
2010 6th International Symposium on Turbo Codes & Iterative Information Processing

Simplified check node processing in nonbinary

LDPC decoders

E. Boutillon and L. Conde-Canencia
Lab-STICC, CNRS UMR 3192

Universite Europeenne de Bretagne - UBS
Lorient - FRANCE

Email: {emmanuel.boutillon.laura.conde-canencia}@univ-ubs.fr

Abstract-This paper deals with low-complexity algorithms for
the check node processing in nonbinary LDPC decoders. After
a review of the state-of-the-art, we focus on an original solution
to significantly reduce the order of complexity of the Extended
Min-Sum decoder at the elementary check node level. The main
originality of the so-called Bubble Check algorithm is the two­
dimensional strategy for the check node processing, which leads
to a reduction of the number of comparisons. The simulation
results obtained for the Bubble Check show that this complexity
reduction does not introduce any performance loss and that it is
even possible to further reduce the number of comparisons. This
motivated the search of a simplified architecture and led to the L­
Bubble Check, which is the main contribution of the paper. The
implementation of a forwardlbackward check node as a systolic
architecture of L-Bubble elementary checks is also described.
Finally, some FPGA synthesis results of a whole GF(64)-LDPC
decoder implementation are presented.

Index Terms-Nonbinary low-density parity-check decoders,
check node processing, simplified architecture, decoder imple­
mentation, FPGA synthesis.

I. INTRODUCTION

The extension of binary LDPC codes to high-order Galois
Fields (GF(q), with q > 2), aims at further close the gap
of performance with the Shannon limit [1] when using small
or moderate codeword lengths. This new family of codes is
currently considered as a real competitor of binary LDPC and
Turbo-codes for some future digital communications standards
that aim at higher spectral efficiency with smaller packet
length. However, the expected performance gain of Non­
Binary (NB) LDPC codes comes at the expense of increased
hardware complexity and a considerable effort is currently
dedicated to the design of NB iterative receivers and NB
link adaptation strategies with a good complexity/performance
trade-off [2] [3].

In this paper, we focus on the design of low-complexity
NB-LDPC decoders. Our work is dedicated to the complexity
reduction of these, especially for high-order fields, which
is a key feature for practical hardware implementation. In
[4], we presented a detailed complexity comparison of the
different existing iterative decoding algorithms applied to NB­
LDPC codes. The interest of the Extended Min-Sum (EMS)
algorithm [5] was then highlighted because of the significant
complexity reduction it introduces compared to Belief Pro­
pagation (BP) and its derivated algorithms. The principle of
the EMS decoder is to use truncated messages for both the

201
978-1-4244-6746-4/10/$26.00 ©201O IEEE

storage and the computation of variable and check nodes.
Hence the BP O(q2)-complexity is theoretically reduced to the
order of nm x log nm, where nm is the size of the truncated
messages (nm «: q), and the performance loss compared to
BP decoding is small (around O.ldB) to negligible, depending
on the decoder complexity which is tuned by the value of nm
[4] [5].

In the EMS NB-LDPC decoder, one of the bottlenecks of the
computations is at the Check Node (CN) level. To be specific,
the complexity of the the CN is dominated by O(n;J , due
to the parallel insertion that is needed to reorder the vector
messages at the elementary check node. In this paper, we
review the Bubble Check algorithm, recently presented in [9]
as a low-complexity original solution that significantly reduces
the order of complexity of the CN. The complexity of the
Bubble Check algorithm is dominated by O(nm x Fm),
which represents a complexity reduction of Fm compared
to the EMS.

The simulation results obtained for the Bubble Check show
that this complexity reduction does not introduce any per­
formance loss. Moreover, for practical purposes, we propose
a simplified version of the Bubble Check that improves the
complexity/performance trade-off by further reducing comple­
xity without performance loss. This simplified Bubble Check
has been named L-Bubble Check and constitutes the main
contribution of this paper.

The paper is organised as follows: Section II explains the
state-of-the-art in EMS CN processing of NB-LDPC decoders.
Section III reviews the Bubble-Check algorithm, provides
some theoretical discussion on the complexity reduction and
presents simulation results that motivate the search of a
simplified architecture. Section IV proposes the L-Bubble
Check and describes its associated architecture. The global
forwardlbackward CN architecture is also presented. Finally,
Section V draws conclusions.

II. NB-LDPC CHECK NODE PROCESSING

An NB-LDPC code is a linear block code defined on a very
sparse parity-check matrix whose nonzero elements belong to
a finite field GF(q). The construction of these codes can then
be expressed as a set of parity-check equations over GF(q).

2010 6th International Symposium on Turbo Codes & Iterative Information Processing

A. Elementary Check Node Processing

The CN processing, which dominates the decoding com­
plexity of NB-LDPC, can be implemented using the forward­
backward algorithm [6]: a check node of degree de is decom­
posed in 3(de -2) Elementary Check Nodes (ECN) where an
ECN has two input messages U and V and one output message
E.

In the BP algorithmn, each message UP, Y P and EP
contains the probability distribution of the associated variable
u, v and e (respectively). In other words, let uP be the
probability density function defined by the q probabilities
UP(a) = P(u = a)aEGF(q), such that:

L Up(a) = 1
aEGF(q)

The messages yP and EP follow the same notation and u, v

and e must verify the parity equation: u EB v EB e = 0, where
EB stands for addition in GF(q). Assuming that uP and yP
are known, the extrinsic information EP, can be computed for
every value 'Y E GF(q) as:

(1)
(a,,B)EGF(q)2IaEll,B="Y

The direct computation of equation (1) requires q2 multi­
plications and additions. This is why, considering values of
q > 16, results in prohibitive complexity. Performing the
computation in the frequency domain [7] reduces the order
of complexity to qx log(q) multiplications and additions. The
EMS [2] [5] further reduces complexity by:

• only considering the nm highest values of vectors U, V
and E,

• using Log-Likelihood Ratio (LLR) vectors instead of
probability vectors and thus performing operations in the
logarithm domain,

• approximating the addition operation by the maximum
operation in the logarithm domain.

Hence the complexity of the EMS is in the order of
O(nm log nm), and thus reasonable enough to compete with
binary LDPC decoders.

B. Implementation-friendly CN processing

Considering the opposite of the classical LLR definition
makes that there is no need to renormalize the messages
after each computation [8]. For this reason, we define U as
U= [U(I), U(2), ... , U(nm)] with U(I) = 0 and

. P(UGF(i) I L)
U(�) = -log

P(UGF(I) I L)
(2)

where L are the local hypotheses and UGF
[UGF(I),UGF(2), ... ,UGF(nm)] is the vector of the
GF(q) indexes associated to the nm LLR values in U. Note
that the same notation applies for V and E and that the
truncated messages now contain the nm smallest LLR values
sorted in increasing order. Also, the max operator of the

202

classical EMS [2] becomes a min, and equation (1) is then
replaced by:

E(k) = .. min 2 {U(i)+ V(j)}UGF(i)EIlVGF(j)=EGF(k) (3)
t,JE[l,nmJ

where the indexes k, i,j E {I, ... , nm}. Note that equation (3)
does not indicate which EGF(k) is associated to the computed
E(k). This is, in fact, the task of the ECN: to provide the
elements of vector E as well as their associated EGF (k)
indexes.

C. EMS ECN processing

The EMS ECN generates the output vector E that
contains the nm smallest values of a matrix T:E defined
as T:E(i,j) = U(i) + V(j), for (i,j) E [I,nm]2. As the
elements of U and V are sorted in increasing order, the
elements of T:E have the following property:

Property 1: V(i,j) E [1, nm]2, V(i',j') E [1, nmJ2, if i ::; i'
and j ::; j' ::::} T:E (i, j) ::; T:E (i', j')

To obtain E, the authors in [5] use a sorter that contains nm
competing elements from T:E. This sorter is initialised with
the first column of T:E and dynamically updated at each step
of the algorithm. At each clock cycle, the smallest value of
the sorter is extracted. For this, a parallel insertion of the new
incoming value from T:E is needed (this implies, roughly, nm
comparisons). To obtain nm LLR values without redundant
GF(q) indexes, the number of cycles (Le., the number of
operations, denoted by nop) is chosen to be (slightly) larger
than nm (typically nop = nm + 2). Thus, the complexity of
this operation is in the order of nm x nop.

III. THE BUBBLE CHECK ALGORITHM FOR THE EMS ECN

The Bubble Check [9] reduces the complexity of the EMS
ECN by exploiting the properties of the values in T:E. This
yields to a reduction of the size of the sorter and thus of the
number of comparisons needed for the parallel insertion of the
new incoming value.

A. The principle

From Property 1 it follows that T:E(I, 1) is the minimum
value of T:E and it will thus be extracted to occupy the
first position of E (Le., E(I) = T:E(I,I) = 0). For the
second position of E, there are two candidates: T:E(2, 1)
and T:E(I,2). If, for example, T:E(2,I) is extracted (Le.,
E(2) = T:E(2, 1) < T:E(I, 2», then the two candidates for the
third position are T:E(3, 1) and T:E(I, 2), and so on. Note that
all the candidates for a given position k belong to a different
row and a different column in T:E.

Fig. 1 presents all the possibilities for the kth position
of E, with k = 5. In this figure, a grey circle represents
a value already extracted from T:E to E and a white circle
represents a candidate (or a bubble) for the kth position. The
name Bubble Check comes from this graphical representation,
Le., the algorithm uses bubbles to go through the elements

2010 6th International Symposium on Turbo Codes & Iterative Information Processing

00 011 00 1 1
QI- 1 1

.QI- T
1 II 1818ml

eOO 00
o

TI
(a) (b) (e) (d) (e)

Fig. I. Candidate values (or bubbles) in TE to occupy the k = 5 position
of E. A grey circle represents a value already extracted from TE to E and a
white circle represents a candidate (or a bubble) for the kth position.

of matrix T�:;. Let nb be the number of bubbles for the kth
position, in Fig.l(a), (c), (e), nb = 2 and in Fig. l(b), (d), nb
= 3. At this point, the key question is: what is the maximum
number of bubbles needed to perform the algorithm? For
each k, the maximum value of nb corresponds to the worst
case, i.e., the already extracted values (or grey circles) have a
triangular shape in T�:;. If k -1 is a triangular number, (Le.,
k -1 = t x (t -1)/2, for a given integer t) then the maximum
value of nb is t. Consequently, for all k, nb can be bounded
by the triangular root as:

where r x 1 represents the smallest integer greater than or equal
to x.

B. Complexity reduction

The maximum theoretical size of the sorter is given by
equation (4) which means that, if we reduce the size of the
sorter from nm to '0(nm), the complexity of the EMS ECN is
no longer dominated by nm x nap but by yn:;;; x nap, which
constitutes a complexity reduction of yn:;;;. For example, in
a practical implementation of a GF(64) EMS ECN, a typical
value of nm is 15, and the number of compare operations can
then be reduced by a factor of 3.

C. Description of the Bubble Check algorithm

The originality of the Bubble Check is the two-dimensional
(2D) strategy to replace the extracted value in the sorter: once
an element TE(i,j) is moved from the sorter to E, it can be
replaced by either TE(i + l,j) or TE(i,j + 1). To implement
this, we introduce a flag, H. If H = 1, then TE(i,j) is
replaced by TE(i,j+l) in the sorter; if H = 0, then TE(i,j)
is replaced by TE(i + l,j).

Let nb be the size of the sorter or the fixed number of
bubbles. The algorithm can then be described as follows:

1) Initialize the nb elements of the sorter with the first nb
values of the first column of TE.

2) Extract the smallest value in the sorter to the output
vector E. This element is denoted as T E (i, j).

3) Flag control: change the value of H.
a) if (i = 1) then H = 1, fl = 0.
b) if (j = 1 and i = nb) then H = 0, fl = 1.

4) Replacing rule

203

o 7 15 21 25 o 7 15 21 25 o 7 15 21 25

I® 7 15 21 25 ® CD @ � 25 ® CD @ @ 25

1(0 13 21 27 31 D @ Q0 27 31 @) @ C0 27 31

13 @ 20 28 34 38 13 @ @ 28 34 38 13 @ � 28 34 38

17 � 24 32 38 42 17 @ 24 32 38 42 17 @ 24 32 38 42

21 21 28 36 42 46 21 21 28 36 42 46 21 @ 28 36 42 46

(a) (b) (c)

Fig. 2. Example of ECN processing with the Bubble Check algorithm

a) If TE(i + fl,j + H) has never been introduced in
the sorter then include TE(i + fl,j + H) in the
sorter.

b) else include TE(i + H,j + fl) in the sorter.

5) Go to 2, until E is completed or the maximum number
of operations nap is reached.

Note that, for the sake of simplicity and because our work
does not introduce any novelty concerning this aspect, we
have not considered the non-redundancy control of the GF(q)
indexes in the description of the algorithm (see [5] for further
details).

D. An example of Bubble Check processing

Fig. 2 shows an example of the EMS ECN Bubble
Check for inputs U = {O, 7, 15,21,25, . . . } and V =

{O, 6,13,17,21, . .. }. The size of the sorter is nb = 4 and
the output vector for nap = 8 is E = {O, 6, 7, 13, 13, 15,
17, 20}. Fig. 2(a) shows the initial configuration: k = 1,
E(k) = TE(I,I) = 0, H = 1. In Fig. 2(b), k = 7, E(k) =

TE(4,1) = 17. Since i = nb = 4,H = 0, then the next
bubble in the sorter is TE(5, 1). Finally, in Fig. 2(c) k = 8,
E (k) = TE(3,2) = 20, H = ° and the next bubble in the
sorter is TE(4,2) = 24.

E. Simulation results for the Bubble Check algorithm

We simulated the EMS decoder in [5] and the EMS
ECN Bubble Check over the Additive White Gaussian Noise
(AWGN) channel. The NB-LDPC that we considered are ultra­
sparse and designed in GF(64). They are characterised by
a fixed variable node degree dv = 2 and constructed as in
[10]. The decoder architecture follows an horizontal shuffle
scheduling and a forwardlbackward processing at the check
node level.

We considered performance comparison of the EMS and the
Bubble Check for different values of nb (see Fig. 3). For both
algorithms the size of the truncated messages was chosen to be
nm = 16, which represents an good complexity/performance
trade-off for q = 64 [5]. Simulations considered codewords
of length N = 192 symbols, a code rate R = 1/2 and
20 decoding iterations. For the Bubble Check curves were
obtained for nb = 2, 3, 4, 5 and nb = '0(nm) = 6. Fig. 3
shows that the Bubble Check presents no performance loss
for nb 2:: 4. For nb = 3 and 2, the performance loss is around
0.04 dB and 0.4 dB, respectively. The simulation of other
code lengths and rates (not shown in this paper) confirms

2010 6th International Symposium on Turbo Codes & Iterative Information Processing

Fig. 3. Performance comparison of the EMS and the Bubble Check over
the AWGN channel for different values of nb. The simulation parameters are
N = 192 symbols, R = 1/2 and 20 decoding iterations

Fig. 4.

V(I)V(2) V(Il",)
U(I) Ol-+-+-+-++
U(2) �O�+=+.:;+.:;� O r- ::::: ::::: ::: : : :::::

o
I

..
. U() 11", ••••• •• • •• • •••• • • ••• L...--'------.Io...o

L-Bubble Check exploration of matrix TE

that the perfonnance of the Bubble Check algorithm with
nb = 4 bubbles remains identical to the performance of the
EMS algorithm. This shows that, in practice, complexity can
be chosen to be even lower than the theoretical by using
nb < 7jJ(nm).

IV. SIMPLIFIED BUBBLE-CHECK OR L-BuBBLE CHECK

The simulation results obtained for the Bubble Check algo­
rithm show that, in practice, no perfonnance loss is introduced
when considering nb < 7jJ(nm). This motivated the search of a
simplified algorithm, whose complexity could be chosen to be
smaller than the theoretical. Hence, we propose the L-Bubble
Check algorithm.

A. Description of the L-Bubble Check algorithm

This algorithm is characterised by a size of the sorter
always fixed to nb = 4 < 7jJ(nm). The other simplification
is that the flag H is not used. This means that the paths to
follow in T!; are predetennined, or, in other words, only a
portion of the 20 matrix is explored. The nb = 4 values in
the sorter are initialized with the bubbles T!;(I, 1), T!;(2, 1),
T!;(3,1) and T!;(4, 1). As depicted in Fig. 4, the first two
bubbles are replaced horizontally, the third bubble is first
replaced horizontally then vertically; finally, the fourth bubble
is replaced vertically. Note that the values T!;(i,j) with i > 2
and j > 2 are ignored.

204

Fig. 5. Performance comparison of the EMS, the Bubble Check with nb = 4
and L-Bubble Check for N = 192 symbols, R = 112, nm = 12, nop = 24
and 20 decoding iterations

B. Simulation results for the L-Bubble Check algorithm

Fig. 5 presents simulation results over the AWGN channel
for N = 192, R = 1/2, nm = 12, nop = 24 and 20
decoding iterations. These curves confinn the no perfonnance
loss of the L-Bubble Check compared to Bubble Check or
EMS. From these results we may conclude that the L-Bubble
Check architecture is the one to be chosen for a practical
implementation of the EMS ECN.

C. The L-Bubble Check architecture

The L-Bubble Check architecture is depicted in Fig. 6. In
this figure the input values are stored in the memories U and
V. The value T!;(i',j') is computed from two values (one of
each memory) and feeds the sorter. This sorter is composed
of four registers (BO, .. " B3), four multiplexers and one min
operator. The output of the architecture is vector E.

The values U(i') and V(j') to be fetched in the memories
are detennined by the position that the last extracted value
had in the sorter, represented by @ind E {O, 1,2, 3}. The
adresses of the bubbles in the sorter are as follows: @O : (l,j),
@1 : (2,j), @2 : (i,j), @3 : (i, 1).

The critical path is composed of the following steps:
1) Read U(i') and V(j') from memories U and V.
2) Compute T!;(i',j') = U(i')+V(j'), this value becomes

the ind'th bubble (position of the bubble extracted in the
preceding cycle) and the corresponding register is thus
bypassed.

3) Oetennine the minimum value in the sorter and its
associated index @ind (min operator).

4) From @ind, update the address of the ith bubble and
store it for the next cycle. The replacing rule is:

a) if @ind = ° or 1, then j' = j + 1
b) elsif (@ind = 2 & j = 1) then j' = 2
c) else i' = i + 1

This architecture was implemented on an FPGA device
(Virtex XC4VLX200, speed 11). The results of the synthesis

2010 6th International Symposium on Turbo Codes & Iterative Information Processing

(i',j')

u v
EI : register

Addresses
r:---'--I of the bubbles

'--______ ---' Write at@illd

Fig. 6. Architecture scheme of the L-Bubble Check

were that each L-Bubble ECN requires a total of 498 slices
and that the maximum clock frequency is 75 MHz. Note that
this FPGA contains a total of 89,000 slices.

D. The global jorwardibackward CN architecture

Fig. 7 presents the forwardlbackward implementation of a
CN as a systolic architecture. In this figure, the check node
degree is de = 6 and the number of ECN processors is 3 x
(de - 2) = 12. These ECNs are structured in de - 2 = 4 blocks
and three layers: forward, backward and extrinsic computation.

The initialisation phase is completed when each ECN re­
ceives the first 4 elements of its local U and first element of
V. Then, at each clock cycle, each ECN receives two new
inputs (one from each vector U and V) and generates a new
element of vector E. The latency of the global CN to provide
the first valid data is de + 2 clock cycles. Then, nop - 1 cycles
are required to complete the whole CN processing.

The main advantage of this architecture is that it can be
easily modified to implement other values of de (i.e., to support
different code rates).

V. CONCLUSION

This paper was dedicated to low-complexity implementa­
tion of the elementary check node processing in NB-LDPC
decoders. After a brief review of the state-of-the-art, we
described in detail the Bubble Check algorithm, which con­
situtes an original solution to significantly reduce complexity.
After the analysis of the simulation results obtained for
the Bubble Check, we proposed the L-Bubble Check, as a
simplified version of the Bubble Check suitable for practical
implementation. We described the associated architecture and
presented simulation results showing that no performance
loss is introduced with the use of the simplified architecture.

205

Forward
layer

Backward
layer

Extrinsic
computation

EB : ECN processor

Fig. 7. Architecture scheme of a forwardlbackward CN processor, de = 6

The L-Bubble Check architecture was adopted in a first
implementation of a GF(64) rate-2/3 NB-LDPC decoder, for
a frame length of 192 symbols and nm = 12. The FPGA
synthesis results on a Virtex4 were the following: 22 Kslices
and a maximum clock frequency of 75 MHz. The decoding
thoughput was in the order of 3.8 Mbps for 8 decoding
iterations.

ACKNOWLEDGMENT

This work is supported by INFSCO-ICT-216203 DAVINCI
"Design And Versatile Implementation of Non-binary wireless
Communications based on Innovative LDPC Code" (www.ict­
davinci-codes.eu) funded by the European Commission under
the Seventh Framework Program (FP7). The authors would
like to thank Ali Al Ghouwayel for his work on the decoder
implementation and the FPGA synthesis.

REFERENCES

[I] M. C. Davey and D. 1. C. Mackay, Low density parity check codes over
GF(q), Information Theory Workshop, 1995, pp. 70-71.

[2] D. Declercq and M. Fossorier, Decoding algorithms for nonbinary LDPC
codes over GF(q), IEEE Trans. on Commun., vol. 55, pp. 633- 643, April
2007

[3] S. Pftetschinger and M. Navarro, Link Adaptation with Retransmissions
for Non-Binary LDPC Codes, accepted in Future Network & Mobile
Summit 2010, florence, Italy, June 2010

[4] L. Conde-Canencia, A. Al Ghouwayel and E. Boutillon, Complexity
Comparison of Non-Binary LDPC Decoders, the Proc. of ICT Mobile
Summit, Santander, Spain, June 2009

[5] A. Voicila, D. Declercq, F. Verdier, M. Fossorier and P. Urard, Low
Complexity, low memory EMS algorithm for non-binary LDPC codes, the
Proc. of IEEE Intern. Conf. on Commun., ICC'2007, Glasgow, England,
June 2007.

[6] H. Wymeersch, H. Steendam and M. Moeneclaey, Log-Domain Decoding
of LDPC Codes over GF(q), the Proc. of IEEE Intern. Conf. on Commun.,
ICC'2004, Paris, France, June 2004, pp. 772-776.

[7] H. Song and 1. R. Cruz, Reduced-complexity decoding of Q-ary LDPC
codes for magnetic recording, IEEE Trans. Magn., vol. 39, pp. IOSI-IOS7,
Mar. 2003

[S] v. Sevin, Min-Max decoding for non binary LDPC codes, the Proc. Intern.
Symposium on Information Theory, ISIT'200S, Toronto, Canada, July
200S, pp. 960-964

[9] E. Boutillon and L. Conde-Canencia, Bubble check: a simplified algorithm
for elementary check node processing in Extended Min-Sum non-binary
LDPC decoders, lEE Electronics Letters, Vol. 46, no.9, pp.633-634, April
29 2010

[10] C. Poulliat , M. Fossorier and D. Declercq, Design of Regular (2,
dc)-LDPC Codes over GF(q) Using Their Binary Images, IEEE Trans.
Commun., 200S, 56, (10), pp. 16261635.

