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Abstract-This paper deals with low-complexity algorithms for 
the check node processing in nonbinary LDPC decoders. After 
a review of the state-of-the-art, we focus on an original solution 
to significantly reduce the order of complexity of the Extended 
Min-Sum decoder at the elementary check node level. The main 
originality of the so-called Bubble Check algorithm is the two­
dimensional strategy for the check node processing, which leads 
to a reduction of the number of comparisons. The simulation 
results obtained for the Bubble Check show that this complexity 
reduction does not introduce any performance loss and that it is 
even possible to further reduce the number of comparisons. This 
motivated the search of a simplified architecture and led to the L­
Bubble Check, which is the main contribution of the paper. The 
implementation of a forwardlbackward check node as a systolic 
architecture of L-Bubble elementary checks is also described. 
Finally, some FPGA synthesis results of a whole GF(64)-LDPC 
decoder implementation are presented. 

Index Terms-Nonbinary low-density parity-check decoders, 
check node processing, simplified architecture, decoder imple­
mentation, FPGA synthesis. 

I. INTRODUCTION 

The extension of binary LDPC codes to high-order Galois 
Fields (GF(q), with q > 2), aims at further close the gap 
of performance with the Shannon limit [1] when using small 
or moderate codeword lengths. This new family of codes is 
currently considered as a real competitor of binary LDPC and 
Turbo-codes for some future digital communications standards 
that aim at higher spectral efficiency with smaller packet 
length. However, the expected performance gain of Non­
Binary (NB) LDPC codes comes at the expense of increased 
hardware complexity and a considerable effort is currently 
dedicated to the design of NB iterative receivers and NB 
link adaptation strategies with a good complexity/performance 
trade-off [2] [3]. 

In this paper, we focus on the design of low-complexity 
NB-LDPC decoders. Our work is dedicated to the complexity 
reduction of these, especially for high-order fields, which 
is a key feature for practical hardware implementation. In 
[4], we presented a detailed complexity comparison of the 
different existing iterative decoding algorithms applied to NB­
LDPC codes. The interest of the Extended Min-Sum (EMS) 
algorithm [5] was then highlighted because of the significant 
complexity reduction it introduces compared to Belief Pro­
pagation (BP) and its derivated algorithms. The principle of 
the EMS decoder is to use truncated messages for both the 
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storage and the computation of variable and check nodes. 
Hence the BP O(q2)-complexity is theoretically reduced to the 
order of nm x log nm, where nm is the size of the truncated 
messages (nm «: q), and the performance loss compared to 
BP decoding is small (around O.ldB) to negligible, depending 
on the decoder complexity which is tuned by the value of nm 
[4] [5]. 

In the EMS NB-LDPC decoder, one of the bottlenecks of the 
computations is at the Check Node (CN) level. To be specific, 
the complexity of the the CN is dominated by O(n;J , due 
to the parallel insertion that is needed to reorder the vector 
messages at the elementary check node. In this paper, we 
review the Bubble Check algorithm, recently presented in [9] 
as a low-complexity original solution that significantly reduces 
the order of complexity of the CN. The complexity of the 
Bubble Check algorithm is dominated by O(nm x Fm), 
which represents a complexity reduction of Fm compared 
to the EMS. 

The simulation results obtained for the Bubble Check show 
that this complexity reduction does not introduce any per­
formance loss. Moreover, for practical purposes, we propose 
a simplified version of the Bubble Check that improves the 
complexity/performance trade-off by further reducing comple­
xity without performance loss. This simplified Bubble Check 
has been named L-Bubble Check and constitutes the main 
contribution of this paper. 

The paper is organised as follows: Section II explains the 
state-of-the-art in EMS CN processing of NB-LDPC decoders. 
Section III reviews the Bubble-Check algorithm, provides 
some theoretical discussion on the complexity reduction and 
presents simulation results that motivate the search of a 
simplified architecture. Section IV proposes the L-Bubble 
Check and describes its associated architecture. The global 
forwardlbackward CN architecture is also presented. Finally, 
Section V draws conclusions. 

II. NB-LDPC CHECK NODE PROCESSING 

An NB-LDPC code is a linear block code defined on a very 
sparse parity-check matrix whose nonzero elements belong to 
a finite field GF(q). The construction of these codes can then 
be expressed as a set of parity-check equations over GF(q). 
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A. Elementary Check Node Processing 

The CN processing, which dominates the decoding com­
plexity of NB-LDPC, can be implemented using the forward­
backward algorithm [6]: a check node of degree de is decom­
posed in 3(de -2) Elementary Check Nodes (ECN) where an 
ECN has two input messages U and V and one output message 
E. 

In the BP algorithmn, each message UP, Y P and EP 
contains the probability distribution of the associated variable 
u, v and e (respectively). In other words, let uP be the 
probability density function defined by the q probabilities 
UP(a) = P(u = a)aEGF(q), such that: 

L Up(a) = 1 
aEGF(q) 

The messages yP and EP follow the same notation and u, v 

and e must verify the parity equation: u EB v EB e = 0, where 
EB stands for addition in GF(q). Assuming that uP and yP 
are known, the extrinsic information EP, can be computed for 
every value 'Y E GF(q) as: 

(1) 
(a,,B)EGF(q)2IaEll,B="Y 

The direct computation of equation (1) requires q2 multi­
plications and additions. This is why, considering values of 
q > 16, results in prohibitive complexity. Performing the 
computation in the frequency domain [7] reduces the order 
of complexity to qx log(q) multiplications and additions. The 
EMS [2] [5] further reduces complexity by: 

• only considering the nm highest values of vectors U, V 
and E, 

• using Log-Likelihood Ratio (LLR) vectors instead of 
probability vectors and thus performing operations in the 
logarithm domain, 

• approximating the addition operation by the maximum 
operation in the logarithm domain. 

Hence the complexity of the EMS is in the order of 
O( nm log nm), and thus reasonable enough to compete with 
binary LDPC decoders. 

B. Implementation-friendly CN processing 

Considering the opposite of the classical LLR definition 
makes that there is no need to renormalize the messages 
after each computation [8]. For this reason, we define U as 
U= [U(I), U(2), ... , U(nm)] with U(I) = 0 and 

. P(UGF(i) I L) 
U(�) = -log 

P(UGF(I) I L) 
(2) 

where L are the local hypotheses and UGF 
[UGF(I),UGF(2), ... ,UGF(nm)] is the vector of the 
GF(q) indexes associated to the nm LLR values in U. Note 
that the same notation applies for V and E and that the 
truncated messages now contain the nm smallest LLR values 
sorted in increasing order. Also, the max operator of the 
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classical EMS [2] becomes a min, and equation (1) is then 
replaced by: 

E(k) = .. min 2 {U(i)+ V(j)}UGF(i)EIlVGF(j)=EGF(k) (3) 
t,JE[l,nmJ 

where the indexes k, i,j E {I, ... , nm}. Note that equation (3) 
does not indicate which EGF(k) is associated to the computed 
E(k). This is, in fact, the task of the ECN: to provide the 
elements of vector E as well as their associated EGF (k) 
indexes. 

C. EMS ECN processing 

The EMS ECN generates the output vector E that 
contains the nm smallest values of a matrix T:E defined 
as T:E(i,j) = U(i) + V(j), for (i,j) E [I,nm]2. As the 
elements of U and V are sorted in increasing order, the 
elements of T:E have the following property: 

Property 1: V(i,j) E [1, nm]2, V(i',j') E [1, nmJ2, if i ::; i' 
and j ::; j' ::::} T:E (i, j) ::; T:E (i', j') 

To obtain E, the authors in [5] use a sorter that contains nm 
competing elements from T:E. This sorter is initialised with 
the first column of T:E and dynamically updated at each step 
of the algorithm. At each clock cycle, the smallest value of 
the sorter is extracted. For this, a parallel insertion of the new 
incoming value from T:E is needed (this implies, roughly, nm 
comparisons). To obtain nm LLR values without redundant 
GF(q) indexes, the number of cycles (Le., the number of 
operations, denoted by nop) is chosen to be (slightly) larger 
than nm (typically nop = nm + 2). Thus, the complexity of 
this operation is in the order of nm x nop. 

III. THE BUBBLE CHECK ALGORITHM FOR THE EMS ECN 

The Bubble Check [9] reduces the complexity of the EMS 
ECN by exploiting the properties of the values in T:E. This 
yields to a reduction of the size of the sorter and thus of the 
number of comparisons needed for the parallel insertion of the 
new incoming value. 

A. The principle 

From Property 1 it follows that T:E(I, 1) is the minimum 
value of T:E and it will thus be extracted to occupy the 
first position of E (Le., E(I) = T:E(I,I) = 0). For the 
second position of E, there are two candidates: T:E(2, 1) 
and T:E(I,2). If, for example, T:E(2,I) is extracted (Le., 
E(2) = T:E(2, 1) < T:E(I, 2», then the two candidates for the 
third position are T:E(3, 1) and T:E(I, 2), and so on. Note that 
all the candidates for a given position k belong to a different 
row and a different column in T:E. 

Fig. 1 presents all the possibilities for the kth position 
of E, with k = 5. In this figure, a grey circle represents 
a value already extracted from T:E to E and a white circle 
represents a candidate (or a bubble) for the kth position. The 
name Bubble Check comes from this graphical representation, 
Le., the algorithm uses bubbles to go through the elements 
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Fig. I. Candidate values (or bubbles) in TE to occupy the k = 5 position 
of E. A grey circle represents a value already extracted from TE to E and a 
white circle represents a candidate (or a bubble) for the kth position. 

of matrix T�:;. Let nb be the number of bubbles for the kth 
position, in Fig.l(a), (c), (e), nb = 2 and in Fig. l(b), (d), nb 
= 3. At this point, the key question is: what is the maximum 
number of bubbles needed to perform the algorithm? For 
each k, the maximum value of nb corresponds to the worst 
case, i.e., the already extracted values (or grey circles) have a 
triangular shape in T�:;. If k -1 is a triangular number, (Le., 
k -1 = t x (t -1)/2, for a given integer t) then the maximum 
value of nb is t. Consequently, for all k, nb can be bounded 
by the triangular root as: 

where r x 1 represents the smallest integer greater than or equal 
to x. 

B. Complexity reduction 

The maximum theoretical size of the sorter is given by 
equation (4) which means that, if we reduce the size of the 
sorter from nm to '0(nm), the complexity of the EMS ECN is 
no longer dominated by nm x nap but by yn:;;; x nap, which 
constitutes a complexity reduction of yn:;;;. For example, in 
a practical implementation of a GF(64) EMS ECN, a typical 
value of nm is 15, and the number of compare operations can 
then be reduced by a factor of 3. 

C. Description of the Bubble Check algorithm 

The originality of the Bubble Check is the two-dimensional 
(2D) strategy to replace the extracted value in the sorter: once 
an element TE(i,j) is moved from the sorter to E, it can be 
replaced by either TE(i + l,j) or TE(i,j + 1). To implement 
this, we introduce a flag, H. If H = 1, then TE(i,j) is 
replaced by TE(i,j+l) in the sorter; if H = 0, then TE(i,j) 
is replaced by TE(i + l,j). 

Let nb be the size of the sorter or the fixed number of 
bubbles. The algorithm can then be described as follows: 

1) Initialize the nb elements of the sorter with the first nb 
values of the first column of TE. 

2) Extract the smallest value in the sorter to the output 
vector E. This element is denoted as T E ( i, j). 

3) Flag control: change the value of H. 
a) if (i = 1) then H = 1, fl = 0. 
b) if (j = 1 and i = nb) then H = 0, fl = 1. 

4) Replacing rule 
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Fig. 2. Example of ECN processing with the Bubble Check algorithm 

a) If TE(i + fl,j + H) has never been introduced in 
the sorter then include TE(i + fl,j + H) in the 
sorter. 

b) else include TE(i + H,j + fl) in the sorter. 

5) Go to 2, until E is completed or the maximum number 
of operations nap is reached. 

Note that, for the sake of simplicity and because our work 
does not introduce any novelty concerning this aspect, we 
have not considered the non-redundancy control of the GF(q) 
indexes in the description of the algorithm (see [5] for further 
details). 

D. An example of Bubble Check processing 

Fig. 2 shows an example of the EMS ECN Bubble 
Check for inputs U = {O, 7, 15,21,25, . . . } and V = 

{O, 6,13,17,21, . .. }. The size of the sorter is nb = 4 and 
the output vector for nap = 8 is E = {O, 6, 7, 13, 13, 15, 
17, 20}. Fig. 2(a) shows the initial configuration: k = 1, 
E(k) = TE(I,I) = 0, H = 1. In Fig. 2(b), k = 7, E(k) = 

TE(4,1) = 17. Since i = nb = 4,H = 0, then the next 
bubble in the sorter is TE(5, 1). Finally, in Fig. 2(c) k = 8, 
E (k) = TE(3,2) = 20, H = ° and the next bubble in the 
sorter is TE( 4,2) = 24. 

E. Simulation results for the Bubble Check algorithm 

We simulated the EMS decoder in [5] and the EMS 
ECN Bubble Check over the Additive White Gaussian Noise 
(AWGN) channel. The NB-LDPC that we considered are ultra­
sparse and designed in GF(64). They are characterised by 
a fixed variable node degree dv = 2 and constructed as in 
[10]. The decoder architecture follows an horizontal shuffle 
scheduling and a forwardlbackward processing at the check 
node level. 

We considered performance comparison of the EMS and the 
Bubble Check for different values of nb (see Fig. 3). For both 
algorithms the size of the truncated messages was chosen to be 
nm = 16, which represents an good complexity/performance 
trade-off for q = 64 [5]. Simulations considered codewords 
of length N = 192 symbols, a code rate R = 1/2 and 
20 decoding iterations. For the Bubble Check curves were 
obtained for nb = 2, 3, 4, 5 and nb = '0(nm) = 6. Fig. 3 
shows that the Bubble Check presents no performance loss 
for nb 2:: 4. For nb = 3 and 2, the performance loss is around 
0.04 dB and 0.4 dB, respectively. The simulation of other 
code lengths and rates (not shown in this paper) confirms 
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Fig. 3. Performance comparison of the EMS and the Bubble Check over 
the AWGN channel for different values of nb. The simulation parameters are 
N = 192 symbols, R = 1/2 and 20 decoding iterations 

Fig. 4. 
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L-Bubble Check exploration of matrix TE 

that the perfonnance of the Bubble Check algorithm with 
nb = 4 bubbles remains identical to the performance of the 
EMS algorithm. This shows that, in practice, complexity can 
be chosen to be even lower than the theoretical by using 
nb < 7jJ(nm). 

IV. SIMPLIFIED BUBBLE-CHECK OR L-BuBBLE CHECK 

The simulation results obtained for the Bubble Check algo­
rithm show that, in practice, no perfonnance loss is introduced 
when considering nb < 7jJ(nm). This motivated the search of a 
simplified algorithm, whose complexity could be chosen to be 
smaller than the theoretical. Hence, we propose the L-Bubble 
Check algorithm. 

A. Description of the L-Bubble Check algorithm 

This algorithm is characterised by a size of the sorter 
always fixed to nb = 4 < 7jJ(nm). The other simplification 
is that the flag H is not used. This means that the paths to 
follow in T!; are predetennined, or, in other words, only a 
portion of the 20 matrix is explored. The nb = 4 values in 
the sorter are initialized with the bubbles T!;(I, 1), T!;(2, 1), 
T!;(3,1) and T!;(4, 1). As depicted in Fig. 4, the first two 
bubbles are replaced horizontally, the third bubble is first 
replaced horizontally then vertically; finally, the fourth bubble 
is replaced vertically. Note that the values T!;(i,j) with i > 2 
and j > 2 are ignored. 
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Fig. 5. Performance comparison of the EMS, the Bubble Check with nb = 4 
and L-Bubble Check for N = 192 symbols, R = 112, nm = 12, nop = 24 
and 20 decoding iterations 

B. Simulation results for the L-Bubble Check algorithm 

Fig. 5 presents simulation results over the AWGN channel 
for N = 192, R = 1/2, nm = 12, nop = 24 and 20 
decoding iterations. These curves confinn the no perfonnance 
loss of the L-Bubble Check compared to Bubble Check or 
EMS. From these results we may conclude that the L-Bubble 
Check architecture is the one to be chosen for a practical 
implementation of the EMS ECN. 

C. The L-Bubble Check architecture 

The L-Bubble Check architecture is depicted in Fig. 6. In 
this figure the input values are stored in the memories U and 
V. The value T!;(i',j') is computed from two values (one of 
each memory) and feeds the sorter. This sorter is composed 
of four registers (BO, .. " B3), four multiplexers and one min 
operator. The output of the architecture is vector E. 

The values U(i') and V(j') to be fetched in the memories 
are detennined by the position that the last extracted value 
had in the sorter, represented by @ind E {O, 1,2, 3}. The 
adresses of the bubbles in the sorter are as follows: @O : (l,j), 
@1 : (2,j), @2 : (i,j), @3 : (i, 1). 

The critical path is composed of the following steps: 
1) Read U(i') and V(j') from memories U and V. 
2) Compute T!;(i',j') = U(i')+V(j'), this value becomes 

the ind'th bubble (position of the bubble extracted in the 
preceding cycle) and the corresponding register is thus 
bypassed. 

3) Oetennine the minimum value in the sorter and its 
associated index @ind (min operator). 

4) From @ind, update the address of the ith bubble and 
store it for the next cycle. The replacing rule is: 

a) if @ind = ° or 1, then j' = j + 1 
b) elsif (@ind = 2 & j = 1) then j' = 2 
c) else i' = i + 1 

This architecture was implemented on an FPGA device 
(Virtex XC4VLX200, speed 11). The results of the synthesis 
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Fig. 6. Architecture scheme of the L-Bubble Check 

were that each L-Bubble ECN requires a total of 498 slices 
and that the maximum clock frequency is 75 MHz. Note that 
this FPGA contains a total of 89,000 slices. 

D. The global jorwardibackward CN architecture 

Fig. 7 presents the forwardlbackward implementation of a 
CN as a systolic architecture. In this figure, the check node 
degree is de = 6 and the number of ECN processors is 3 x 
(de - 2) = 12. These ECNs are structured in de - 2 = 4 blocks 
and three layers: forward, backward and extrinsic computation. 

The initialisation phase is completed when each ECN re­
ceives the first 4 elements of its local U and first element of 
V. Then, at each clock cycle, each ECN receives two new 
inputs (one from each vector U and V) and generates a new 
element of vector E. The latency of the global CN to provide 
the first valid data is de + 2 clock cycles. Then, nop - 1 cycles 
are required to complete the whole CN processing. 

The main advantage of this architecture is that it can be 
easily modified to implement other values of de (i.e., to support 
different code rates). 

V. CONCLUSION 

This paper was dedicated to low-complexity implementa­
tion of the elementary check node processing in NB-LDPC 
decoders. After a brief review of the state-of-the-art, we 
described in detail the Bubble Check algorithm, which con­
situtes an original solution to significantly reduce complexity. 
After the analysis of the simulation results obtained for 
the Bubble Check, we proposed the L-Bubble Check, as a 
simplified version of the Bubble Check suitable for practical 
implementation. We described the associated architecture and 
presented simulation results showing that no performance 
loss is introduced with the use of the simplified architecture. 
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Backward 
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Extrinsic 
computation 

EB : ECN processor 

Fig. 7. Architecture scheme of a forwardlbackward CN processor, de = 6 

The L-Bubble Check architecture was adopted in a first 
implementation of a GF(64) rate-2/3 NB-LDPC decoder, for 
a frame length of 192 symbols and nm = 12. The FPGA 
synthesis results on a Virtex4 were the following: 22 Kslices 
and a maximum clock frequency of 75 MHz. The decoding 
thoughput was in the order of 3.8 Mbps for 8 decoding 
iterations. 
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