. Section V concludes the paper.

2. CLUSTERED NEURAL NETWORK

To store messages composed of ¢ symbols over an alpha-
bet of size ¢, CNN consists of using a binary neural network
composed of ¢ parts (named clusters), each containing ¢ neu-
rons. They are capable of retrieving any of them when some
of the symbols are missing.

We denote by M the set of messages to store. Each mes-
sage m is composed of ¢ symbols mg,...,m.—1. A partially
erased version of m is denoted with m. Thus m is such that
either m; = m; or m; is unknown.

2.1 Principles

In the rest of this paper, n;; designates the neuron of the
cluster i associated with the j-th symbol of the alphabet and
v;; its value, v;; = 1 means that n;; is active while v;; =0
means that n;; is inactive. Each neuron can be connected by
a binary link to any other neuron in another cluster. These
binary links are stored in the adjacency matrix Wa(M). By



Figure 1: Graphical representation of CNN during
the storing process of the message m = (0,1, 3,0)

convention w;;)(;j/y = 1 means that it exists a binary link
between n;; and n ;.

During the storing process, each message m leads to the
activation of one neuron in each cluster in the following man-
ner:

U“—{ 1 1fmz:j
71 0 otherwise

(1)

The connections between the active neurons are then stored
in Wa(M). Fig. 1 depicts the graphical representation of
a CNN during the storage process of the message m
(0,1,3,0) (here ¢ = 4 and £ = 4). The neurons ngo, 111,
ns3 and n3o are activated and the stored connections are
represented by green lines. Storing distinct messages can
result in addressing multiple times the same connections, in
such case, the corresponding connection is not incremented?.
During the retrieving process, an incomplete message m is
presented to the network leading to the activation of neurons
following Eq. 1. As part of the symbols of m are erased,
some clusters of the network do not have any active neuron.
We call them neutral clusters. The neutral state of each
cluster is stored in a vector d, if d; = 1, then, the cluster i is
neutral. After this initialization phase, an iterative process
is performed in order to retrieve the entire message. This
process exploits two important properties of the network:

1. a unique neuron should be active in each cluster of the
network,

2. for one stored message, each neuron is connected with
all the other neurons of the message.

From these properties, the following activation rule is de-
duced: a neuron is activated if it is connected with one active
neuron from each non-neutral cluster. As shown in [3], this
activation rule can be performed by the following boolean
function:

t+1 t t t T -
viit = W vaIA N |V (wepin Avig) v did')
il #i 4’
where dj = A; vl;.
Note that after an iteration, several neurons may be ac-
tivated in one cluster. For this reason, the process iterates

? (2)

!Note that the connections in the network are binary.
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until eventually only one neuron remains active in each clus-
ter.

Due to the structure of the network, the memory cost of
storing Wa (M) is given by:

—1)¢?
costcNN = % (3)
The performance of CNNs are evaluated in terms of diversity
and message retrieval ability. The diversity is the number
of messages that are learned in the network. The message
retrieval ability is the probability to retrieve m from m.

2.2 Non-Uniform Distribution

CNNss offer their maximal diversity when messages to store
are uniformly distributed. Real-world data lead to a signif-
icantly lower diversity. Indeed, a non-uniform distribution
results in a more frequent occurrence of some symbols and
thus an overuse of some neurons in a cluster.

In a CNN, symbols are directly connected together, am-
plifying the adverse effects of the distribution of these mes-
sages. Indeed, an overused neuron will be connected with
another overused neuron and so on. This phenomenon has
been well studied in [2] and some solutions have been pro-
posed to deal with non-uniform distributions.

To illustrate the problem of non-uniform distribution we
have compared the message retrieval ability of a CNN on
two data sets. The first one named "Yeast data set” [10] is
composed of biological data and contains 1484 instances of
8 real attributes including two constants. We take only the
6 non-constant attributes and quantify them in 64 intervals.
Each instance can be seen like a message of 6 symbols over an
alphabet of size 64. The second named ”Uniform data set”
is composed of 1484 random messages of 6 values between
0 and 63 uniformly distributed. For the two data sets, the
resulting network is composed of 6 clusters of 64 neurons.

For the two data sets, every message (or instance) is first
stored in the network. Then, one message is randomly cho-
sen, two symbols are erased before being provided to the
network that must retrieve the erased symbols. This test is
repeated 10000 times and the error rate is computed. For
the uniform data set, the error rate is equal to 0.3669, while
for the Yeast data set the error rate is equal to 0.905.

2.3 Strategies

In [2], three strategies have been proposed. The first
(Strl) consists of adding random symbols to extend the mes-
sages. These random symbols are associated with hidden
clusters (which are not part of the message) to support the
input clusters (which are part of the message). The network
is thus composed of hidden and input clusters fully intercon-
nected. The second strategy (Str2) is based on increasing
the size of clusters instead. Thus a symbol is not associ-
ated with a unique neuron in a cluster but with a group of
neurons. During the storing process, each time the symbol
occurs, one of the corresponding neurons is chosen at ran-
dom to be its representation. During the retrieving process,
the occurrence of one symbol leads to the activation of sev-
eral neurons in a cluster. The last strategy (Str3) consists of
using Huffman lossless compression. The authors thus asso-
ciate the most frequent symbols with a lot of corresponding
neurons whereas least frequent ones are associated with few
neurons.



In [2], the three strategies have been simulated for a Gaus-
sian distribution. Strl gives poor performance compared
with the two others. For Str2 it is necessary to multiply by
4 the number of neurons in each cluster to reach the perfor-
mance of the uniform distribution. As a consequence, the
total amount of memory needed to store Wa (M) is multi-
plied by 16. Str3 offers the best results for the same amount
of memory. However, the drawback of Str3 is that it is nec-
essary to preprocess the data before the use of CNN.

3. RESTRICTED CLUSTERED NEURAL
NETWORK

In this section we propose a new approach deal with non-
uniform distribution. The strategy consists in associating a
hidden message randomly generated to the input message.
Like the random symbol strategy, we add hidden clusters
to the network for the hidden message but instead of using
a fully connected CNN we only have connections between
the input clusters and the hidden clusters. Thus, when a
partially erased message is presented to the network, the
hidden message is first retrieved and is then used to retrieve
the input message. This procedure is similar to restricted
Boltzmann machines and the resulting network is named
Restricted CNN (R-CNN). Fig. 2 depicts a graphical repre-
sentation of a R-CNN.

3.1 Principles

The number of hidden clusters ¢" and the number of neu-
rons per hidden cluster £ must be chosen by the designer
depending on the application specification (intended diver-
sity). Neurons of the input and hidden layers are noted by
nﬁ}’ and n?j respectively. In a R-CNN, a neuron of one layer
can only be connected to neurons of the other layer. The
connections are stored in the adjacency matrix Wgr(M), by
convention, w,;yin(y,;y» = 1 means that a binary link exists
between n!7 and nl; i

During the storing process, each new input message m"
is associated with a randomly generated hidden message m".
m™ leads to the activation of one neuron in each input clus-
ter while m" leads to the activation of one neuron per hid-
den cluster. The connections between the active neurons of
the input layer and the active neurons of the hidden layer
are then stored in Wr(M). Fig. 2 depicts the graphical
representation of a R-CNN during the storing process of
the input message m™ = (0,1,3,0), the hidden message
m" = (0,2,0,3) is associated to the input message. The
neurons niy, ni, n¥%. nit. nhy, nly, nhy, nbs are activated
and the stored connections are represented by green lines.

During the retrieving process, an incomplete input mes-
sage '™ activates neurons in the input layer. A part of
the clusters of the input layer are neutral due to the erased
symbols of . Then an iterative process is performed in
order to retrieve the entire message. This process is divided
in two steps:

1. activation of the neurons of the hidden layer from the
input layer

2. activation of the neurons of the input layer from the
hidden layer
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Figure 2: Graphical representation of R-CNN dur-
ing the storing process of the message m = (0,1, 3,0)

The neurons are activated by the following boolean func-
tions:

vzhj t+1 = /\ \/ (w(i/j/)m(ijyl A U::/rlj't) \% di? ¢ ) (4)

il 3’

in t
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where di* *

in t+1 h t
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Note that after the first step, each hidden cluster has at least
one neuron activated and cannot be neutral.

Due to the structure of the network, the memory cost of
storing Wg(M) is given by:
(6)

h sk
costr_conN =chl.c A",

3.2 Proposed Architecture

A fully parallel hardware implementation of R-CNN is
proposed in this section. First, the generation of random
messages for the hidden layer is explained. Then, the storing
and activation modules are presented.

3.2.1 Random Message Generation

The messages generated for the hidden layer must be uni-
formly distributed. For that, the low-complexity simple al-
gorithm proposed in [1] is used. With this algorithm, instead
of dividing the set of neurons of the hidden layer into equal
clusters, the size of each cluster is chosen to be relatively
prime with each other. Relatively prime means that the
greatest common divisor is equal to one. The size of the
cluster i is % and the value assigned to this cluster is m!.
During initialization, the value O is assigned to each cluster,
thus the first message generated for the hidden layer is a ze-
ros vector. Then, a new message is generated by assigning
to each cluster the value computed from:
=(ml*+1) (mod £}).

mi (7)
Tab. 1 shows an example in which the hidden layer is divided
in 3 clusters of sizes £} = 3, (} = 4, ¢% = 5. Each symbol
is represented in a cell under its integer form on the first
line and under its equivalent one-hot encoded form on the
second line. The interests of such algorithm are:



o 3 4 5

mg | ml my

ho 0 0 0
001|0001|00001

h1 1 1 1
010|0010| 00010

h 2 2 2 2
100[0100|00100

h 0 3 3
001]1000|01000

4 1 0 1
m 010[0001|10000

hs 2 1 0
100[0010|00001

e 0 2 1
001|0100|00010

h T 1 3 2
001|1000|00100

h s 2 0 3
m 010|0001]|01000

h o 0 1 1
m 100|0010|10000

mh 10 1 2 0
001|0100|00001

mh 11 2 3 1
010|1000|00010

Table 1: Exemple of messages generated for the hid-
den layer

1. it automatically produces uniformly distributed mes-
sages,

2. it maximizes the Hamming distance between the mes-
sages produced,

3. it is easy to implement by using shift registers.

The design of the hidden layer is done as follow: first the
number of hidden neurons N and the number of hidden
clusters ¢” are chosen, then, the size ¢! of each hidden cluster
is determined. To determine the size of hidden clusters the
mean size is first computed €%, = IZT and ¢" — 1 prime

numbers are chosen around £%,.,,, to be the sizes of the first
¢" —1 hidden clusters. The last size is equal to N® minus the
sum of the first " —1 sizes. For example, for N* = 1536 and
=6, 0", .., =256, the " —1 first sizes could be £} = 241,
0} = 251, £ = 257, £F = 263, £} = 269 and the last size
should be £2 = 1536 — 241 — 251 — 257 — 263 — 269 = 255.
This procedure guarantees that each size is relatively prime
with each other.

3.2.2  System Level Architecture

Fig. 3 depicts the system level architecture of a fully par-
allel hardware implementation of the R-CNN. The system
is composed of two neuron layers (input, hidden) each one
divided in ¢ and ¢* clusters respectively. If the input clus-
ters are of equal sizes, each hidden cluster ¢ has a specific
size ¢% in order to generate random messages uniformly dis-
tributed. During both storing and retrieving process, mes-
sages of length k.c (k = log2({¢)) are cut into ¢ symbols
of length k and provided to the Local Maping Modules
(LMMs). LMMs realize a one hot encoding of symbols into
vectors of £ bits where only one bit is set to one. These ¢
vectors of £ bits are then stored in the neurons state registers
of the input layer.
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Figure 3: Simplified scheme of the system level ar-
chitecture

During the storing process, a set of messages is stored in
the network by storing the connections between the input
layer and the hidden layer in a memory array. This memory
array is divided in c.c® memory blocks composed of mas-
sively parallel on-chip registers (flip-flops) for simultaneous
access. One block is used to store the connections between
an input cluster and a hidden cluster. This operation is done
by using the storing module. During the retrieving process,
incomplete messages are provided to the system and the
stored connections are used to retrieve the erased symbols
by alternating between the computation of the values of the
hidden state registers and the input state registers. This
operation is done by using several activation modules (one
per neuron).

3.2.3 Storing Module

During the storing process, each input message is associ-
ated with a hidden message generated with the algorithm
proposed in [1]. To generate these hidden messages, each
hidden cluster ¢ is provided with a shift register whose size
corresponds to the size £ of the cluster. For the first hid-
den message, each shift register has one register set to one
and the others to zero. After the storage of each new input
message, the bit set to one is shifted.

Fig. 4 depicts the storing module for one memory block
between an input cluster and the ¢*" hidden cluster. The
input cluster is composed of a set of £ neurons state registers
while the hidden cluster is composed of a shift register of size
£, Between them, a memory block of size £ x €%, where each
row stores the connections of one neuron of the input cluster
with all neurons of the hidden cluster. During the storing of
an input message, the row of the active neuron of the input
cluster is selected with the MUX, and an OR array is used to
accumulate the value of the shift register with the previous
connections.

3.2.4 Activation Module

During the retrieving process, the activation modules are
used to compute the values of every state registers of the
input and the hidden layers. Fig. 5 depicts an activation
module for the hidden layer (left side) and for the input
layer (right side). This activation module implement Eq. 4
and 5.
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Figure 4: Block diagram of the storing module be-
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Figure 5: Logic diagram of the activation rule, for
the internal layer on the left and the input layer on
the right

4. RESULTS

In this section we evaluate the memory cost and the re-
trieval ability of R-CNN for a given diversity. A compar-
ison is done with CNN+Str2 from [2] that is the strategy
which offers the best performance without data preprocess-
ing. Then, the proposed architecture is compared with the
fully hardware implementation of CNN proposed in [8] and
based on Eq. 2.

4.1 Message Retrieving

The "Yeast data set” is used to test the two strategies,
R-CNN and CNN+Str2. The 6 non-constants attributes
are taken and quantified on 64 intervals. Each instance is
thus a message of 6 symbols over an alphabet of size 64.
The entire data set is first learned in the network, then one
message (or instance) m is chosen at random, two symbols
are erased to produce m which is sent to the network in
order to retrieve m. This operation is repeated 10000 times
and the message retrieval ability is evaluated by computing
the error rate (number of successful message retrieval over
the total number of trial).
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Figure 6: Error rate as a function of memory cost
for R-CNN and CNN+-Str2

There are several ways to increase the message retrieval
ability of R-CNN: increase the size of the hidden clusters,
increase the number of hidden clusters, use Str2 on the in-
put layer. From our experiments, the greatest diversity is
obtained when the size of hidden clusters is increased and
we only show results for this solution.

Fig. 6 shows the error rate as a function of the memory
cost for several configurations of CNN+Str2 and R-CNN.
The memory cost is computed for CNN+Str2 and R-CNN
with Eq.s 3 and 6 respectively. For R-CNN, the number of
hidden clusters ¢* are fixed to 6 and the network is simu-
lated for different numbers of neurons in the hidden layer.
The mean size €., of the hidden clusters is reported on
the figure. For CNN+-Str2, different sizes of clusters are sim-
ulated, these sizes are reported on the figure. We can see
in Fig. 6 that R-CNN offers better message retrieval ability
than CNN+Str2 for a lower memory cost.

4.2 Complexity Analysis

We know compare the area complexity of the proposed
architecture with the CNN implementation proposed in [8].
This comparison is done in NAND gate eq. (based on STMi-
croelectronics 90nm cell library). Two equivalent configura-
tions of networks are chosen: a CNN with ¢ = 6, { = 64
and a R-CNN with ¢ = ¢" = 6 and £ = £}, = 64. Both
networks need 4 cycles to retrieve a message.

Tab. 2 presents the area cost for the two implementa-
tions. The total cost divided in three parts: the cost of
registers used for memory array and neurons, the cost of
storing module and the cost of retrieving module. For the
CNN implementation, the major part of the area (46%) is
used for registers, then the storing module (33%) and fi-
nally the retrieving module (21%). The high register cost is
due to the fact that the implementation [3] uses two times
more memory elements for the memory array than needed
(from Eq. 3). The R-CNN implementation uses globally a
greater area than the CNN implementation (+43% for the
total area). The largest increase comes from the retrieving
module (+127%). This is due to the number of neurons two
times higher in a R-CNN than in a CNN.

If both networks give the same performance for uniform
distribution, the area overhead paid for R-CNN is compen-
sated by better performance for non-uniform distribution.
With the CNN configuration studied here, only 25 instances
of the "Yeast data set” can be stored with an error rate under
0.01, whereas the number of instances which can be stored in



CNN [3] R-CNN
Registers | 1.36 x 10° | 1.63 x 10° (+-20%)
Storing | 0.97 x 10° | 1.17 x 10° (+20%)
Retrieving | 0.62 x 10° | 1.41 x 10° (+127%)
Total 2.95 x 10 | 4.01 x 10° (+43%)

Table 2: Area of CNN (¢ = 6 and ¢ = 64) and R-CNN
(c= '=6and ¢t=10"_,, = 64) in NAND gate eq.

the R-CNN for the same error rate is equal to 76 (multiplied
by a factor of 3).

5. CONCLUSION

In this paper, a new model of associative memory named
the Restricted Clustered Neural Network (R-CNN) has been
introduced. This model is based on the Clustered Neural
Network (CNN) and uses Restricted Boltzmann Machine
principles in order to increase the diversity of CNN on non-
uniform distributions of input messages. A comparison was
done between the proposed model and the CNN in terms
of memory usage and error rate for a message retrieval task
on real data (non-uniform distribution). It has been shown
that the R-CNN outperforms CNN for this task with a lower
memory usage.

A fully parallel implementation of R-CNN has also been
proposed. This implementation has been compared with an
equivalent implementation of a basic CNN. Although the
area cost is more important for R-CNN, the additional cost
(+43%) is largely compensated by better performance (di-
versity is multiplied by a factor of 3).

The storing algorithm proposed here is simple and easy
to implement in hardware. It consists of associating a hid-
den message uniformly distributed with the input message
(non-uniformly distributed). In future work, we will study
smarter storing algorithms which choose the hidden message
function of input messages.
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