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Abstract—Layered decoding is known to provide efficient and
high-throughput implementation of LDPC decoders. However,
the implementation of the layered architecture is not always
straightforward because of the memory access conflicts in the
a-posteriori information memory. In this paper, we focus our
attention on a particular type of conflict introduced by the
existence of multiple diagonal matrices in the DVB-T2 parity
check matrix structure. We illustrate how the reordering of the
matrix reduces the number of conflicts, at the cost of limiting
the level of parallelism. We then propose a parity extending
process to solve the remaining conflicts. Fixed point simulation
results show coherent performance without modifying the layered
architecture.

Index Terms—Low-Density Parity-Check (LDPC) code, mem-
ory conflict, scheduling, VLSI implementation, layered decoder,
DVB-T2.

I. INTRODUCTION

Low Density Parity-Check (LDPC) codes [1] have gained

a lot of attention due to their remarkable error correcting

capabilities. Among all the published work on LDPC, the

approach introduced in [2] led to the conception of structured

codes which are now included in standards such as DVB-S2

and DVB-T2 [3] for digital video broadcasting, Wireless Local

Area Networks (WiFi) (IEEE 802.11n), Wireless Metropolitan

Area Networks(WiMAX) (802.16e)[4] and Wireless Regional

Area Networks(WRAM) (IEEE 802.22) for wireless networks.

These structured codes or architecture-aware codes (AA-

LDPC [5]) can be efficiently implemented using a semi-

parallel architecture [6], [7], [8], block-serial architecture [9],

[10], [11], or layered decoder architecture [12], [13], [14].

Beside the implementation efficiency, the turbo message

passing, introduced by Mansour [5], [15] and then referred

to as layered decoding by Hocevar [14], decreases by two the

number of iterations required to decode a code word compared

to the traditional flooding schedule. Furthermore the use of

a Soft-Output (SO) based Check Node Processor (CNP) [9],

[12], [13], [14], [16] presents the advantage of a significant

memory reduction.

Although DVB-S2 and DVB-T2 standards define structured

parity check matrices, these matrices are not perfectly struc-

tured for layered decoder architecture, leading to conflicts

in the SO memories. Throughput, silicon area and memory

conflicts are bottlenecks that make the implementation of these

standards a challenge. In [13] and [16] the authors present a

solution to avoid conflicts based on the computation of the

variation (or delta) of the SO metrics to allow concurrent

updates. The computation of this SO update needs either a

costly memory access or an increase of the clock frequency

by a factor of two.

In this paper, we use a layered decoder and we propose

a solution based on the ’divide and conquer’ strategy to

overcome the memory conflicts. A reordering mechanism of

the matrix called split algorithm creates a new structured

matrix that reduces the parallelism, however with significant

decreases in the number of conflicts. The remaining conflicts

are avoided by an equivalent matrix using added punctured

bits.

This paper is organized as follows: section II presents

the layered decoder and the arising conflicts when using

DVB-T2 matrices. In section III, we explain the splitting

process which reduces the number of conflicts and we present

results. In section IV, the remaining conflicts are removed by

matrix transformation. Finally, an implementation overview is

illustrated in section V.

II. MEMORY CONFLICTS IN THE DVB-T2 LDPC LAYERED

DECODER

A LDPC decoder is defined by its parity check matrix H

of M rows by N columns. Each column in H is associated

with one bit of the codeword or Variable Node (VN), and

each row corresponds to a parity check equation or Check

Node (CN). A nonzero element in a row means that the

corresponding bit contributes to this parity check equation.

Fig. 1 shows the structure of the rate-2/3 short-frame DVB-

T2 LDPC parity check matrix. The matrix is structured with

shifted identity matrices showing the link between V Nn and

CNm. This structure is efficient for highly parallel decoders.

In this section, after an overview of the layered decoder

principle, we will focus on the DVB-T2 LDPC matrices in

order to explain the arising memory conflicts.

A. Horizontal layered decoder

In the horizontal layered decoding algorithm, a VN is

represented by a SO value (SOv). This value is first initialized

by the Channel Log Likelihood Ratio (LLR = log(P (v =
0)/P (v = 1)) ). Then the decoding proceeds iteratively until

all the parity checks are verified or a maximum number of

iterations is reached. For layered decoding, one iteration is

split into sub-iterations, one for each layer. A layer can be
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made of one or several CNs and the sub-iteration consists in

updating all the VNs connected to the CNs of the layer. The

update of the VNs connected to one CN is done serially in

three steps. First, the message from VN to CN (Mv→c) is

calculated using the equation (1).

Mv→c = SOv − Mc→v (1)

The second step is the serial Mc→v update, where Mc→v

is a message from CN to VN. Let vc be the set of all the

VNs connected to the CN c and vc/v be vc without v. For

implementation convenience, the sign (2) and the absolute

value (3) of the messages are updated separately

sign(Mnew
c→v) =

∏

v′∈vc/v

sign(Mv′→c) (2)

|Mnew
c→v| = f

(

∑

v′∈vc/v

f(|Mv′→c|)

)

(3)

where f(x) = ln tanh
(

x
2

)

. Equation (3) can be implemented

using a sub-optimal algorithm such as the Min-Sum algorithm

[17], the normalized Min-Sum algorithm or the λ -min algo-

rithm [18].

The third step is the calculation of the SOnew value using

(4). The updated SOnew value can be used in the same

iteration by another sub-iteration leading to a two times faster

convergence, compared to the flooding schedule.

SOnew
v = Mv→c + Mnew

c→v (4)

From these equations, the CNP architecture in Fig. 2 can be

derived. The left adder of the architecture performs equation

(1) and the right adder performs equation (4). The central part

is in charge of the serial Mc→v update.

Several CN may be grouped together to form a layer,

whenever the column weights in the layer does not exceed
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Fig. 3. Zoom of a rate-2/3 DVB-T2 Matrix with N=16200

one. The structured matrices made of identity matrices of size

P allow us to compute layers made of CN Groups (CG) of

P CNs. The layered decoder architecture is mainly based on

P CNPs that first read serially the Groups of P VNs (VGs)

linked to one CG and then the P CNPs write back the result

to the VGs in the same order. The described architecture is

efficient for structured codes. However, memory conflicts arise

when using this architecture for DVB-T2 matrices.

B. Conflicts due to the DVB-T2 matrix structure

Fig. 3 shows a zoom in view on the first 720 VNs and

CNs of the DVB-T2 LDPC matrix illustrated in Fig. 1. We

can see that the first group of 360 CNs is linked twice to the

first group of 360 VNs by two diagonals. The sub-matrix with

a double diagonal in it will be called Double Diagonal Sub

Matrix (DDSM).

Let us consider the case where two CNs are computed in one

layer and connected to the same VN. There are two updates

of the same SO value. The calculation of the new SO (5) is

deducted from equation (1) and (4). Assuming ∆Mc1→v =
Mold

c1→v + Mnew
c1→v and using (5), we obtain the calculation of

SOnew1
v and SOnew2

v in (6) and (7), respectively.

SOnew
v = SOold

v − Mold
c→v + Mnew

c→v (5)

SOnew1

v = SOold
v + ∆Mc1→v (6)

SOnew2

v = SOold
v + ∆Mc2→v (7)

Because the SO is updated serially in the layered archi-

tecture, the SOnew2
v will overwrite the SOnew1

v value. This

conflict is equivalent to cut the Mc1→v1
message. This is

usually called a cutting edge and will lead to performance

degradation. Each DDSM will produce P cutting edges and

thus has to be avoided in the structure of the matrix.

As an example, Fig. 4 illustrates the number of DDSMs in

the rate-2/3 short-frame matrix. vgi denotes the ith group of

360 VNs and cgj denotes the jth group of 360 CNs . A square

denotes a permuted identity matrix linking cgj and vgi. In this

base matrix representation, each gray square corresponds to a

DDSM. Note that there are 14 DDSMs in this example. In the

next section we explain how to reduce the number of DDSMs.
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III. CONFLICT RESOLUTION BY GROUP SPLITTING

To achieve the minimum required throughput of 90Mbps

in the DVB-T2 standard, parallel processing of a fraction of

the 360 CNs is enough [8] [9]. In [9], the authors have used

45 CNPs which lead to significant area reduction, therefore

splitting the group of 360 CNs is considered. In [8] and

[9], the splitting process has already been done implicitly

through memory mapping. In the next subsection, we will

show how to reorder the structured matrices initially designed

for a parallelism of 360 to matrices designed for a parallelism

of 360/S, where S is the number of splits.

A. Construction of the sub-matrices

Let us define Ps as the number of CN working in parallel

after a split. P , Ps and S are then linked by the equation:

S × Ps = P

The construction process of the new matrix relies on the

permutation of the rows and the columns defined as:

σ(i) = (i mod S)Ps + ⌊i/S⌋ (8)

where ⌊x⌋ is the largest integer not greater than x. We first

reorder the CN using (8) where i is the CN number. Then we

reorder the VN in the same way.

B. Example

Let us consider the following example of a double diagonal

sub matrix H
DDSM
2,6 of size P = 12 in Fig. 5(a), where the

values in subscript are shift parameters of the two diagonals

i.e.: first diagonal is shifted by δ1 = 2 and the second

diagonal is shifted by δ2 = 6. This double diagonals matrix

will produces 12 cutting edges. After reordering the rows and
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Fig. 6. Split base DVB-T2 matrix representation

columns using equation (8) with S = 3 and Ps = 4, we obtain

the new matrix H
′DDSM
2,6 in Fig. 5(b). Note that H

′DDSM
2,6 is

composed of shifted identity matrices of size Ps and can be

best described by its base matrix

H
′DDSM

base =





2 −1 0
1 2 −1
−1 1 2





where −1 is a null sub matrix. There is a convenient way

to build the new base matrix layer by layer, using the shift

value of the diagonal i before split δold
i . If we focus on the

first layer of the new DDSM base matrix, the position of the

sub shifted identity matrix is given by vgi = δold
i mod S and

the shift value is given by δnew
i = ⌊δold

i /S⌋. Considering our

example, the first diagonal shift δold
1 = 2 gives vg1 = 2 and

δnew
1 = 0, and the second diagonal δold

2 = 6 gives vg2 = 0
and δnew

2 = 2. The next layer l + 1 is a copy of the previous

layer with vgl
i increased by one. However if vgl

i = S−1 then

vgl+1 = 0 and δl+1
i = δl

i + 1. It is important to mention that

the splitting of a DDSM does not always remove the double

diagonals. If (δ2 − δ1) mod S = 0 then vg1 = vg2 and there

will remain DDSM in the sub-matrices.

C. DDSM in DVB T2 and simulation results

The rate-2/3 base DVB-T2 matrix (Fig. 4) is split by a factor

of two and the obtained matrix is shown in Fig. 6. It can be

observed that after the split, the number of grey squares are

reduced from 14 to 8. In terms of cutting edges, this means

a reduction from 14 × 360 cutting edges to 8 × 180. Tables

I and II provides the equivalent number of DDSMs of size

360 as a function of the parallelism and the coding rate. An

asterisk (*) in the table means that there are triple identity

matrices among the counted DDSMs. Table I provides results

for short frames and Table II provides results for long frames

DVB-T2 LDPC codes. Significant reduction of the number of

cutting edges can be observed by the proposed group splitting

method.

Fig. 7 gives simulation results for a normalized Min-Sum

fixed point layered decoder, with 30 iterations for short frames

at a code rate of 2/3 in Additive White Gaussian Noise

(AWGN) channel. We simulate an architecture where the

channel value is quantified on 5 bits, the SO on 7 bits and

the normalization factor is 0.75. The curve denoted ’p45 (0

cuts)’ shows the error performance with a parallelism of 45



Short Frame

S Ps 1/4 1/2 3/5 2/3 3/4 4/5 5/6

1 360 4 8 0 14 9 9 20*

2 180 1 2 0 4 5 8 13*

3 120 1 1 0 3 3 2 11

4 90 0 1 0 2 2 7 5*

5 72 1 1 0 5 1 1 1

6 60 0 0 0 1 1 2 6

8 45 0 1 0 0 2 2 4*

9 40 1 0 0 1 2 0 3

10 36 0 0 0 1 0 1 1

TABLE I
NUMBER OF DDSM FOR SHORT FRAMES

Long Frame

S Ps 1/2 3/5 2/3 3/4 4/5 5/6

1 360 8 32* 12 23* 31* 35*

2 180 4 19 5 10 13 21

3 120 2 16 4 8 15 12

4 90 2 8 2 3 6 13

5 72 0 8 2 3 9 11

6 60 1 6 1 3 5 3

8 45 0 2 0 3 3 5

9 40 2 4 1 3 4 2

10 36 0 4 1 2 2 5

TABLE II
NUMBER OF DDSM FOR LONG FRAMES

which will produce no cutting edges. The parallelism of 60

and 90 (represented by ’p60’ and ’p90’ respectively) result

in a performance loss of 1dB from the reference (’p45’). The

significant performance loss motivates us to find a solution for

the remaining DDSMs in the next section.

IV. PARITY CHECK MATRIX EQUIVALENT

In [19] a method to transform a parity check matrix by the

introduction of VN of degree two is presented. With the help

of this method, we build an equivalent matrix without DDSMs.
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A. Principle

Taking into consideration one parity equation (9), it can be

split into two equations (10) and (11) using a dummy VN p0.

v1 + v2 + v3 + v4 + v5 = 0 mod 2 (9)

v1 + v2 + v4 + v5 + p0 = 0 mod 2 (10)

v3 + p0 = 0 mod 2 (11)

Fig. 8(a) shows a layer with one DDSM build using equation

(9). This layer is split into two layers without DDSM Fig.

8(b). For encoding, the matrix is theoretically extended and

then the added VNs are punctured wich give back the original

matrix. The encoding process remains unchanged. However,

during the decoding process added VNs(dummy VN) are

initialized with LLR values of 0. By using the BP algorithm,

a flooding schedule and enough iterations, the performance

of the extended matrix is equivalent to the original one. The

equivalent matrix is less effective for a quantified layered

decoder: The dummy VNs of degree two are used only for the

communication between the split CNs. The messages going

through the punctured VN are updated just one time during

one iteration. This means one iteration delay is needed for the

message to be sent from one split CN and received by the

other. The next subsection presents the results of simulation

on a fixed point normalized decoder.

B. Results

Fig. 9 shows a simulation result keeping the same conditions

as in Fig. 7 but utilizing extended matrices. At a BER of 10−7,

we can observe that every added DDSM gives a performance

loss of 0.1dB from the reference without conflict.

Fig. 10 is a simulation for short frame at parallelism of

40 which is the minimum required parallelism for a 200

MHz pipelined layered decoder to reach the expected 90Mbps
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throughput. The simulation results are presented at rates 2/3,

3/4 and 5/6. The curves represented by dashed lines are the

references at a parallelism that gives no conflict. The curve

represented by solid lines are the results with a parallelism of

40 and extended matrix. Despite the performance loss caused

by the parity extension, the BER as a function of code rates

is still coherent.

For long frames, the effect of extending the matrix is less

severe as the density of DDSM over the number of identity

matrices is sparser. Fig. 11 is a simulation for long frames in

similar condition as in Fig. 10. At a BER of 10−7, all code

rates remains within 0.1dB from our reference.

Note that the throughput is reduced due to the two added

identity matrices for each DDSMs. For example, in case of a

rate-5/6 short frame with a parallelism of 40, the 3 DDSMs

are removed by adding 6 identity matrices. Comparing with

the 2055 identity matrices, this leads to a throughput reduction

factor of 2055/(2055+6) which is negligible.

To summarize, the solution of extending the matrix for the
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Fig. 11. BER for long frames with parallelism of 40 with extended matrices

remaining DDSMs gives coherent simulation results for short

frames provided that the number of DDSMs does not exceed

3. Furthermore, in case of long frames results are within 0.1dB

from the reference provided that the number of DDSM does

not exceed 4. In next section, we present the architecture used

for fixed point simulation.

V. ARCHITECTURE

The architecture proposed in Fig. 12 is mainly based on

the architecture of a layered decoder. The counter counts

to IMbase (i.e. the number of identity matrices in the base

matrix). The ROM linked to the counter delivers the V Gi

addresses and the associated shift value following the base

matrix order. The size of the ROM dedicated to store V Gi

and Shifti is IM × (log2(S ∗ N/360) + log2(360/S)).
In this architecture, the ∆shift value allows the use of one

barrel shifter instead of two. As there is no barrel shifter in

charge of shifting back the SOs values, at the next call of

a V G, the SOs in this group are already shifted by the shift

value of the previous call (shiftold
V Gn

). The ∆shift value takes

into account the shift value of the previous calls by doing the

subtraction ∆shift = shiftnew
V Gn

− shiftold
V Gn

. shiftold
V Gn

is

stored in a RAM of size V GN × log2(Ps). The SO value

read in the RAM is written back in the RAM at the same

address but with a delay of ǫ cycles where ǫ depends on the

architecture. The Mv→c memory and the Mc→v memory are

implemented with a FIFO of size dc and IMbase respectively.

When a codeword is detected, the Most Significant Bit (MSB)

of the SOs must be shifted back to generate the codeword. This

can be done during the writing of the new SO value. While

Ps new values are written in RAM SO, Ps MSBs value of

RAM RO are read. These MSBs are shifted back using the

barrel shifter with the shift value stored in RAM shift. This

process takes M/Ps cycles.

The needed area to deal with one remaining DDSM using a

parity check matrix equivalent would be 360 SO RAM. This

extra cost is acceptable compared to the 64800 SO RAM
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required for long frames. The area over-cost to deal with

dummy VN (init with LLR=0) is negligible as the decoder

must be able to deal with punctured code to match the standard

requirement.

VI. CONCLUSION

In this paper we considered the problem of cutting edges in

DVB-T2 matrices. These are due to the matrix structure and

cause significant performance loss of the layered decoder. To

deal with this problem, we proposed a solution based on the

reordering of the matrices using a split process. This technique

greatly reduces the number of DDSMs and the area of the

CNP by a S factor, without any change in the layered decoder

architecture. However the level of parallelism is also reduced.

In the DVB-T2 standard, the number of splits are limited

due to the required throughput and the problem of DDSMs

remains for some of the matrices. For these cases we propose

the use of an equivalent matrix, which is constructed by adding

punctured parity bits. This technique efficiently removes the

remaining DDSMs and the architecture remains unchanged.

However, the proposed method results in a slight increase in

memory area and a slight decrease in throughput. Performance

loss due to the proposed method is well within the acceptable

limits. The new structured matrix obtained by splitting can also

provide solutions in the search of efficient layer scheduling to

avoid conflicts due to pipelining. Future work is focused on

hardware implementation of the proposed decoder architecture

and the evaluation of its performance in terms of area and

throughput at low FER.
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