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1. INTRODUCTION

Human brain is a powerful machine able to realize complex operations like abstracting,
memorizing, feeling, reasoning, controlling, or solving problems. The enormous mem-
ory capacity of the brain, as well as its power efficiency and processing capability are
the main features that interest the information technology community. In this research
field, neuroscientists have explored several computational models of brain processing,
providing the promise of practical applications in many domains (e.g., vision, naviga-
tion, motor control, decision-making, etc.). These developments have led to different
approaches [Nageswaran et al. 2010] such as neuromorphic VLSI [Mead 1990; Furber
and Temple 2007], neuro-biological systems [Jiping et al. 2001; Giotis et al. 2011;
Theodorou and Valero-Cuevas 2010] and brain-inspired algorithms [FrostGorder 2008;
Jhuang et al. 2008; Soo-Young 2007].

Levels of abstraction used in these research works range from biophysical up to
theoretical models through neural-circuit, application-specific and generic models (see
Nageswaran et al. [2010] for more details). Our concern is on generic models that rely
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on the fact that brain-circuits have a template architecture where similar circuits are
replicated for processing and learning various sensory signals [Hawkins and Blakeslee
2004; Granger 2006]. Most of the generic models do not incorporate detailed neural
mechanisms (i.e., spikes, oscillations- - -) but rather consist of algorithmic considera-
tions such as clustering or associative memory. Indeed, inside the brain, information
processing is a multilevel process that mostly relies on pattern matching and sensory
association rather than calculation and logic inference. Brain creates invariant rep-
resentations from always changing inputs through a complex hierarchical associative
memory organization [Kandel et al. 2013]. Unlike a conventional computer, the brain
does not rely on programmed instructions, but rather on a complex process to learn,
store and retrieve information [Sandberg 2003; Hawkins and Blakeslee 2004]. In this
context, tasks like voice or face recognition can take a considerable advantage by using
content-based access techniques offered by associative memories, compared to conven-
tional computer systems in which such processing are complex to realize. Moreover,
these associative memories are robust against input noise and have a practically con-
stant retrieval time independent of the number of stored associations. These memories
have been intensively studied in the past (e.g., Kohonen [1977], Palm [1980, 2013], and
Willshaw [1971]) with many successful applications (e.g., Sudo et al. [2009], Perfetti
and Ricci [2008], and Annovi et al. [2013]).

Abstract neural networks can be used to design neural associative memories [Palm
1980, 2013] and to perform learning and association function following the Hebb’s
Theory [Hebb 1949]. Associative memories can in turn be used as computational mod-
els for cortical circuits where the computation function allows learning and retrieving
information. Several neural-network based models have been proposed to design asso-
ciative memories like Hopfield networks (HNN) [Hopfield 1982], Boltzman machines
[Ackley et al. 1985] or Kohonen maps [Kohonen 1977]. Those models create internal
states allowing to exhibit dynamic temporal behavior and to process arbitrary se-
quences of inputs. Hopfield networks have been defined in order to guarantee that its
dynamics will converge; they are very simple dynamic models that seem to offer an at-
tractive learning capacity. However, efficiency of such models/representations collapses
(to zero) as the amount of learned messages grows ad infinitum.

In this article, we introduce a new fully binary neural network model that signif-
icantly reduces the complexity of the original GBNN model, and that allows design-
ing efficient hardware architectures without loss of performance. For that purpose,
the arithmetical-integer semantic of the original GBNN has been transformed into a
logical semantic. Further optimizations are proposed to tackle area through reduced
memory complexity and serialized communications. The memory reduction halves the
storage requirements (i.e., the memory footprint) and reduces the complexity of the
learning process. The communication serialization in the neural network leads to clock
frequency optimization and strong area reduction while guaranteeing the same func-
tionality as in the original GBNN.

This article is organized as follows: Section 2 introduces the GBNN model. Section 3
introduces the new fully binary model that we propose. Section 4 compares the perfor-
mance of the original GBNN and the proposed new model through simulation results.
This section also compares hardware implementations of the original GBNN and the
proposed new model in terms of area and clock frequencies through synthesis results
on both FPGA and ASIC. Finally, Section 5 draws conclusion and future work.

2. GBNN: A SPARSE NEURAL NETWORK WITH LARGE LEARNING DIVERSITY
2.1. Principle

A GBNN is an abstract neural network model based on sparse clustered networks that
can be used to design associative memories. The principle of GBNN is to gather sets of
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neurons in clusters. Neurons (also called fanals) that belong to the same cluster cannot
be connected to each other (this principle is called sparcity). However, any neuron of
a given cluster can be connected to any neuron in any other cluster. More precisely,
the network consists of N binary neurons arranged into C equally-partitioned clusters
and each cluster includes L = N/C neurons. Each cluster is associated through one of
its neurons with a portion of an input message to be learned or retrieved. A message
m of K bits is thus divided into C clusters each with L fanals and the length of the
submessage associated with each cluster is X = K/C = loga(L). During the learning
phase, the network memorizes that the set of activated neurons (i.e., the set of neurons
that constitute the input message) are connected to each other and form a clique.
Unlike Hopfield networks, GBNN uses binary weighted connections between neurons
to record if a connection exists or not. Then, to memorize a connection that exists
between one neuron i of cluster j, n; ; and one neuron % from cluster g n; o (with j #
2), each neuron stores locally the value “1” in its corresponding synaptic weight w (i.e.,
Wi, j)kg = “1”in cluster j and w ) j) = 11in cluster g). All the weights are initialized to
0 that 1s, no message has been learnt before training. The retrieving process is based on
a Scoring step and a Winner Takes All (WTA) step to detect which neuron, in a cluster
associated to a missing part of the message, is the most “stimulated” one. Equation (1)
defines the original scoring function used to compute the “score” of a neuron n; ; at

time instance ¢ + 1, s,tfjl This score depends on all the values of the other neurons &

from all the other clusters g (i.e., nz¢) in the GBNN computed at time instant ¢ (i.e., in
the previous iteration of the network) and on the corresponding synaptic weights (i.e.,
value of w4 j)) that have been stored during the learning process.

vie[0.L—1],je[0.C-1],

Cc-1 L-1
t+1 .. ¢
Smy < Z Z Wik,g)i,j) * V (nk,g) : (1)
g=0 and g#j k=0

The WTA Equation (2) allows defining in each cluster ¢, the neuron n; ; or the group
of neurons to activate, that is, the neuron or the group of neurons that achieves the
maximum score S,

t+1 _ t+1
Smax.Cj - 0;22'[)1(_1 [Sni,j ] (2)

. 1_ 1
Ut+1(ni ) — 1 lf srtzjj - Srtn-Zx,Cj
'J 0 otherwise.

The network converges in a few time instances, called iterations. At the end of the
process, the clusters which originally had no selected neuron are provided with the
selection of a neuron or a group of neurons. The answer of the network is then defined
by the set of neurons that were chosen to represent each single cluster.

Figure 1(a) presents a GBNN neural network based on three clusters of three
neurons. Let us consider that the network has learned three messages represented
by cliques: (ny,0, no,1, no,2), (n2,0, n1,1, no,2), and (ng,p, ne,1, np.2). These cliques are repre-
sented by using a binary synaptic-weight matrix (also called “Interconnection matrix”)
thanks to a classical representation of adjacency matrix as depicted in Figure 1(b)
Each line of the matrix contains the weights storing the existence -or not- of con-
nections between the neurons of a cluster and the neurons of other clusters. There
is no element in the diagonal since the neurons of a given cluster cannot be con-
nected between them. Note that this means that these connections are not repre-
sented in the synaptic weights matrix (i.e., the diagonal of the matrix is missing).
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Fig. 1. Pedagogical example.

For example, the message (n 9, ng,1, no,2) is memorized in the matrix through weights
W(1,0)(0,1) = W(1,0)(0.2) = W(0,1)(1,0) = W(0,1)(0.2) = W(0,2)(1.0) = W(0,2)0,1) = 1.

Next, if a partial message (_, ny 1, ng 2) is presented to the network, where _denotes a
missing symbol (i.e., submessage associated to cluster 0 is missing), then the network
must take a decision. The values of the known neurons are first activated (i.e., the
values of the neurons associated to known submessages are set to 1) and the values of
all the neurons are then broadcasted through the network. At the end of the scoring
step, neurons n; y and ngy in cluster ¢y have a score of 1 and 2, respectively. Indeed,
neuron ng g receives two non-null values since it is linked to two active neurons (i.e.,
neurons n; ; and nge) while neuron n; ¢ receives only one non null-value (from neuron
ng2). Hence, at the end of this iteration, neuron nyy will be selected as the activated
neuron by the Winner Take All algorithm.

As shown in Gripon and Berrou [2012], the original scoring function presented in
Eq. (1) may provide wrong answers. Indeed, a cluster with an ambiguous selection
(i.e., several neurons selected) has potentially a more important impact on the scoring
process than that of an unambiguous cluster. This drawback can be easily explained
from our pedagogical example. Let us consider that the partial message (, _ ng2) is
presented to the network. At the end of the first retrieving iteration, neurons n;j,
N9, No,1, N1,1, N2,; and neuron ng s are selected for the next iteration. Then, during the
second iteration neuron, ng receives three inputs, meaning that this neuron is linked
to three activated neurons (i.e., neurons n;; and ngi; neurons ngg) while neuron
n1,o that belongs to the same cluster receives only two inputs. Hence, at the end of
the second iteration, neuron ngy is selected by the Winner Take All algorithm. This
arbitrary choice is the consequence of the retrieving process and leads in this case to a
wrong answer since there is no nonambiguous answer when the network is stimulated
only with neuron ng o.

Gripon and Berrou [2012] propose to modify Eqgs. (1) and (2), respectively, into Egs. (3)
to ensure that the score of a neuron will not be incremented if it receives two or more
signals from the same cluster and (4) to ensure that the value obtained by the Winner
Take All algorithm in a given cluster will never exceed C-1 when all the neurons in
clusters corresponding to missing symbols are selected during the initial iteration.

Vie[0.L-1],je0.C-1],
Cc-1

t+1 t

ST <« max (v'(nge)*w i 3

) OOSkELfl( () * Wik.g)i.j)) @)
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1 lf St 1 = C — 1
t+1 N j
— .J 4
U(”tlj) 0 otherwise. ( )

In Gripon and Berrou [2011, 2012], GBNN has been shown to be more efficient than the
existing recurrent clustered-neural networks in terms of diversity (number of stored
words), capacity (total number of stored bits), efficiency (ratio of the number of stored
data to the number of total storage data) or error rate for the same memory used.

The network density refers to the ratio between the number of messages stored and
the maximum number of messages that can be stored. A density close to 1 would lead
to an overloaded network, which cannot retrieve learnt messages. On the contrary, a
density close to 0 corresponds to a network that contains only a few cliques and that is
thus able to retrieve messages even in the presence of strong erasures.

Considering that the messages to learn are uniformly distributed, the density of the
network after the learning of M, M > C messages, is close to

1I\Y M
d=1—<1—§> wﬁforM«Lz. (5)

Given this density, the probability P, that the correct message will be retrieved, if c,
out of the C clusters are not provided with information, is

P, =1—(1—dCc)LDre (6)

Given this probability, the diversity M,,.x of the network, that is, the number of
messages that the network is able to learn and retrieve is given by

log (1 ~(1-a- Pe)m)c‘lﬂ

Mmax(Pe) = (7)
log(1 - £z)
Finally, given the diversity, the capacity of the network is defined as
Cap = C.logy (L) .M (P,). (8

For instance, targeting an error rate of 102 one can learn up to 1.5 x 10* messages
of length 64 (C = 8 and L = 256) using a GBNN, which corresponds to 9.6 x 10° bits
learnt. Compared to Hopfield neural network with the same amount of memory used
(this corresponds to 800 neurons and 50 learnt messages) and half its input bits erased,
this represents an increase by a factor of 300-in diversity and 24-in capacity, for the
same error probability. More generally, it has been demonstrated that the diversity
increases as the square of the number of neurons for GBNN, whereas the law for a
HNN is only sub-linear. More details and complete formula can be found in Gripon and
Berrou [2011, 2012].

2.2. Hardware Architecture

Jarollahi et al. [2012] introduced a fully parallel hardware implementation of the
GBNN proposed in Gripon and Berrou [2011] as an associative memory. The main
blocks that compose a cluster are a Learning Module and a Decoding Module. The
learning module stores the weights between every couple of neurons, that is, L?*(C-1)
values since each neurons can be connected to L*(C —1) distant neurons and each cluster
contains L neurons. The decoding module realizes the scoring and the WTA steps.
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Fig. 2. GBNN architecture.

Figure 2 presents a simplified GBNN architecture with its main components: a set
of clusters of neurons decomposed in three modules (i.e., a decoding module, a memory
module storing the synaptic weights and a computing module to process the WTA
algorithm) and a crossbar interconnection network dedicated to the interchanges of
neurons values between the clusters.

During the learning process, each cluster receives the K-bit binary word to be stored
in the associative memory. The decoding module first splits this input word in C sub-
words. Then, the subword corresponding to the local cluster is used to determine which
neuron of this cluster is involved in the message, that is, which neuron must be acti-
vated (i.e., the selection of the line in the memory of the local cluster). The remaining
subwords are used to determine which distant neurons (i.e., from distant clusters)
must be connected with the locally activated neuron (i.e., column selection in the local
cluster memory). Then, in order to store the clique, the memory is updated with the
corresponding selected synaptic weights.

During the retrieving process, each local neuron receives the values of all distant
neurons (i.e., L2%*(C — 1) binary values) which are used with the L2*(C — 1) local
synaptic weights to process the Scoring step as described in Eq. (1). Then, at the end of
the scoring step, the WTA step elects a neuron, or a group of neurons as described in
Eq. (2). Local neuron values are updated with this new information and broadcasted
to all distant neurons of the GBNN.

Based on this architecture, a GBNN composed of C = 8 clusters, with L = 16 neurons
each, has been implemented on an Altera Stratix IV FPGA. The authors found that logic
dedicated to computations (scoring and WTA) and learning circuitry represents more
than 2/3 of the total area, and the rest is for storage elements. The memory required
to store the binary weights accounts for the major part of the total memory usage, that
is, more than 90%. As we will show later, due to computation complexity and memory
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footprint, the maximum size of the network that can fit into the target FPGA contains
16 clusters of 16 neurons each, that is, 256 neurons. In this architecture, at each cycle
each neuron accesses to 240 weights and broadcasts its value to the 240 neurons which
do not belong to its cluster.

This means that 61440 (i.e., C*L**(C — 1)) binary weights must be accessed concur-
rently at each cycle and 61440 additional signals are required to exchange neurons’
values leading to place and route issues.

2.3. Discussion

As described in the previous subsections, the GBNN learning process creates neural
cliques, where each neuron in the clique belongs to a different cluster. GBNN model
strongly enhances performance of associative memories compared to Hopfield net-
works. Unfortunately, straightforward GBNN implementation leads to complex hard-
ware architectures whose area and timing performances do not scale well with the size
of the networks. In other words, this means that complex networks can be designed on
ASIC at a prohibitive cost or that only very small networks can be designed by using
large and thus expensive FPGA. In the following section, we introduce optimizations of
this model following three principal axes: memory, computation, and communication.
Hence, in order to optimize the complexity of the retrieving process, the traditional
GBNN model is first transformed into a full binary one which allows both simplifying
scoring computation and removing WTA step and thus to reduce the area. Second,
we propose to memorize only half of the synaptic weights which allows reducing the
number of storage elements and the cost of the learning logic. Finally, to further re-
duce the area, we serialize the communications. All the enhancements proposed in
this article aim at easing the process realized by the neurons and also optimizing
hardware implementation while keeping the functionality and the performances (i.e.,
capacity, density...) of the original GBNN model identical. As it will be shown in the
experiments, coupling these optimizations leads to the design of smaller hardware ar-
chitectures for a given GBNN size which allow to scale-up and to implement larger
associative memories.

3. PROPOSED SIMPLIFIED NEURAL NETWORK
3.1. Full Binary Computation

GBNN models proposed in Gripon and Berrou [2011, 2012] rely on binary connections
between neurons of different clusters and arithmetical computations to calculate the
values of neurons and to realize the winner-take-all algorithm (see formulas (1), (2)
and (3), (4) in the previous section). We propose to replace all the arithmetical-integer
computations by logical equations, that is, to define a full binary neural network model.
This property, which has first been introduced in Chavet et al. [2012] and later partially
used to design content addressable memories in Jarollahi et al. [2013], is detailed in
this section. The proposed fully binary model allows removing both the WTA step and
achieving the same performances as the enhanced GBNN model [Gripon and Berrou
2012].

During the learning process, each new message to learn leads to record a new neural
clique. As in the original models, memorizing a clique in a fully binary model means
storing the connections between neurons of the clique itself (i.e., the values “1” in
the corresponding memorizing elements). However, the message retrieval described in
Gripon and Berrou [2011] is modified to take advantage of the fact that a neuron can
be active only if it potentially belongs to a clique, that is, is connected to at least one
active distant neuron in each active cluster. A cluster is said to be active if it has at
least one active neuron.
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The main principle is the concept of the “unanimous vote”: a neuron n; ; is active in
a given cluster j (i.e., ¥(n; ;) = “1”), if at least one active neuron in each other active
cluster (i.e., “distant active neurons”), indicates that it is connected with neuron n; ;
(i.e., during the learning process a connection with n; ; has been recorded for each of
these distant neurons).

This approach changes the design of the decoding module. Instead of performing a
WTA based on integer values, it is possible to only use Boolean equations to compute
the value of each neuron without loss of generality. Then, Eqgs. (1) and (3) are not
useful anymore and can be replaced by the Boolean equation (9). The unanimous vote
is represented by using the conjunction of all the votes.

Cc-1 L-1

(t:zi)_ /\ \/ﬁ(tnk_g)/\w(i,jxk,g) SR 9)

k=0,k#i g=0

In Eq. (9), z?(t,:: 1) represents the value #(#; ;). at time ¢ 4+ 1 of neuron »; ;. It is obtained

as the logical conjunction of the value of all others neurons z?fnkg) connected to n; ;
(Wi j)kg) for all distant clusters (¢ = [0..C — 1] and & # i), if these neurons are active.
Then, additional elements must be added: as long as a given distant cluster is not
active (the corresponding part of the input message is missing), its participation to
the vote needs to be neutralized in order to avoid undesired side effects. This is called
transparency (cf. final Equation (10)).

Cc-1 L-1 L-1
1 _ ¢ o t
Vi) = A\ V D) N Wairkg) | V V Vme) | |- (10)
k=0,k+#i g=0 g=0

This last constraint is expressed in (10) by the last term of the expression (i.e.,
(\/L ! ﬂ(tn ))) It should be noted that all the sums and the products of the original

formula have been removed. Furthermore, the WTA disappears explicitly (compare
and select), because each neuron realizes it implicitly (vote).

As an example, let us suppose that the GBNN presented in Figure 1(a) is formalized
as a fully binary neural network; the synaptic matrix (cf. Figure (b)) remains the same.
If a partial message (_, ny 1, ng,2) is presented to the network, the network must take a
decision. The values of the known neurons are set to “1” and others remain “0”. Then
in an active cluster (e.g., cluster c3), the transparency part of the equation will result in
value “1”, so inactive clusters (e.g., cluster c¢) will not impact the evaluation of active
clusters:

¢0 ) 0 _0OvOov0—
ﬁ(no ) ﬂ(n 0) z‘}(nm) =0vOovO0o=1.
In an inactive cluster (in our example, cluster cg), the logical Equation (10) is able to
determine which neuron must be activated. In this case, since all the distant clusters
are active, then the corresponding transparency bit results in value “0”.
Logical Equation (10) is applied for all the neurons of inactive cluster ¢y of our
example.
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Hence, we obtain:

9 = (06 ) A woo.n) v (O ) Awoonn) vV (9,) A wooen)) v 0)

A (((?5‘3?0,2) A w(o,0><o,2>) Vv (19{,?1,2) A w(o,o><1,2>) v (ﬁfr?m A w(o,o>(2,2))) Vv 0)
= (((0A0)Vv(1A0)V(0A0))VvO)A(((1A0)V(0A0)V(0A0))VO)
=0

Iy = (O A waoon) v (00, A waoan) v (9, A waoen)) v 0)

A (B ) A wao) vV (96 ) Awaone) V (00 ) A waoe2)) v 0)
= ((0A1)v(1A0)v(0A0))VO)A(((1A1)V(0A0)V(0A0))VO)
=0

90 = (06 ) Aweoon) v (O ) Aweonn) vV (9, A weoen)) v 0)

A (((ﬁ(tr(z)oyz) A W2,000.2) V (19{,?12) Awe001,2) V (19(,?2‘2) Awe,0022)) V 0)
= g((O/\O)\/(1/\1)\/(0A1))vO)/\(((l/\l)v(O/\O)v(O/\O))vO)

At the end of the first iteration, the values of neurons n¢ ¢ and n; o are evaluated to
be “0” and the value of neuron ng o is evaluated to be “1”. Neuron ng is thus selected
and the network provides the right answer.

3.2. Reduced Memory

In order to determine if a given neuron is active during the retrieving process, it is
necessary to check if it is connected with already known active neurons in distant
clusters. To do so, it is proposed in the original GBNN models [Gripon and Berrou
2011, 2012] that each cluster learns and stores for each of its neurons the synaptic
weights (i.e., w in Eqgs. (1) and (3)) corresponding to the connections a neuron has with
all the neurons that belong to distant clusters. Hence, to learn that a given connection
exists between two neurons n;, ; and ng,¢ (i.e., neuron ¢ from cluster j and neuron % from
cluster g with j # g), two weights must be stored: first in cluster j where n;,; records it
is connected to ng,g (i.e., w; j)zg = 1) and next in the cluster g where ny,, records it is
connected to n;,; (i.e., we gy j) = 1). However, these two weights are always identical
since the corresponding connection is symmetrical. This property can be observed in
Figure 1(b) where the upper-right blocks of the synaptic matrix are the transpose of
the lower-left ones. It is thus not required to store twice the same values.

This optimization supposes that synaptic matrices are shared between clusters. How-
ever, storing only one synaptic weight per pair of neurons allows dividing the amount of
memory by two without any performances loss. Besides, in order to store synaptic val-
ues into the memory, learning logic resources are necessary (decoders, accumulators,
multiplexers: - - ). Memorizing half the information removes these computing resources
and then further reduces the cost of the architecture. The optimized synaptic matrix
will be referred as triangular matrix in the rest of the paper. Figure 3 illustrates for
each cluster of our example the locations that weights have once the triangular matrix
is used.

3.3. Serialized Communication

A fully parallel GBNN implementation, as proposed in Jarollahi et al. [2012], requires a
huge amount of wires to connect all the neurons and a large amount of computing logic
to process data concurrently. Indeed, in the GBNN model, a neuron n; ; from a given
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Fig. 3. Synaptic weight locations in triangular matrix.

C.

cluster j must be connected to all other neurons of all distant clusters. So, each neuron
n; j is connected to L*(C — 1) neurons. Since each cluster gathers L neurons, a cluster is

connected to L?*(C —1) neurons. Finally, if we consider all the clusters, the total number
of data exchanged and processed concurrently is C*L**(C — 1). In order to reduce the
complexity of both the interconnection network and the computing logic, data transfers
must be serialized (i.e., at each cycle the amount of concurrently exchanged information
must be reduced) and computations must be streamed (i.e., processing elements can be
reused across cycles). Serialization leads to considerable area reduction that enables
to scale-up complex GBNN architectures However, serialization of communications
increases the latency of an iteration. Nevertheless, if serialization is smartly designed
and implemented it can provide higher clock frequencies which finally can limit its
impact on the timing performance (see the results in Section 4.3).

Serialization can be either cluster-based or neuron-based. In a cluster-based scheme,
clusters take turns to broadcast the value of all their neurons. In a neuron-based
scheme, the clusters broadcast concurrently the values of one of their neurons (i.e., the
values of neurons that belong to the same cluster are successively broadcasted). In all
the cases, a cluster can compute partially the values of its neurons while receiving the
current values of distant neurons. These local neuron values are updated by sequen-
tially using neuron values originating from distant clusters. Computations end when
all distant neuron values have been received and local values are then defined. In the
cluster-based scheme a single iteration will take C cycles to complete, while it will take
L cycles in the neuron-based scheme.
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Figure 4 depicts an architecture where four buffers storing synaptic weights (i.e.,
sw.0, sw.1, sw.2, s.w.3) are used and where the required synaptic weight is selected
thanks to a set of multiplexers during the retrieving process. During the learning
step (respectively, retrieving) the input (resp. output) data (i.e., synaptic weights) are
sequentially stored in (respectively, selected from) buffers whose order is given for ex-
ample by a counter (the counter runs according to the Valid signal). As it will be shown
in the experiments section, the drawback of this design comes from the additional
multiplexers and associated control logic that lead to unacceptable area overhead.

In order to avoid this penalty, we propose a mechanism named flip-flop ring. Flip-flop
ring is a torus-connected shift register (see Figure 5). The size of the ring equals the
number of cycles needed to transfer information (i.e., C or L) depending on the selected
serialization (i.e., cluster or neuron, respectively). Hence, groups of synaptic weights
are no more stored in a set of independent registers but rather in flip-flop rings. The
output of the ring is connected to the computing logic removing all additional circuitry.

In this architecture, four buffers are still used to store synaptic weights. However
only one (2:1) multiplexer is required instead of the L — 1 (2:1) multiplexers of the
previous architecture (see Figure 4). Hence, during the learning step (the step during
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Fig. 6. Flip-flop ring for squared synaptic matrix and (a) neuron-based or (b) cluster-based serialization.

which cliques, that is, synaptic weights are stored in the memory), the input data is
stored in the first buffer and the other data are shifted in the ring. During the retrieving
step, data are shifted and output data is always read from the last buffer. After L = 4
cycles, the ring comes back in its initial state. The Valid signal is used to activate the
ring.

Figures 6(a) and 6(b) illustrate how flip-flop rings are used respectively for neuron-
based and cluster-based serialization when considering squared synaptic weight matrix
previously presented in Figure 1. From Figure 6(a), wherein only connections between
cluster ¢y and distant clusters are shown, it can be observed that after i cycles of the
retrieving process, all the clusters (see rows) have access to all the synaptic weights
of the connections their local neurons share with the ith neuron of distant clusters.
From Figure 6(b), wherein only connections between cluster ¢y and distant clusters are
shown, it can be observed that after i cycles of the retrieving process, each cluster will
have access to all the synaptic weights of the connections their local neurons share
with all the neurons of the ith distant clusters.

Flip-flop rings can also be combined with triangular synaptic weight matrices. How-
ever, data must be mapped in such a way to avoid any additional complex steering logic.
Indeed, triangular matrix is shared among clusters and clusters access two at a time
to the same synaptic weights. In a neuron-based serialization, this behavior can be
observed from Figure 3(a) that presents only weights shared by clusters ¢y and c;. Let
us consider the cycle during which all the clusters broadcast the value of their neuron
no. Then, cluster ¢ accesses to all the weights that are related to distant neurons ny,
that is, the first column in Figure 3(a). Concurrently, cluster ¢; also accesses to all the
weights that are related to distant neurons ng, that is, the first line in Figure 3(a).
Shifting data horizontally would be correct for c¢g but wrong for ¢; while shifting data
vertically would be correct for ¢; but wrong for .

The solution consists in mapping the data in flip-flop rings such that at each cycle
each cluster of a given pair can access to the right data at the right time. In this
way, all clusters can access to their data concurrently by reading always at the same
location to avoid any additional steering logic. For that purpose, let us consider two
L*L 2D-arrays named WEIGHT and RING. WEIGHT represents the matrix of synaptic
weights shared by two clusters and RING represents the set of L flip-flop rings of L
cells each. Let us consider two indexes N, M € [0..L — 1]. Then, by applying Eq. (11), it
is possible to compute where data must be mapped in flip-flop ring cells.

RING(M, N) = WEIGHT(M + N mod L, N) (11)

This equation allows shifting by NV rows the data of the Nth column of WEIGHT array
to map them in the RING array. For the sake of simplicity, Figure 7(a) identifies by
indexed letter x, the weights shared between neurons of clusters ¢y and ¢;. Figure 7(b)
illustrates the mapping obtained by applying (11) in order to combine flip-flop rings
and neuron-based serialization. For example, RING(0,2) = WEIGHT(2,2) = xg. It can
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Fig. 8. Cluster-based serialization and triangular matrix: (a) synaptic weights and (b) flip-flop ring.

be observed that after i cycles of the retrieving process, clusters ¢q (respectively, ¢; will
have access to all the synaptic weights of the connections its local neurons share with
the ith neuron of cluster c; (respectively, cg).

When considering cluster-based serialization, flip-flop rings must gather synaptic
weights from different pairs of clusters. Figure 8(a) illustrates a triangular matrix
where weights are identified by indexed letters x, y, and z. Figure 8(b) depicts the
resulting set of flip-flop rings which allows, after i cycles of the retrieving process, that
each cluster accesses to all the synaptic weights it shares with the neurons of the ith
distant cluster.

4. EXPERIMENTS

The interest of the proposed optimizations is shown through several experiments
where both original and proposed models, as well as the associated architectures are
compared.

A first set of theoretical studies aims to show that our full binary model improves
the performance of the original GBNN [Gripon and Berrou 2011] and reaches the same
performance as the enhanced model proposed in Gripon and Berrou [2012].

The second set of experiments focuses on hardware design. The state of the art
and the proposed optimized architectures are compared. Based on a STMicroelectron-
ics 90 nm technology library, a wide range of networks is explored and architecture
complexities are analyzed.

The third and last set of experiments compares the synthesis results based on
a Stratix IV FPGA and HardCopy platforms from Altera for different network
architectures.
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To allow for an easy reading of our charts, versioning concept has been used to name
architectures. Hence:

—architectures based on the original GBNN model [Jarollahi et al. 2012] are referred
as VO0;

—architectures based on the fully binary model we proposed are referred to as V1.0;

—architectures based on binary model and triangular synaptic weight matrices are
referred to as V1.1;

—architectures based on binary model and cluster-based serialization are referred as
V1.2;

—architectures based on binary model and neuron-based serialization are referred as
V1.3.

4.1. Retrieving Performance Analysis

In order to study and to compare retrieving performances of our fully binary model, we
performed Matlab simulations. The messages to be learnt were randomly generated
following a uniform discrete distribution. In this context, we derived the error retrieving
rate in relation to the number of learnt messages when half the clusters have no
information. These experiments have been performed with C = 8 clusters and L = 256
neurons (i.e., a total of 1024 neurons). Four retrieving iterations have been used as
suggested in Gripon and Berrou [2011] to obtain the best performance. Simulations
have been performed on a core i7 M620 2.7GHz, with 4GB RAM. Our results are
compared with both the original GBNN model from Gripon and Berrou [2011] and
from Gripon and Berrou [2012].

Figure 9 shows the remaining error rates in the “retrieved” messages depending on
the number of learnt messages. As in Gripon and Berrou [2012], the total number of
input messages used to stimulate the GBNN has been set to 2000. Each point in these
curves represents the ratio between the number of erroneous retrieved messages and
the total number of input messages. It can be observed that the GBNN model defined
in Gripon and Berrou [2012] has better performance than the original GBNN model
[Gripon and Berrou 2011]. Indeed, up to 20,000 message points the best networks are
able to achieve 0% “retrieving” errors, while the performance of the original GBNN
model start to be deprecated with 15,000 message points. Moreover, our proposed
contribution natively achieves exactly the same performance as in Gripon and Berrou
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Fig. 10. Area for neural networks up to C = 128 and L = 128 (in NAND gate equation).

[2012] since the curves perfectly superimpose in Figure 9. This confirms that our
fully binary model does not introduce any performance loss to the arithmetical-integer
GBNN models.

4.2. Complexity Analysis

The second set of experiments explores a wide range of architectures in order to study
the complexity breakdown offered by the optimizations we propose. The results are
given in terms of NAND gate equation (based on STMicroelectronics 90-nm cell library)
and the VO architecture is used as baseline.

Figure 10 shows a first set of results in which both the number of clusters and the
number of neurons are varied (i.e., C and L range from 1 up to 128). It should be noticed
that Figure 10 includes an upper-bound surface (i.e., (50*L?*C?) in order to observe the
limits of the design space more easily. Analysis of these results shows that all the
proposed architectures are always greatly smaller than reference VO architectures.
Indeed, while simply using the fully binary model reduces the total area of the V1.0
architecture down to halfthe reference architecture, the combination of all our proposed
enhancements pushes area optimization further: V1.1 reduces architecture complexity
close to 1/3 of VO (i.e., 70% of area reduction), while V1.2 and V1.3 reduce it to 1/6 (i.e.,
83% of area reduction).

It should be noted that in Figure 10 the area of V1.2 and V1.3 are superimposed.
However, if larger networks are explored (e.g., up to C = L = 512), it can be observed
that the trends are different, and the cluster serial approach often reaches lower costs
(cf. Figure 11).

The total resource costs presented in Figures 10 and 11 each decomposes into three
parts: decoding, memorizing, and computing resources. These terms correspond to the
three optimization axes we propose to design GBNN-based associative memories: full
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binary computation (cf. Computation in figures), memory reduction (cf. Memory and
Decoding in figures) and serialized communication (cf. Decoding and Computation in
figures). Full binary computation strongly reduces the cost of the computation module,
memory reduction limits the cost of both the memory and the decoding modules, and,
finally, serialization optimizes the computation and the decoding modules. Figures 12,
13, 14, 15, and 16 show the repartition of these three contributions for three configu-
rations of the network namely 256 clusters/64 neurons, 128 clusters/128 neurons and
64 clusters/256 neurons. Memorizing resources are represented in hatched, decoding
resources in white and computing resources in dark grey. Hence, Figure 12 depicts
the repartition of resources in VO and it can be seen that area mainly depends on the
computing resources (54.7% of the total cost in average).

Figure 13 shows the repartition of resources in V1.0 and also mentions through dotted
line partitions the savings we obtained against baseline results. It can be observed
that the fully binary model allows greatly reducing the cost of computing resources.
Computing resources roughly account for 20% of the total area in V1.0 (against 54.7%
in average for VO) and almost half of the architecture is now composed by memorizing
resources.

Figure 14 illustrates the repartition of resources in V1.1 architecture. Coupling tri-
angular synaptic weight matrix to fully-binary model allows further reducing total
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area. Hence, besides the savings obtained by using a fully binary model (i.e., V1.0),
costs of decoding resources and memory have been reduced by almost 50%. In average,
learning resources now account for 27% of the total area instead of 33.4% in V1.0 while
memory resources account for 37.8% in average instead of 45.7% in V1.0.

In Figures 15 and 16, respectively, present the repartition of resources in V1.2 and
V1.3 architectures. Results show impressive breakdown compared to V1.0 and V1.1
and even more compared to V0. This is the demonstration that serialization is able, not
only to reduce the complexity of the interconnection network, but also to have a great
impact on the total area through a limited amount of computing resources. Moreover,
by coupling the proposed optimizations, memory resources represent about 95% of the
total area meaning that neural network is now mainly composed of memory elements.

It can also be observed that if the number of clusters is greater that the number of
neurons, in V1.2 architecture (i.e., binary cluster serial) the proportion of computing
resources is lower than in V1.3 (i.e., binary neuron serial). On the contrary, if the
number of clusters is lower than the number of neurons, in V1.2 architecture the
proportion of computing resources is greater than in V1.3.
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4.3. Synthesis Results

We have synthesized several architectures in order to compare our fully binary model,
memory optimization and communication serialization to state of the art implementa-
tions of GBNN. Hardware architectures have been described in VHDL, synthesized on
FPGA and ASIC technologies, validated and finally characterized in area and timing
performances. Their error-rates have been evaluated with the same input vectors than
for the theoretical analysis and they are strictly identical to the results presented in
Figure 9.

4.3.1. FPGA Target. First, we have synthesized on a Stratix IV FPGA platform a set of
architectures. To allow fair comparisons, all the syntheses have been done on the
same target device than the one used in Gripon et al. [2012], that is, Stratix IV
EP4SGX230KF40C2 FPGA. Different sizes of networks have been explored ranging
from C*L = 2*2 up to C*L = 16*16. The test case C*L = 8*16 is the configuration used
in Gripon et al. [2012]. We scaled the network complexity up to 256 neurons because
baseline design VO reaches the limits of the target FPGA for that size.

Figure 17 shows the scaling of registers usage while varying the number of neurons
and clusters. It can be observed that the fully binary model V1.0 slightly requires less
resources than the reference design VO while triangular synaptic weight matrix V1.1
allows reaching a breakdown of 50% for all the configurations.

Figure 18 presents synthesis results in terms of LUT and highlights the interest
of the proposed optimizations. Compared to reference design VO, in average area
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reductions range from 62% for V1.0 up to 86% for V1.2. The larger is the network,
the more important the reductions are. When considering a 16*16 configuration, area
savings reach 76% and 92% for architectures V1.0 and V1.2, respectively.

Figure 19 sums up these results by presenting the total percentage usage of the
FPGA ressources and confirms the general trend: the more the network grows, the
more the gap between the proposed architectures and baseline increases. While VO
quickly reaches 100% of the targeted FPGA, our designs uses at most 8% of FPGA
resources.

Figure 20 depicts evolution of maximum achievable clock frequencies. It can be
observed that the clock frequencies of architectures decrease rather rapidly for the
first smallest network complexities while performances fall slower for larger networks.
Reference designs VO decrease faster than the other architectures. When considering
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the largest neural network, V1.3 gets the best performance over all the architectures
with a clock frequency of 338.64 MHz. The better timing performances of serialized
architectures allow counterbalancing to a certain extent their sequential behaviors.

Let us define the delay of a retrieving iteration as the number of cycles of one iteration
divided by the clock frequency of the architecture. Then, the ratio of the delays of the
reference design VO and of our serialized approaches V1.2 and V1.3 can be computed.
Experimental results show that this ratio is much lower than C (respectively, L) in
case of cluster-based scheme (respectively, neuron-based scheme). As an example, for
the most complex VO architecture, that is, 12*12 network, our designs V1.2 and V1.3
should have been 12 times slower. However, ratio of the delays is equal to 4.5 for V1.2
and 4.2 for V1.3. This means that our architectures are respectively 2.6 and 2.8 times
faster than expected. These results are obtained thanks to the proposed optimizations
used to design the serialized architectures that allows to reach higher clock frequencies
as well as reducing the area. However, it should be mentioned that our architectures
have not been particularly designed to optimize timing performance, but rather area.
As a consequence, even better performance could be obtained by considering this new
design objective. Moreover, it can be observed that VO has no result for a 16*16 network
since this design cannot be “placed and routed” by the sysnthesis tools (all the FPGA
ressources are already used). Hence, serialisation allows scaling up and implementing
large hardware associative memories with quite good timing performance.

4.3.2. ASIC Target. ASIC technology has been targeted by using Altera HardCopy plat-
form that maps all the resources used in the architecture onto HCELLS instead of LUT
and registers. Figure 21 presents synthesis results in terms of HCELLS. Compared to
reference design VO, area reductions range from 33% for V1.0 and up to 57% for V1.2,
in average. Since reductions evolve according to the network complexity, area savings
reach 56% and 87% for architectures V1.0 and V1.2, respectively, when considering a
16*16 configuration.

Figure 22 presents the evolution of maximum achievable clock frequencies. The
maximum frequency of VO still decreases faster than the other ones like V1.2 which
while being better, follows the same trend. Apart from configurations 8*8 and 16*16,
architectures V1.3, V1.0, and V1.1 often provide equivalent performance.
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Fig. 22. Clock frequencies (ASIC).

All the synthesis results verify the trends provided by the complexity analysis and
thus confirm the results our optimizations provide. In this case, if we compute the delay
(as defined in the previous subsection) of one iteration for the serialized architectures
it can be observed that as it has been shown targeting FPGA plateform, the impact
of serialization is soften by the clock frequencies of the generated architectures. As an
example, for the 16*16 network, this ratio is equal to 9.1 for V1.2 and 4.7 for V1.3,
instead of 16. This results are still promising since, once again, our architectures have
not been particularly designed to optimize timing performance.

5. CONCLUSION

In this article, we have presented optimizations to reduce the complexity of the original
GBNN model and to allow for efficient hardware design. First, we have defined a fully
binary neural network model that allows reducing computing resources. Then, we have
proposed to store half of the information compared to the original GBNN, thus reducing
the cost of storage elements and the complexity of the learning process. Finally, we
introduced serial communications between neurons to allow further optimizing the
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architecture complexity. We have shown that combining these optimizations is not
straightforward. However, experimental results show impressive area breakdown and
better clock frequencies compared to baseline architectures without any loss of neural
network performances (capacity, efficiency, error-rate, etc.).
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