TELECOM

VHDL language, from specification to
model

Very high speed integrated circults
Hardware Description Language

EDC - VHDL Language, from Specification to model - Reaud PACALET ~ Mar 13,2007 Page 1

TELECOM

Agenda

QIntroduction

2 Principles of Event Driven Simulation
aPractical Organization of Files and Projects
2 Compilation Units

aSyntax
0 Sequential VHDL
0 Concurrent VHDL

aStandardized Packages
aLogic Synthesis
JAdvices

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 2

History of the VHDL Language

2 VHDL (IEEE 1076-1987) was born in 1987 from the jait
efforts of:

aIEEE ->
Computer Society ->
Design Automation Technical Committee ->
Design Automation Standards Subcommittee ->
VHDL Analysis and Standardization Group

a CAD Language Systems Inc.
2 VHDL (IEEE 1076-2002) is the most recent revision
0 Some companion standards:

0 VITAL

0 Synthesis
Q etc.

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007

TELECOM

Page 3

TELECOM

Warning

2 This course presents VHDL revision 1993

0 Some modifications in the following revisions of ta standard
may be contradictory with this course

0 Please read the IEEE Language Reference Manuals (I\NRs)
for more information
2 The most important reason for this choice is that
some tools still don’t implement 100% of VHDL-
2002

A This course presents VHDL for synthesis. A lot of
features that are very important for modeling are
omitted

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 4

TELECOM

Agenda

alIntroduction
A Principles of Event Driven Simulation

aPractical Organization of Files and Projects
2 Compilation Units

aSyntax
0 Sequential VHDL
0 Concurrent VHDL

aStandardized Packages
aLogic Synthesis
JAdvices

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 5

Simulating parallel systems on T
sequential computers

O0OO0OO0OO0O0OOOO

00000000 0O0D0O0O0O0OO0ODO0OO

OO0O0OO0O0

EDC - VHDL Language, from Specification to model - Reaud PACALET ~ Mar 13,2007 Page 6

Simulating parallel systems
sequential computers

2 Parallelism 1s needed

O n TELECOM

2 Non-determinism Is an issue:
O Let’'s introduce a new king of variable,

dedicated to communication between
sequential programs (processes): the
signal

0When executing an assignment statement
the value of the signal is not affected

0 The value of the signals is modified once
every process was executed (afterl)

EDC - VHDL Language, from Specificati

SIG1 <=1;
SIG2 <= RED;
SIG3 <=TEN; /
\\\\ | ////
_ Z—
= —

on to model - Reaud PACALET Mar 13, 2007 Page 7

The symbolic time s ™

2 Used to specify
dependencies between
events, that is, to order

I
events P
a2 Needed to distinguish the | © ?&(ae
cause and the effect R
2ls the only one logic wait untl A= 25
synthesizers support B==3 - (adter B
wait until B=3;
C<=12; - (after Q)

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 8

Simulating Parallel Systems on T
Sequential Computers

aSequential programming is still

needed:
QClassical variables still exist | VA2 =4
inside the processes VARS := TEN; il
aVariable assignment is — —
: i _— S
Immediate
A Processes run in a very classical e

way

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 9

TELECOM

Physical time

2 Physical events occur at a
physical time

a2We want to model physical
events too

aThe physical time must be
modeled

A <= 25 after 1 hr;

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 10

The signal and its driver

&

3@T+1

A

&

a7

25@T+1h

A<=25

after

1 hr;

if(A=25) then
B <=3;
end if

EDC - VHDL Language, from Specification to model - Reaud PACALET

Mar 13, 2007

TELECOM

Page 11

TELECOM

Synchronization between processes

aDelta cycles have no physical duration
0 So the physical time cannot increase during simulatn!

a For most processes incremental step by step
execution is very inefficient

0 How to run processes when and only when it's needed

a At each simulation step the simulator resumes
only those processes which inputs changed

0 So it must be able to identify what signals are amput of any
particular process...

0 ... and decide whether they changed since the last exgion of
the process (or since the last simulation step)

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 12

if

Synchronization between processes

A\ 4

(A = 25)

then

—>

l

wait on A;

if (A = 25) then

B <=3;

—>

P

EDC - VHDL Language, from Specification to model - Reaud PACALET

Mar 13, 2007

TELECOM

Page 13

TELECOM

The simulation engine

S 5 3@T+2h 2
S& 47 25@T+1h 2
T —

Drivers

e mm—

D |eee [O [T ([>

* Scheduler

f
|

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 14

TELECOM

The process and the time

a The time evolves when
the process is suspended

. process
on one of its begin
synchronization points (S<=A+B;
> wait until RISING_ED
R:=S;
0 Between2 | { B
synchronization points |\ B<=IL
I I wait until RISING_EDGE(CLK)
the time is constant R e
Q This is the “Zero-Time” | COUNTER <= 127
execution else
_ _ _ COUNTER <= COUNTER - 1;
2 Signal assignment is \» endif
wait until RISING_EDGE(CLK);
delayed ' 1SO <= COUNTER * 7;
i AP d
0 The process is an infinite o=

loop

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 15

TELECOM

Example

architecture ARC of REGSIis

entity REGSIs
signal AOQ, Al : BIT;

port (CK, DIN : in BIT;
DOUT : out BIT); begin
end entity REGS; REGS PR : process (CK)

begin
if (CK="'1) then

A0 <=DIN;
Al <=A0;
DFF DFF DFF DOUT <= A1l;

g 20 a1 ' end if
n D Q D Q D Q dout

end process REGS_PR;

ck b CK b CK b CK
I_ I_ end architecture ARC:;

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 16

TELECOM

Event-driven simulation step by step

architecture SIM of INC is P1. process P3: process
signal CK: Bit; begin begin
signal D, Q: Natural, CK <=0’ wait on CK;
begin wait for 10 ns; if (CK='1) then
P1: process CK <=1, Q <=D;
begin wait for 10 ns; end if ;
CK <=0 end process P1; end process P3;
wait for 10 ns;
CK <=0}
wait for 10 ns;
end process P1;
P2: process
begin D
wait on Q; . .
D<=Q+1 after 15ns; See animation
end process P2;
P3:. process
bes&git on CK: P2:_ process
if (CK='1) then Cedin) |
Q <=D: wait on Q;
end if D<=Q+1 after 15ns;

end process P2;

end process P3;
end architecture SIM;

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 17

TELECOM

Agenda

d Introduction
2 Principles of Event Driven Simulation
aPractical Organization of Files and Projects

2 Compilation Units

aSyntax
0 Sequential VHDL
0 Concurrent VHDL

aStandardized Packages
aLogic Synthesis
JAdvices

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 18

TELECOM

Structure of the language

a To simulate we need:
0 Analysis (compilation) of source files

—> | Compiler

0 Elaboration (link) of compilation results

0 We always simulate the result of an Linker
elaboration

a The result of an analysis or an
elaboration is stored in a library ATty

0 The content of an existing library a0 N
may be used in another program
(after the proper declaration)

Simul ator

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 19

TELECOM

Structure of the language

2 5 compilation units:

a Entity y y y y y

0 Architecture — — p— = =
—P :B —

0 Package declaration E:E‘ _%r = £

0 Package body

1 Configuration \\ J /—/—

2 Only the 5 compilation units can
be compiled (analyzed)

0 Only the result of the \i_\

Compiler

compilation of an architecture — —

or a configuration can be ‘Q\#**

elaborated (linked) N
* B

N~

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 20

TELECOM

Libraries

2 The symbolic nameWORKesignates the target

library of a compilation (the library in which the
result of the compilation will be stored)

2 To access a library it must first be declared:

Qlibrary LIB ;
use LIB.PAQ.OBJ ;

aCreation and management of the libraries are not
defined in the standard, they are tool-dependant.
Every environment has its own solutions

adLibraries may be shared between users

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 21

TELECOM

Agenda

2 Introduction

2 Principles of Event Driven Simulation
aPractical Organization of Files and Projects
2 Compilation Units

aSyntax
0 Sequential VHDL
0 Concurrent VHDL

aStandardized Packages
aLogic Synthesis
JAdvices

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 22

TELECOM

The entity

alt's the interface
specification. It provides:

0 The module name FA) _oda ™
0 Its input-output ports: _.|B sl
Name —| ClI CO—»
Direction (in , out , inout , ...)
Type BIT, BIT_VECTOR
BOOLEANINTEGER ...) enfity FA is
A The ports are visible and NN e
usable as signals inside the S,CO: out
associated architecture. They"' "
must not be re-declared in *e“d enty FA

the architecture

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 23

The architecture

TELECOM

A A
O It's the internal B-1& J D S
description. It's always !
associated with its
entity _ _
architecture DF of FA is
3 A single entity may be beg;g“a' S L Bl
associated with several PL1: process (A, B)
architectures begin
I0<=A xor B;
I1<=A and B;
end process P1;
architecture BEV of FA is P2. process (l0, 11, Cl)
begin begin
PR: process (A, B, Cl) S<=10 xor CI;
begin CO<=(0 and CI) or I1;
S <=A xor B xor CI; end process P2;
CO<=(A and B) or (A and CI) or end architecture DF;
(B and CI);
end process PR;
end architecture BEV;

EDC - VHDL Language, from Specification to model - Reaud PACALET

Mar 13, 2007 Page 24

Structure of the language R

2VHDL is a heavily
declarative language:

0 Every object must be declared
before usage:

Variable
Signal
Constant
Function
Procedure
Component

AND
0 There are dedicated declaration @

AND
area] }

0 One cannot declare anything AND
anywhere...

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 25

TELECOM

The architecture

O Declaration area architecture DF of FA is

signal SI: BIT;

| BOdy (COncurrent S component MAJ
InStI’UCtIOHS) eng%r(;m(:)((;nYe,nZt ; in BIT; M: out BIT);

a Process \ begin
0 Concurrent signal

— PP: process (S, Cl)

assignment begin
S <=9 xor CI;
DComponent\ end process PP;
Instantiation... =
\ Sl<=A xor B:
QO Parallel execution,

_ ~ RET: MAJ port map (X=>A,Y =>B,
fille order not Z =>Cl, M => CO);

relevant end architecture DF;

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 26

The architecture

0 The ports of the
associated entity are
visible and usable as
signals inside the

associated

architecture. They \
must not be re-

declared in the

architecture

Input ports (in) are ——
read-only

Output ports (out)
are write-only

TELECOM

PARIS

école nationale
supérieure des

télécommunications

entity FA is

BIT;
BIT);

in
out

port (A, B, CI:
S, CO:

end entity FA;
architecture BUG of FA is

™ signal (A, B,Cl, S, CO DBIT;

begin

\»@ <=B or CI;

CO<=(A and B) or (A and CI) or
(B and CI);

~ S<=(A or B or Cl) andnot @or
A and B and CI;

end architecture BUG:;

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007

Page 27

TELECOM

The package

2 It's a collection of reusable things

2 It's made of two compilation units:
0 Package declaration
0 Package body
0 The content of the package
declaration is “visible” from

another compilation unit if it
declared its use (public part)

a The package body is “invisible”
from the other compilation units
(private part)

T

“;0@

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 28

TELECOM

The package declaration

Declarations of
types and package PAQ is

subtypes \ subtype WORDs BIT_VECTOR(7 downto O);

s type ANYRAMis array (NATURAL range <>) of WORD;

subtype TRAMis ANYRAM(Oto 1023);

Constant
declarations +— | = constant NBITS: POSITIVE;
(with or without constant VERSION: NATURAL := 8:
value)

component K
Component generic (N: POSITIVE := 12);
declarations port (A,B: in BIT;S: out BIT);

end component ;

Subprograms | > function MAX(A, B, C: INTEGER) return INTEGER;
declarations

end package PAQ;

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 29

The package body

TELECOM

Constant
declarations

Public or private
subprogram
bodies. Here

with name
overloading

package body PAQis
» constant NBITS: POSITIVE ;= 32;

function MAX(A, B: INTEGER) return INTEGER is

begin
if (A>B) then
return A;
/ else
return B;
endif ;
end MAX;

function MAX(A, B, C: INTEGER) return INTEGER is
N begin
return MAX(A, MAX(B,C));
end MAX;

end package body PAQ;

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007

Page 30

TELECOM

Components
2 Structural description = entity AND3 is
- " port (AO, Al, A2: in BIT;
assembly of simpler devices 2 o BT
" end entity ANDS;

- Base_d on the_dedaratlon architecture STR of ANDS3 is
and instantiation of a signal TMP: BIT:
CompOnent component -AN[?Z |

port (A,B: in BIT;

2 The component is not a o Comp‘;:nem out BIT)
compilation unit it's a begin |
prototype for an entity o ANBE portmap (472 £6

aComponents allow for a L AND2 portmas (f_f:zMP);
top-down design strategy ' B => TMP,

C=>2);
end architecture STR;

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 31

TELECOM

The configuration

2 It binds component instances ONconfiguraton CF1 of AND2 is
entity / architectures pairs for CMP

end for

a If it exists it is the compilation | end configuration ~ CF1;
unit to elaborate before

. . li BIB:
simulation ibrary ’

2 The simulator always needs a | configuration CF2 of AND3is
I : : f STR
kind of configuration o

for 10: AND2
a Logic synthesizers usually engigrconﬁguraﬂon BIB.CFL;
|mpl_emen§ a default or 11 ANDS
configuration scheme. Some use entity BIB.AND2(CMP):
don’t even support end for
configurations Sniel o

end configuration CF2;

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 32

TELECOM

The configuration

a1t may be flat or
hierarchical (in this case
the top level configuration | “Fowa®r - € o B3
or A3

IS the one to elaborate) for 12: K2
use entity BIB.E2(A2);
2 The for all statement for A2
. o o . for all K1
simplifies its source code seenity BIBELAL:
end for ;

aJEven when empty it gives i
useful information (an endfor :
entity name and an SR |
. . end configuration C3;
associated architecture
name)

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 33

TELECOM

Immediate configuration

aIt's possible to iImmediately bind instantiated
components to entity / architecture pairs with an
Immediate configuration statement. Syntax:

afor all : COMPONENT_NAMERIse entity
ENTITY(ARCHITECTURE);
Jdor.
afor LABEL1, LABEL2: COMPONENT_NAME use
entity ENTITY(ARCHITECTURE);

dImmediate configuration statements must appear
just after the local declarations and before the
architecture body

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 34

Instantiation of entities or —
configurations

2 0ne can avoid components and directly
Instantiate:
0 An entity — architecture pair
0 A configuration

entity AND3 is
port (AO, Al, A2: in BIT;
Z. out BIT);
end entity ANDS;
architecture STR of ANDS3 is
signal TMP: BIT;
begin
0: entity WORK.AND2(CMP)
port map (A =>A0, B =>A1, C=>TMP);
I1: configuration WORK.CF2
portmap (A=>A2,B=>TMP, C=>2);
end architecture STR;

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 35

TELECOM

Hierarchical design

2 To build a design from sub-designs
0 Instantiate entity — architecture pair
0 Wire them together
0 It’s the structural description style (vs. behavioal)

entity AND3 is
port (AO, Al, A2: in BIT;
Z. out BIT);
end entity AND3;
architecture STR of ANDS3 is
signal TMP: BIT;
begin
10: entity WORK.AND2(CMP)
portmap (A =>A0,B=>A1, C=>TMP);
I1: entty WORK.AND2(CMP)
port map (A=>A2,B=>TMP, C=>2);
end architecture STR;

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 36

TELECOM

Agenda

2 Introduction

2 Principles of Event Driven Simulation
aPractical Organization of Files and Projects
2 Compilation Units

aSyntax
a Sequential VHDL
0 Concurrent VHDL

aStandardized Packages
aLogic Synthesis
JAdvices

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 37

The process

2 A process is a sequential program
dEvery object it manipulates has a type

a1t manipulates objects with operators

alts control flow is specified by control structures

int max, i, sum, avr ;
int tab [10];

max=0;
for(1=0; i<10; i ++){
if(tab [i]> max)
max=tab [i];
sun+=tab [i |;

}
avr =sum/10;

variable MAX SUM AVR INTEGER
type T is array(0 to 9) of INTEGER
variable TAB. T;

MAX=0;
for 1 in0to9loop
if(TAB(1)> MAX then
MAX= TAB(|);
end if;
SUM= TAB(|)+ SUM
end loop;
AVR= SUMLO0;

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007

TELECOM

Page 38

TELECOM

Processes with sensitivity lists

JA process may have a sensitivity list
aThe sensitivity list is a list of signals
aIt's the only synchronization point of the process

STAT: process(TAB) Sensitivity list

Declaration area » variable SUM TMPB INTEGER

begin
TMP=0;
for 1 in0to 9 loop
if(TAB(I)> TMB then

TMP= TAB(1); :
end if; P Optional label

SUM= TAB(|)+ SUM
end loop;

Process body MAX=TMP

AVR<=SUM10;
end process STAT:

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 39

Exercise #1. examples of processes

TELECOM

3 This process models a combinatorial
function of signalsX and Y. What

function? As soon asX or/and Y changes
the function is re-executed. Write a
combinatorial process implementing the
majority function of 3 signals. Same

signal X, Y, Z: BIT;
P1l: process (X,Y)
begin
if X='1 then
Z<="1}

elsif Y="1 then

Z<="1,
else
Z<="0,
end if
end process P1;

guestion with the full adder
2 This process Is a synchronous one. It

models the behavior of a D-flip-flop
(DFF.What signal is the clock? The
iInput? The output? Explain the behavior
of this process. Write a process modeling

signal X,Y, Z: BIT;
P2: process(2)
begin
if zZz='T then
Y <=X;
end if;
end process P2;

a DFFon rising edge of its clock and with
asynchronous, active low, reset.

EDC - VHDL Language, from Specification

to model - Reaud PACALET Mar 13, 2007

Page 40

TELECOM

Comments, identifiers, literals, ...

0 Comments start with a double dash-€) and extend until
end of line (no multi-line comment/* ... */)

2 ldentifiers are sequences of letters, digits and werscores (
__). They must start with a letter. VHDL is case insesitive

0 Literals are constant explicit values:
045 and 7.89 are numeric literals
0 “this is a string of characters “

O‘C’ Is a character literal

0“000111010110¢ , B*000111010110“ , O“726" and X“1E6"
are bit-string literals

O null is an access (pointer) literal

0 Expressions are terminated by a semicolon |

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 42

TELECOM

Kinds of value containers

aValue containers can be one of three kinds:

0 Variables, very similar to variables in any other pogramming
language, they are dedicated to classical sequentia
programming (inside processes)

0 Constants, similar too to what is found in other laguages

0 Signals, the VHDL originality, dedicated to paralld
programming and, more precisely, to the exchangesbveen
several programs running in parallel

21In order to avoid common mistakes assignments
are denoted in different ways depending on the
kind of container:

0A:=178 for variables and constants
0S<=178 for signals

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 43

TELECOM

Initialization of variables and signals

0 A variable or a signal is initialized at the beginimg of the
simulation (time zero). Its default initialization value is the
leftmost value of the declaration of its type:

atype T is (RED, GREEN, BLUE);

variable V: T: -- Initialization value of V is
RED

2 It is possible to declare another initialization véaue when
declaring a variable or a signal:

asignal S:INTEGER :=0;

variable V: BOOLEAN := TRUE;

a Very often it's a bad idea because it may hide redreset”
defaults

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 44

The types

TELECOM

PARIS

école nationale
supé eu e des
télécommunications

aSignals, variables and constants always have a
type

TYPES

(Scalars)

(Composﬂes
(Pointers)
Physical
(Enumerated Records
BIT
BOOLEAN

! (Arrays
Integers BIT_VECTOR
e
INTEGER variable V:BIT_VECTOR(1 to 10);
NATURAL

BOSITIVE variable W: BIT_VECTOR(7 downto O0);

EDC - VHDL Language, from Specification to model - Reaud PACALET

Mar 13, 2007 Page 45

TELECOM

The Integer types

a The type Integer is build from the integer type ofthe host
CPU. The LRM requires that its length is larger orequal to
32 bits. Subtypes my be defined.

Otype INTEGER isrange CPU_DEPENDENT
a The typesNATURALand POSITIVE are range subtypes,
(range) of the same base type Integer

O subtype NATURALis INTEGER range O to
INTEGER'HIGH

asubtype POSITIVE is INTEGER range 1 to
INTEGER'HIGH;

2 A subtypes inherits the properties of its base tyse
Compatibility errors may occur during assignment

3 The type attribute INTEGER'HIGH represents the largest
element of type Integer. Its value is CPU-dependentHIGH
IS a type attribute, as in ADA

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 46

TELECOM

The Integer types

3 Integer objects are used to represent array indicesoop
Indices, data, ...

a They are defined from a base type by giving the rage
(bounds and direction):
Osubtype ONE_TO TENis NATURALrange (1 to 10);
D%Jbtype TEN_TO ONEis NATURALrange (10 downto
2 Warning there is a difference between types and stypes:
Otype ONE _TO TENis range 1 to 10;
Otype TEN_TO_ONEis range 10 downto 1,

2 Warning: the bounds must be compatible with the bas type

a Warning: a type for which bounds order and directioan are
different is an empty type

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 47

TELECOM

The real types

a2 The type REALIs based on the architecture of the

host CPU. The LRM says that it emulates the
mathematical behavior of real numbers and

requires it's dynamic to allow the representation
of numbers from-1.0E+38 to 1.0E+38

2In VHDL a real number is written:
Q+/-number. number{E+/- number}

aExamples:
oA =1.0;
oA = 1.0E10;

OA :=1.5E-20;

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 48

TELECOM

The physical types

2 VHDL allows the definition of physical types. Theyare
dedicated to representing physical values such ase,
voltage, etc. A physical type is a combination ofrainteger
type and a units system...

a The type TIME is the only predefined physical type:
Otype TIME isrange CPU_DEPENDENTnits

fs;

ps = 1000 fs;
ns = 1000 ps;
us = 1000 ns;
ms = 1000 us;
sec = 1000 ms;
min = 60 sec;
hr = 60 min;

end units

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 49

TELECOM

The enumerated types

2JAn enumerated type Is a type with an exhaustive
definition by enumeration:

atype COLORSis (RED, YELLOW, BLUE, GREEN,
ORANGE):;

atype FOUR_STATESis (X', '0','1','Z);
atype STD_ULOGICis (U, ‘X,’0",'1’,°Z,
1W1, 1L1’ 1H1’ 1_1);
2 The order in which an enumerated type is

declared is meaningful. Example: a signal or a
variable of enumerated typeT takesT'LEFT as

default initialization value

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 50

TELECOM

Predefined enumerated types

type BOOLEANis (FALSE, TRUE);
type BIT is ('0,'1);
type SEVERITY_LEVEL is (NOTE, WARNING, ERROR, FAILURE);
type CHARACTERS
(NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL,
BS, HT, LF, VT, FF, CR, SO, SI,
DLE, DC1, DC2, DC3, DC4, NAK, SYN, ETB,
CAN, EM, SUB, ESC, FSP, GSP, RSP, USP,
COL LS %, (&
‘(" ‘)” S
‘0, ‘1, ‘24, '3, ‘4, ‘5‘, ‘6', 7",
‘8,19, < S
‘@', ‘A, ‘B, 'C’, ‘DY, 'E', 'F, ‘G,
‘H T, Y 'K LY MY N (O
‘P, Q'R S, T U, VW
XN TN T,
CLral, b e, ds et T g,
‘h‘ 7 KT ‘m‘ ‘n‘ ‘o',
‘P, g, T, st Ul VW
XY, ‘z‘ ‘{’ 1, '}, ~, ‘DEL, etc.);

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 51

TELECOM

The array types

2 Array types are collections of identical objects idexed by
ranges of integer or enumerated types

0 Example :
Qtype BUSIis array (0 to 31) of BIT;
atype RAMis array (0 to 1024,0 to 31) of BIT;

aOtype PRICE is range 0 to INTEGER'HIGH units
cent;
nickel = 5 cent;
dime = 2 nickel;
dollar = 10 dime;
end units ;

Otype COLORSIs (WHITE, BLUE, GREEN, RED, YELLOW,
BLACK, RAINBOW);,

Otype PAINTINGS PRICES is array (COLOR range WHITE
to BLACK) of PRICE;

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 52

TELECOM

Unconstrained arrays

aAn array type may be declared with an unknown
range:
atype BIT _VECTOR is array (NATURAL range <>)
of BIT;
a2 Unconstrained array types may be used to model
parameters of subprograms. But of course

variable or even infinite size objects cannot exist
In order to create an object of typeBIT VECTOR

Its actual size must be declared:
asubtype TYPE_BUSis BIT VECTOR(O to 31);
avariable VARIABLE_BUS1: TYPE BUS;
avariable VARIABLE_BUS2: BIT VECTOR(0 to 31);

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 53

The STRING type i

2 VHDL defines character strings:

Otype STRING is array (POSITIVE range <>) of
CHARACTER,;

Q“Thisis astring” -- STRING

0 Some literals are ambiguous and cannot be typed gnby
evaluating the context:

o'l -- BIT or CHARACTER ?

0B"01010101" -- BIT_VECTOR in binary form
00"0120768" -- BIT_VECTOR in octal form

0 X"0134DF54" -- BIT_VECTOR in hexadecimal form

0"01010101" -- BIT_VECTOR or STRING ?

2 Qualification may be used to solve the ambiguity:
0 BIT_VECTOR'("01010101")

2 Warning: qualification is not a conversion

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 54

TELECOM

The records

2 A record is an object which elements are
heterogeneous

aExample:
atype OPTYPEis (ADD, SUB MPY DIV, JMP);

atype INSTRUCTION is record
OPCODE OPTYPE
SRC INTEGER
DST. INTEGER
end record;

2 VHDL has no records with variants (the C unions)

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 55

TELECOM

The access types (pointers)

a The concept of pointers is very far from hardware loit one
can create pointer types in VHDL to reference dynanc
data. Pointer types may be useful to very abstradtigh level
hardware descriptions not intended for logic synthsis

2 Dynamic objects are allocated with the statementew

2 Destruction is done with the statementleallocate which
Is implicitly self-declared when theaccess type is declared

a Example :
Otype FIFO ELEMENTIs array (0 to 3) of STD_LOGIC,;
Otype FIFO _ACCESS s access FIFO_ELEMENT,;
0 variable FIFO PTR: FIFO_ACCESS;
OFIFO_PTR:= new FIFO_ELEMENT,;
0O dealocate (FIFO_PTR);

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 56

The access types (pointers)

2 A dynamic object is created and elaborated with
the standard rules of VHDL. To create linked lists
where objects point to objects of the same type an
“iIncomplete declaration” is used:

TELECOM

type T,

type T PTR is access T,

type T is
record
VALUE: INTEGER,;
NEXT: T_PTR;
end record ;
type Pl is access

INTEGER,;

variable V,W: T_PTR;
variable VI: PI;

V= new T(1, null);

V.NEXT := new T'(2, new T(3, null));
V. NEXT. NEXT. NEXT = new T;

W := V. NEXT. NEXT. NEXT,;

wall =4, null);

VI. all :=W.VALUE =4;

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007

Page 57

TELECOM

The file types

0 A file is an object allowing data exchanges with # outside. It is
external to the VHDL system

0 A file is a sequence of records of the same bas@éy(scalar,
record or array). It is readable, writable or apperdable

0 A file type is declared:
atype FT is file of TM;

0 As soon as a file type is declared several assoehisubprograms
are implicitly self-declared:

0 Opening and closing procedures, end of file test fiction:

procedure FILE_OPEN (file F: FT; External_Name: in STRING;
Open_Kind: in FILE_OPEN_KIND := READ_MODE);

procedure FILE_OPEN (Status: out FILE_OPEN_STATUS,; file F: FT;
External_Name: in STRING; Open_Kind: in FILE_OPEN_KIND :=
READ_MODE);

procedure FILE_CLOSE (file F: FT);
function ENDFILE (fle F:FT) return BOOLEAN,;

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 58

TELECOM

The file types

ad As soon as a file type is declared several assoeit
subprograms are implicitly self-declared:

0 Read and write procedures:
procedure READ (file F:FT; VALUE: out TM);
procedure WRITE (file F: FT; VALUE: in TM);
2 Declaration of an objectF1 of type FT :
o file F1: FT; FILE_OPEN(F1, “foo.txt"); -- read mode
afile FL.FT is *“foo.txt"; -- read mode
afile F1.FT open WRITE_MODEs “foo.txt"; -- write mode
2 A file must be opened either in read modeREAD _MODEIn

write mode (WRITE_MOD¥or in append mode
(APPEND_MODE

a2 Note: whenTMis an unconstrained array type theREAD
procedure is declared:

a procedure READ (file F: FT; VALUE: out TM; LENGTH: out
NATURAL);

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 59

TELECOM

The text files

2 The packageTEXTIO from
the library STD contains S

subprograms and
declarations for text 1/O type TEXT is fleof STRING;

20ne file type TEXT .
file INPUT: TEXT open READ_MODE

a2 Two predefined TEXT files: | 's STP_INPUT:
fle OUTPUT TEXT open WRITE_MODE

INPUT and OUTPUT is “STD_OUTPUT”;

file FOO: TEXT;
FILE_ OPEN(FOO, “foo.txt");

fle BAR: TEXT,
FILE_OPEN(BAR, “bar.txt”, WRITE_MODE);

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 60

. TELECOM
The text files

0 Besides the implicitly declared
functions and proceduresTEXT [ype LINE is access STRING:

files may be accessed line by line

through LINE objects procedure READLINE(F: in TEXT;
0 The READLINE and - out LINE)
d : :
WRITELINE procedures read meC:e ;rﬁ L:’,:,’E;TELINE(F R
a_md write one entire line of a text
file procedure READ(L: inout LINE;
0 The READand WRITE VALUE: out BIT;

. .. GOOD: out BOOLEAN);
procedures read and write inside | | o c ReaDL: inout LINE.

the line; they are defined for the | yalue: out B

types BIT , BIT_VECTOR procedure WRITE(L: inout LINE;
BOOLEANCHARACTER VALUE: in BIT;

INTEGER REAL STRING and JUSTIFIED: in SIDE := RIGHT;

TIME FIELD: in WIDTH :=0);

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 61

TELECOM

Files

0 Examples of use: simulation
WRITING: process(S)

environments (reading of input variable L: LINE;
patterns in a file, writing of f”eis O%Tufg;ts TEXT open WRITE_MODE

output results in another file) | pegin

WRITE(L, S);
WRITE(L, STRING'(" at time "));
WRITE(L, NOW);
WRITELINE(OUPUTS, L);

READING: process end process WRITING;

variable L: LINE;
file INPUTS: TEXT Is « in.dat";

variable A: BIT_VECTOR(7 downto O0);
variable B: NATURAL range O to 11;
begin M> S
READLINE(INPUTS, L);
READ(L, A); design under test
VA <= A; VB
READ(L, B); —
VB <= B;

wait for 20 ns;
end process READING;

Mar 13, 2007 Page 62

EDC - VHDL Language, from Specification to model - Reaud PACALET

TELECOM

The type attributes

0 The type attributes are used to examine already d&red types
0 type COLORSis (RED, YELLOW, BLUE, GREEN, ORANGE);
0 type FOUR_STATESis (X,'0,'1,'Z);
0 Some attributes are implicitly self-declared at ty@ declaration.
Examples:
0 T'BASE — returns the base type of type T
0 COLORS'LEFT = RED
0 COLORS'RIGHT = ORANGE
0 FOUR_STATES'HIGH = 'Z*
0 FOUR_STATES'LOW = 'X'

0 Exercise #2: what is the returned value of theseditributes for
this subtype?

0 subtype REVERSE _COLOR®% COLORSrange ORANGEdownto
RED

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 63

TELECOM

The type attributes

0 Let variable A be of discrete typeT
0 T'POS(A) -- returns the position of A in the type
0 T'VAL(N) -- returns the Nth value in the type

O T'SUCC(A) -- returns the successor of A

-- T'SUCC(A) = TVAL(T'POS(A) + 1)
0 T'PRED(A) -- returns the predecessor of A

-- TPRED(A) = TVAL(T'POS(A) - 1)

O T'LEFTOF(A) -- returns the element at the left of A
-- in the declaration of the type

0 T'RIGHTOF(A) -- returns the element at the right of A
-- in the declaration of the type

0 VHDL is a strongly typed language. Any call to onef these
attributes issues an error when the result is outfdoounds of the
type. The error will be issued at compile, elaborabn or run time
depending on the context

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 65

TELECOM

The array types attributes

type Tis array (0 to 3,7 downto 0) of BIT;
variable TAB T,

TAB'LEFT(1) -- returns O

TAB'LEFT(2) -- returns 7

TAB'RIGHT(1) -- returns 3

TAB'RIGHT(2) -- returns O

TAB'HIGH(1) -- returns 3

TAB'HIGH(2) -- returns 7

TAB'LOW(1) -- returns O

TAB'LOW(2) -- returns O

TAB'RANGE(1) -- returns O to 3
TAB'RANGE(2) -- returns 7 downto O

TAB'REVERSE_RANGE(2) -- returnsO to 7
TAB'REVERSE _RANGE(1) -- returns 3 downto O
TAB'LENGTH(1) -- returns 4

TAB'LENGTH(2) -- returns 8

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 66

TELECOM

Aggregate

type OPTYPEis(ADOQ SUB MPY DIV, JMP)
type T is array (1 to 5) of OPTYPE

type U is
record
R1, R2, R3: INTEGER range 0 to 31;
OP: OPTYPE;
end record ;
variable A. T, variable B: U;

A:=(ADD , SuB MPY DIV, JMP),

A = (ADD, SUB, MPY, 5 => JMP, 4 => DIV);

A := (3 => ADD, SUB, MPY, JMP, DIV);

A = (ADD, 2 | 4 => MPY, others => DIV);
A :=(SUB, 2 to 4 =>DIV,5=>IMP);

B :=(0, 1, 2, ADD);

B .= (OP => JMP, others =>0);

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 67

TELECOM

Operators

3 Logical: and, or, nand, nor, xor, not
ad Relational: =, /=, <, <=, >, >=
2 Addition: +, -, & (concaténation)

a Sign: +, -
a Multipliers: *, /, mod, rem
OA=(A/B)*B+ (A rem B)

asign(A rem B) =sign(A)
Oabs(A rem B)< abs(B)
a(-A)/B=-(A/B)=A/(-B)
OCN,A=B*N+ (A mod B)
asign(A mod B) = sign(B)
Oabs(A mod B) < abs(B)

a Miscellaneous:** (exponentiation), abs
(absolute value)

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 68

Control structures

if Cl=-65 then
A =10;
B :=0}
elsif Cl=-64 then
A = 20;
B:="1
elsif Cl1>=-63 and Cl<=-60
then
A = 20;
B :=0}
elsif Cl=-59 or C1=187 then
A = 30;
B:=0;
else
A = 30;
B =1
endif ;

TELECOM

case Cl is
when -65=> A := 10;
B:='0}
when -64 => A := 20;
B =1}
when -63 to -60=>A :=20;
B =
0
when -61| 187 => A := 30;
B:=0}
when others => A :=30;
B =1
end case ;

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007

Page 69

TELECOM

Control structures

2 Loop indices must not be

declared _
L1: for | in O to 13 loop
2 Loop indices are considered -
. . L2: loop
as constants inside the loop| .
body L3: while NON_STOP_L3loop
dLoop labels are optional exit L2 when STOP_L2
next L3 when CONT L3;
aControl flow may be f STOP_LL then
modified by next and I
exit statements end loop L3;
end loop L2;
end loop L1,

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 70

TELECOM

The wait Instruction

0 A process must contain at least one synchronizatigooint

0 Either implicit: a list of signals, named sensitivy list, is declared in
the process header. The equivalentait instruction (wait on

list) is the last instruction of the process body. Itsi forbidden to
put other wait statements in the process

0 Or explicit: no signal list in the header. The proess may then contain
severalwait statements

a The complete form of thewait instruction:

Qwait [on S1, S2, ..]] until CONDITION] [for
DURATION;

0 S1, S2 must be signals

O CONDITIONIs an expression that evaluates as a boolean
O DURATIONs a timeout

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 71

wait . examples

0 Eternal:
await ;

2 No condition, no timeout;
O wait on S1, S2;

2 No list, no timeout:

O wait until (S1="0" and (S2 > ORANGE);
a2 Equivalent loop:
0 loop

waiton S1, S2;
exitwhen (S1="0" and (S2 > ORANGE);
end loop;

a Warning: if the condition contains no signals thewvait
becomes eternal. Classical example:

O wait until NOW > 10 s;

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007

TELECOM

Page 72

TELECOM

wait . examples

dThese two processes are equivalent

signal X, Y, Z: BIT; signal X, Y, Z: BIT;
PA process (X, Y) PA process
begin begin
if X="1' then if X = '1"then
=i Z <=1 ;
Z<="1" : 5
elsif Y="1' then elsif Y = 1' then
Gk elsﬁ R
else o R
T endif
endit wait on X, Y
end process PA, end process PA:

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 73

TELECOM

Assert

2 Check a property and issues a message if it is not
verified. Can also stop the simulation. Used to
check the proper use of a model

oassert CONDITION
[report MESSAGE]
[severity LEVEL];

0 CONDITION Boolean condition asserted true
0 MESSAGHEmMessage (string) to print in case of violation

0 LEVEL: assertion level from predefined type NOTE
WARNINGERRORFAILURE

JAn assertion which level I£ERROPYF FAILURE

usually stops the simulation (usually a parameter
In the simulator). ERRORSs the default level

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 74

Signal assignments i

école nationale
supérieure des

télécommunications

0 Signal assignments are of two types:

a Inertial
SIG1 <=reject 2 ns inertial 3 after 2ns,5 after 6ns,0 after 10ns;
SIG1 <=inertial 3 after 2ns,5 after 6ns,0 after 10ns;

SIG1 <= 3 after 2ns,5 after 6ns,0 after 10 ns;
a Transport

SIG1 <= transport 3 after 2ns,5 after 6ns,0

a The rejection delay is:

after 10 ns;

O Always less than the delay of the first transactioim the waveform

0O By default equal to the delay of the first transaabn in the waveform
Q Zero for transport

O Algorithm to update the driver of the signal (trangort type assignment):

O 1) Delete old transactions which date is equal orgater than the date of the first
transaction of the new waveform

O 2) Add new transactions at the end of the driver

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 75

TELECOM

Signal assignments

2 Algorithm to update the driver of the signal (inertial type
assignment):

0 1) Delete old transactions which date is equal orgater than
the date of the first transaction of the new wavefmn

02) Add new transactions at the end of the driver
0 3) Mark the new transactions

04) Old transactions which date is before the datefdhe first
transaction of the new waveform minus the rejectiorimit are
marked too

05) Every transaction preceding a marked transactiorof same
value is marked

06) The transaction presently driving the signal isnarked
07) Unmarked transactions are deleted

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 76

TELECOM

Signal assignments

0 Let A be a signal which driver at datel ns is:
0 [0@Ons][5@3ns][1@5ns][3@6ns][8@12ns]

0 Let's execute the assignment:

0 A<= transport 1 after 5 ns,2 after 10ns,3 after 15ns ;

0 The driver becomes:
0 R1:[0@O0ns][5@3ns][1l@5ns]
0 R2:[0@O0ns][5@3ns][1l@5ns][1@6ns][2@11ns][3@16ns]

0 If the assignment had been:
0O A<= 1 after 5 ns,2 after 10ns,3 after 15ns ; -- rejection=5ns

O The driver would be:

0 R1: [0@Ons][5@3ns][1@5ns]
R2: [0@Ons][5@3ns][1@5ns][1l@6ns][2@11ns][3@16ns]
R3: [0@0ns][5@3ns][1@5ns] [L@6ns][2@11ns][3@16ns]
R4: [0@0Ons][5@3ns][1@5ns] [L@6ns][2@11ns][3@16ns]
R5: [0@O0ns][5@3ns] [1@5ns|[1l@6ns][2@11lns][3@16ns]
R6: [0@Ons] [5@3ns] [1@5ns]|[1@6ns][2@11ns][3@16ns]
R7: [0@Ons][1@5ns][1@6ns][2@11ns][3@16ns]

0O 0O 0O 0O 0O O

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 77

TELECOM

Exercise #3

2 Draw the waveforms of signals<1 and X2

process (Y)
begin
X1l<=Y after 2ns;

X2 <= transport Y after 2ns;
end process

Ons 1Ins 2ns 3ns 4ns 5ns 6ns 7ns 8ns

Y
X1
X2

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 78

TELECOM

Exercise #4

2 Draw the waveforms of signalC

process (A, B)
begin

C<=A or B after 2ns;
end process

o

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 80

TELECOM

Signal attributes

alf Sis asignal, VHDL defines several attributes to
Investigate the signal’s status:

0 The attribute S'EVENT is a function returning a BOOLEANIt
returns TRUEIf the signal changed during the current
simulation step. Example: to detect the rising edgef a clock:

if (CLK="1) and CLK'EVENT then
Q <=D;
end if

0O The attribute S'LAST_EVENT is a function returning a TIME.
It returns the time elapsed since the last event agignal S.

0 The attribute S'LAST_VALUE is a function returning a S. It
returns the value the signalS had before the last event.

0 The attribute S'STABLE(T) is a signal of typeBOOLEANIts
value iISTRUEIf there wasn’t any event ofS for the duration
T.

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 82

TELECOM

Signal attributes

a1 The following attributes are about transactions
and not events:

0 The attribute S'ACTIVE is a function returning a BOOLEAN
It returns TRUE if the signal had a transaction during the
current simulation step

0 The attribute S'LAST_ACTIVE is a function returning a
TIME. It returns the elapsed time since the last transdion on
S.

0 The attribute S'QUIET(T) is a signal of type typeBOOLEAN
Its value isTRUEIf there was no transaction onS during T.

0 The attribute SSTRANSACTIONIs a signal of typeBIT that
toggles at every transaction orsb.

0 The attribute S'TDELAYED(T) is a signal of type ofS. Its
behavior is the behavior ofRin:

R <= transport S after T;

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 83

Exercise #5

2 Design the process(es)
modeling a DFF which ports

TELECOM

are:
aRSTis an active low (0) — D DFF
asynchronous reset CP Q
0 CPis the clock; theDFFis
synchronized on the rising edge of RST QN "

CP
aDis the input

0 Qs the output, QNis the inverted
output

EDC - VHDL Language, from Specification to model - Reaud PACALET

Mar 13, 2007

Page 84

TELECOM

Exercise #6

2 Design the process(es) modelingl@FFwhich

setup, hold and propagation times are represented
on the following waveforms:

CP I
D
:ts:0.3ns :t:h:O.Sns R
) tp =0.7 ns .
I'D |DFF

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 86

TELECOM

The subprograms

02 types of subprograms :

return BIT Is

Read only parameters
Return a value begin
0 Procedures

Writable parameters
No value returned

aBoth pertain to the sequential

domain procedure P(A: in BIT VECTOR:
S: out BIT) s

end function F:

O Same usage as in every

. beqi
programming language .

end procedure P;

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 88

TELECOM

Name overloading

2 In VHDL, as in ADA, several subprograms may sharehe
same name

a The compiler identifies the right subprogram dependhg on:
0O The name used for the call

0 The shape of the parameters:
Number and type of parameters
Type of the returned value (for functions)

a The compiler issues an error if there are more thammne or
zero candidates. It usually provides the list of th
considered candidates

0 Operators may also be overloaded by using their fustional
representation:

a function “+"(A, B: bit) return bit ;

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 89

Subprogram example

TELECOM

function NAT2VEC(VAL: NATURAL; SIZE: POSITIVE) return BIT_VECTOR;

function NAT2VEC(VAL: NATURAL; SIZE: POSITIVE) return BIT_VECTOR is
variable RES: BIT_VECTOR(SIZE- 1 downto O0):=(others =>°‘0;
variable TMP: NATURAL := VAL,
begin
for | in O to SIZE- 1 loop
exit when TMP =0;
if (TMP mod 2=1) then RES(l):="1} end if ;
TMP :=TMP / 2;
end loop ;
assert (TMP =0) report “NAT2VEC: overflow”
severity WARNING;
return RES;
end function NAT2VEC;

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007

Page 90

TELECOM

Exercise #/
télécommunications

dImagine the function VEC2NAT
OVEC2NAT(“001011100”) = 92
OVEC2NAT(%1001001”) =73

aWrite the functions PP and PG
aPP(12,18) =12
aPP(¢001”, “110”) = “001”
aPG(7, 0) =7
aPG(*001”, “110”) = “110”

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 91

Combinational processes: warning

aThe sensitivity list must be complete

2 All the outputs must receive a value
In every execution of the process

2 The best logic synthesizers issue

warnings

2 The violation of one of this rules will
probably lead to different behaviors
before and after logic synthesis

2 Unwanted

memory units inferred by

the synthesizer are usually the

Indicator t
violated

nat one of this rules iIs

EDC - VHDL Language, from Specification to model - Reaud PACALET

NOL

TELECOM

process (A, B)
begin
if (A='1")
S<='1";
elsif (B=1)
S<='1";
endif ;
end process

then

then

YES

process (A, B)
begin
if (A='1")
S<=1’;
elsif (B=1)
S<='17;
else
S<=0;;
endif ;
end process

then

then

Mar 13, 2007 Page 95

Warning: the process without
synchronization Point

aIt's the most frequent error. The process has no
sensitivity list and nowait statements. Warning:

wait statements may be present but masked by
control structures (if , case,loop ,...)

21 Effect : the simulation time (symbolic and
physical) is stuck at0. Nothing happens, the

simulator executes the same process forever and
the other processes are never executed

a Solution: stop the simulation, identify what
process was running and that time and fix it

EDC - VHDL Language, from Specification to model - Reaud PACALET

TELECOM

Warning: the combinational loop

aIt's a process or a collection of processes
equivalent to a combinational loop with a zero
physical propagation time

2 Effect: the symbolic time increases very fast while
the physical time is stuck. Nothing happens

a Solution: stop the simulation, identify what
process was running and that time and fix it

2 Note: several processes may be involved in a
combinational loop

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 97

TELECOM

Exercise #8

—|LSB ADD—
a This is the interface __,|poNE SHIET I—»
and state diagram of __ | INIT STB=0'

a Moore finite state
machine. It is
synchronized on the
rising edge of the
clock CP. The inputs
and outputs are Z
active high (1").
Design the
process(es) needed
to model this state

machine 1 1 1

SHIFT ADD INIT

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 98

TELECOM

Agenda

2 Introduction

aPrincipals of Event Driven Simulation
aPractical Organization of Files and Projects
2 Compilation Units

a Syntax
0 Sequential VHDL
a Concurrent VHDL

aStandardized Packages
aLogic Synthesis
JAdvices

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 101

Concurrent VHDL Tf“‘f"_““

2VHDL models are made of concurrent instructions

2 The 5 concurrent instructions are:
aProcesses
0 Entity (or component) instantiations
0 Concurrent procedure calls
0 Concurrent assertions
0 Concurrent signal assignments

aConcurrent instructions execute in pseudo-
parallelism, their order of appearance in the file
has no impact on the behavior

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 102

Concurrent VHDL s ™

DThe bOdy Of an architecture ARC of FOO s
. . signal 10, 11: INTEGER;
architecture is a set of begin
. begin
JA process Is ONE = o
concurrent instructions. end process PL;
And it Is made of several p2: process (10, 11)
: : i beui
sequential instructions AL
S <=11/I0;
ALARM <= FALSE;
else
S<=0;
ALARM <= TRUE;
endif ;
end process P2;
end architecture ARC,;

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 103

Concurrent VHDL Tf“‘f"_““

21In order to make some models simpler some
alternate forms of the process are provided:

0 Concurrent procedure calls
0 Concurrent assertions
0 Concurrent signal assignments

aThese concurrent instructions look like sequential
Instructions but they are not

alt is very important to remember that they are
simplified versions of processes (short hands)

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 104

Short hands

architecture AR of SUMis

begin
PR: process (A, B, Cl)

begin

S<=A xor B xor CI;

end process PR;

end architecture AR;

architecture
begin

S<=A Xxor

end architecture

AR of SUMis

B xor CI;

AR;

EDC - VHDL Language, from Specification to model - Reaud PACALET

Mar 13, 2007

TELECOM

PARIS

école nationale
supérieure des
télécommunications

Page 105

Short hands PARIS "

école nationale
supérieure des

télécommunications

architecture AR of SUMis
begin

PR: process (A, B, Cl)

architecture AR of SUMis
begin
begin

if (A=0) then

S<=B xor CI S <=B xor ClI when (A=0) else
elsit (B='0") then not ClI when (B="'0") else

S<= not CI; Cl;
else

S<=CI; end architecture AR;
endif ;

end process PR;

end architecture AR;

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 106

Short hands

architecture AR of SUMis
begin
PR: process (STATE)
begin

case STATE is
when INIT =>
NEXT_STATE <= RUN;
when RUN =>
NEXT_STATE <= WAIT;
when WAIT =>
NEXT_STATE <= INIT;
when others =>
NEXT_STATE <= INIT;
end case ;

end process PR;

end architecture AR;

TELECOM

PARIS

école nationale
supérieure des
télécommunications

architecture AR of SUMis
begin

with STATE select
NEXT_STATE <= RUN when INIT,
WAIT when RUN
INIT when WAIT,
INIT when others ;

end architecture AR;

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 107

Concurrent assertions

TELECOM

2 The concurrent assertion is equivalent to a regular

process containing a single sequential assertion
where SIGNALS_LIST is the list of signals

appearing in CONDITION

LABEL: assert CONDITION
report “"Message"
severity LEVEL;

LABEL: process
begin
assert CONDITION
report “"Message"
severity LEVEL;
wait on SIGNALS_LIST;
end process LABEL;

report “Zero-div error”

ZERO DIV: assert DIVIDOR /=0

AN

severity FAILURE;
ZERO_DIV: process

/

assert DIVIDOR /=0
report "Zero-div error"
severity FAILURE;
wait on DIVIDOR,;
end process ZERO_DIV;

ZERO_DIV: process(DIVIDOR)
begin
assert DIVIDOR /=0
report "Zero-div error"
severity FAILURE;
end process ZERO_DIV;

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 108

TELECOM

Concurrent procedures

2 Concurrent procedure calls are supported. They
can, for instance, be used to monitor signals. Isi

equivalent to a regular process where
SIGNALS_LIST s the list of signals In

PARAMETERS LISTthat are declaredin or
Inout

LABEL: PROCEDURE_NAME(PARAMETER_LISTS);

LABEL: processus

begin
PROCEDURE_NAME(PARAMETER_LISTS);
wait on SIGNALS LIST;

end processus LABEL,;

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 109

Structural VHDL s

2 VHDL supports hierarchical descriptions. Two mechamsms
can be used:

0 Entity instantiations. Simple and fast but the lesdlexible. Does not
allow top-down design flows. Every instantiated ety must be
compiled prior compilation of embedding architecture

ADD16: entity @ WORK.ADD(DTW)
generic map (N =>16) portmap (A, B, S);

0 Component instantiations. More complex because ewecomponent
instance must be bound to an actual entity (configation). More
flexible too because components are declarationsliéws compilation
of top-level first (top-down design flows)

component ADD is generic (N: Positive);
port (X,Y: in Unsigned(15 downto O0);
Z: out Unsigned(15 downto 0));

ADD16: ADD generic map (N =>16) port map (A, B, S);

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 110

Structural VHDL s

2When compiling the compiler checks the
compatibility between component or entity
Interface and port mapping to actual signals

2 If configurations are used they can be flat or
hierarchical and they allow specifying actual
circuits versions

a Configurations are a powerful tool but may lead to
complex descriptions

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 111

Component declaration

a The syntax Is very similar to the syntax of an enty
declaration

O component COMPONENT_NAM&
port (PORTS DECLARATION);
end component COMPONENT_NAME;

a A component declaration my be found in:
0 The declarative part of an architecture
0 In a package declaration (reusable)

a Example :

acomponent AND2
port (A,B: In STD LOGIC;C: out STD LOGIO);
end component ;

EDC - VHDL Language, from Specification to model - Reaud PACALET

Mar 13, 2007

TELECOM

Page 112

TELECOM

Component instantiation

2 A component instantiation (in an architecture body)has the
following syntax:

0 INSTANCE_NAME: COMPONENT_NAME
port map (PORTS_BINDING);

0 Where INSTANCE_NAMEs a unigue name for this instance

a The port map statement binds formal input/output ports
to actual signals
2 Ports — signals associations may be.:

0 Positional:
FA: FULL_ADDER(A, B, CI, S, CO);

O Named:

FA: FULL_ADDER(A=>X,B=>Y, Cl=>2Z,S=>U, CO =>
V),

0 As with aggregates both syntaxes may be mixed

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 113

Component instantiation: example

TELECOM

PARIS

école nationale
supérieure des
télécommunications

entity AND2 is
port(A, B:in BIT;
C.out BIT);
end entity AND?2
architecture ARC of ANDZ2 is
begin
C<=A and B;

end architecture ARC;

configuration AND2_CFGof AND2 is
for ARC
end for ;
end configuration AND2_CFG;
entity AND3 is
port(11, 12, 13:in BIT;
S:out BIT);
end entity AND3

architecture STR of ANDS3 is

component AND2
port (A, B: in BIT; C: out BIT);
end component ;
signal TMP: BIT;
begin
AO: AND2 port map (A=>11,B =>12,
C => TMP);
Al: AND2 port map (A=>13,B =>TMP,
C=>9),
end architecture STR;

configuration AND3 _CFGof ANDS3 is
for STR
for all : AND2
use configuration WORK.AND2_CFG;
end for ;
end for ;

end configuration AND3_CFG;

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007

Page 114

Component-entity binding rules

2When binding a component instance to an actual
entity the exact one to one association between
component ports and entity ports must be known

aIf the entity has a different interface (port names

order) the configuration must also associate
component ports and entity ports (with aport

map statement):

afor all : NAND2 use entity WORK.AND2(BEHAVE)
port map (I1=>A,12=>B,S=>0C);

EDC - VHDL Language, from Specification to model - Reaud PACALET

TELECOM

TELECOM

Generic parameters

2 VHDL offers several mechanisms to build generic
descriptions. Generic parameters are one of them

2Inside the associated architecture a generic
parameter is considered as a constant

entity ADD s
generic (N: POSITIVE range 1 to 32:=8);
port (A,B: in BIT_VECTOR(N- 1 downto O);
Cl: in BIT;
S: out BIT_VECTOR(N- 1 downto O0);
CO: out BIT);
end entity ADD;

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 116

TELECOM

Generic parameters

aGeneric parameters may have a default value

2 The actual value of a generic parameter may be
given by:

0 The component or entity instantiation statementgeneric
map)

0 De default value in component declaration
0 The default value in associated entity declaration

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 117

TELECOM

Generic parameters, example of use

architecture ARC of MUL is
component ADD
generic (N: POSITIVE range 1 to 32:=8);
port (A,B: in BIT_VECTOR(N- 1 downto 0O0);
S: out BIT_VECTOR(N- 1 downto 0));

end component ;
signal X1, X2, S: BIT_VECTOR(16 downto 0);

begin

| ADD: ADD generic map (N =>17);
port map (A => X0, B =>X1, S=>2);

end architecture ARC:;

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 118

TELECOM

The generate statement

adThe generate statement are another mechanism
to build generic descriptions

2 They are the concurrent equivalent of the
sequential for loops and if statements

architecture RTL of ADDis
component ADD1
port (A, B, ClI: in BIT;
S, CO: out BIT);
end component ;
signal C:BIT_VECTOR(N downto O0);
begin
G: for |1 in 0 to N- 1 generate
IA: ADD1 port map (A(l), B(l), C(I), S(1), C(l + 1));
end generate G;
C(0) <=CI;
CO <= C(N);
end architecture RTL;

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 119

The generate

entity FA
port (X,Y, Z: in BIT;
l, J: out BIT);
end entity FA;
architecture BEV of FA is
begin
I<=X xor Y xor [Z
J<=(X and (Y or Z)) or
(Y and 2);
end architecture BEV;

statement

configuration CFG of ADD s
for RTL
for G
for 1A: ADD1
use entity BIB.FA(BEV);
port map (X=>A,Y =>B,
Z=>Cl,|=>85,
J =>CO);
end for ;
end for ;
end for ;
end configuration CFG,;

EDC - VHDL Language, from Specification to model - Reaud PACALET

Mar 13, 2007

TELECOM

PARIS

école nationale
supérieure des
télécommunications

Page 120

Resolution functions

2 When a signal is driven by multiple processes it I'saas
many drivers as source processes. In order to comfmuits
actual value a function is needed; the resolutioruhction.
This function is associated to the type of the sighwhich is
said to be a resolved signal:

function OU_CABLE(VAL: BIT_VECTOR)
return BIT is
begin

if (VAL'LENGTH =0) then
return ‘0
end if

for | i’n VAL'RANGE loop _ _ .
if (VAL(I) = ‘1)) then signal S1: RESOLVED_BIT;

signal S2: OU_CABLE BIT,;

subtype RESOLVED BIT is
OU_CABLE BIT;

return i

end if
end loop
return ‘0’
end function OU_CABLE;

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007

TELECOM

Page 121

TELECOM

Resolution functions: example of use

CPU

WEB WEB

OEB OEB

entity CPU s
port (A: out STD ULOGIC VECTOR(7downto O0);
IO: inout STD LOGIC VECTOR(15downto O0);
WEB, OEB: out STD ULOGIO);
end entity CPU,;
architecture ARC of CPUis

IO <=“010011000110111"; -- ecriture

O <="727727277777777777"; -- lecture

end architecture ARC;

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 122

TELECOM

Resolution functions: example of use

dmid

COI0 Cl11 C212

signal S: STD_LOGIC;

S<=10 when CO='T else
‘Z’ when others ;

S<=11 when C1="'1 else
‘Z'’ when others ;

S<=12 when C2="1 else
‘Z’ when others ;

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 123

Resolved type: beware

2 Never use a resolved type if it's not needed

a2 Compiler and linker would not help detecting
unwanted shortcuts

a Systematically using resolved typesSTD _LOGIC
iInstead of STD_ULOGIQ is thus dangerous

a Systematically using resolved typesSTD _LOGIC
iInstead of STD_ULOGIQ also slows down the

simulations (resolving a conflict takes time)

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 124

TELECOM

Agenda

2 Introduction

aPrincipals of Event Driven Simulation
aPractical Organization of Files and Projects
2 Compilation Units

aSyntax
0 Sequential VHDL
0 Concurrent VHDL

a Standardized Packages

aLogic Synthesis
JAdvices

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 125

Library STD packageSTANDARD g

a The STD package is a standard one that comes with any
VHDL design environment

a The STD library is implicitly declared in each source file.lt
IS never necessary to re-declare it

a The STANDARDpackage defines the base types:
0 Enumerated: BOOLEAN, BIT, CHARACTER, SEVERITY_LEVEL
0 Numeric: INTEGER, NATURAL, POSITIVE, REAL, TIME
0 Composite: STRING, BIT_VECTOR

0 And the NOWunction

2 The STANDARDpackage is implicitly declared in each
source file. It is never necessary to re-declare it

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 126

Library STD, packageTEXTIO e

A This package is dedicated to ASCII files I/O
aUnfortunately it is very poor

21t defines:
OTypesLINE, TEXT, SIDE andWIDTH
aFilesINPUT and OUTPUT
0 ProceduresREADLINE, READ, WRITELINE and WRITE
0 Function ENDLINE

alIt has to be explicitly declared:
ause STD.TEXTIO. all ;

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 127

Library |IEEE, package T
STD LOGIC 1164

2 Defines a multi-valued logic as an enumerated type:

Otype STD ULOGICis (
'U', -- Uninitialized
‘X', -- Forcing Unknown
'0', -- Forcing O
'l", -- Forcing 1
Z', -- High Impedance
'W', -- Weak Unknown
'L, -- Weak O
'H', -- Weak 1

- Don't care);

2 Also defines a resolution function forSTD_ULOGICand the
associated resolved typeSTD _LOGIC

2 And also defines the corresponding vector types
STD_ULOGIC_VECTORNd STD_LOGIC VECTOR

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 128

Library |IEEE, package T
STD LOGIC 1164

2 Also defines:
0 Some resolved sub-types &TD_ULOGIC (X01, X01Z, etc.)

0 All the logic operators for STD_ULOGIC, STD_LOGIC,
STD ULOGIC VECTORaNd STD LOGIC _VECTOR

0 Conversion functions from and to typeBIT and
BIT VECTOR

0 Functions RISING _EDGE and FALLING_EDGE to detect
edges on signals of typ8TD_ ULOGIC

O Functions|IS_X to detect undefined values‘'()’, ‘X’
lZ! : iW’ ’ (_1)

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 129

TELECOM

Library IEEE, others packages

2 The IEEE library contains some other useful
packages

aTwo are dedicated to arithmetic on vectors:

aNUMERIC BIT:
Defines typesSIGNED and UNSIGNED (arrays of BIT)
Overloads the arithmetic, logic and relational opeators for those

types
Defines the conversion function from and to Integetypes

Adds various dedicated functions (rotations, shiftsetc.)

ONUMERIC _STD
Defines typesSIGNED and UNSIGNED (arrays of STD _LOGIQ
Overloads the arithmetic, logic and relational opeators for those

types
Defines the conversion function from and to Integetypes

Adds various dedicated functions (rotations, shiftsetc.)

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 130

TELECOM

Agenda

2 Introduction

aPrincipals of Event Driven Simulation
aPractical Organization of Files and Projects
2 Compilation Units

aSyntax
0 Sequential VHDL
0 Concurrent VHDL

aStandardized Packages
aLogic Synthesis

JAdvices

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 131

TELECOM

Combinational logic inference

2 Combinational logic is inferred

from variables or signals that process (2.,

ale. z <= a+b+c;

end process

0 Unconditionally assigned
0 Before being read

0 Every time the process resumes process (a, b, c)
begin
O0r if b= then
Z<=aq,
0 Conditionally assigned else
Z<=¢;
0 For every possible condition endif ;
end process

0 Every time the process resumes

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 132

Latches inference

TELECOM

aLatches are inferred from variables or signals that

are.

0 Not affected for every process execution

0 On a particular level of a control signal

a With or without initialization

Synchronous
Asynchronous

process (data_in, enable)
begin
if enable =1 then
data_out <= data_in;
endif ;
end process

process (data_in, enable,
set_sig, reset_sig)
begin
if enable ='1'
if set sig ='1'
data_out <=1

then

elsift reset_sig ='1'
data_out <="'0;
else
data_out <= data_in;
endif ;
endif ;

end process

then

then

EDC - VHDL Language, from Specification to model - Reaud PACALET

Mar 13, 2007

Page 133

TELECOM

Latches inference

aLatches are inferred from variables or signals that
are:
0 Not affected for every process execution
0 On a particular level of a control signal

a With or without initialization

Synchronous process (data_in, enable,
set_sig, reset_sig)

Asynchronous begin

if set sig ='1' then
data_out <="1";

elsif reset _sig ='1' then
data_out <=0

elsif enable ='1' then
data_out <= data_in;

endif ;

end process

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 134

TELECOM

Flip-flops inference

2D flip-flops are inferred from variables or signals
that are:
0 Not affected for every process execution
0 On a particular edge of a control signal (clock)
a With or without initialization

process (clk)
Synchronous i
Asynchronous if clk =1 and
clk’'event then
if set sig ='l' then
process (clk) data_out <="1"
begin elsif reset_sig ='1' then
if clk =1 and data_out <='0"
clk’event then else _
data_out <= data_in: data_out <= data_in;
endif ; N endif ;
end process endif ;
end process

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 135

Flip-flops inference A

2D flip-flops are inferred from variables or signals
that are:
0 Not affected for every process execution

0 On a particular edge of a control signal (clock)
a With or without initialization

Synchronous
Asynchronous process (clk, set_sig, reset_sig)
begin
if set sig ='1' then
data_out <="1";
elsif reset sig ='1' then
data_out <="0";
elsif clk =1’ and clk’event then
data_out <= data_in;
end if
end process

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 136

TELECOM

Clock edge specification

2 Clock edge specification supported by most
synthesizers:

aif (clk'event and clk ="1") then

o wait until (clk'event and clk ="1";
aif (rising_edge(clk)) then

o wait until rising_edge(clk);

aif (clk'event and clk = 0" then
o wait until (clk'event and clk = '0"Y;
aif (falling_edge(clk)) then

Qwait until falling_edge(clk);

Q...

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 137

TELECOM

Unwanted latches inference

supérieure des
télécommunications

JUnwanted latches inference

signal curr_state, next_state, modifier:
std_logic_vector(2 downto 0);
process (curr_state, modifier)
begin
case curr_state IS
when "000" => next_state <="100" or modifier;
when "001" => next_state <="110" or modifier;
when "010" => next_state <="001" and modifier;
when "100" => next_state <="101" and modifier;
when "101" => next_state <="010" or modifier;
when "110" => next_state <= "000" and modifier;
when others => null ;
end case ;
end process

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 138

TELECOM

Unwanted latches inference

dAvold unwanted latches inference

signal curr_state, next_state, modifier:
std_logic_vector(2 downto 0);
process (curr_state, modifier)
begin
next state <= "100%
case curr_state IS
when "000" => next_state <="100" or modifier;
when "001" => next_state <="110" or modifier;
when "010" => next_state <="001" and modifier;
when "100" => next_state <="101" and modifier;
when "101" => next_state <="010" or modifier;
when "110" => next_state <= "000" and modifier;
when others => null ;
end case ;
end process

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 139

TELECOM

Unwanted latches inference

dAvold unwanted latches inference

signal curr_state, next_state, modifier:
std_logic_vector(2 downto 0);
process (curr_state, modifier)
begin
case curr_state IS
when "000" => next_state <="100" or modifier;
when "001" => next_state <="110" or modifier;
when "010" => next_state <="001" and modifier;
when "100" => next_state <="101" and modifier;
when "101" => next_state <="010" or modifier;
when "110" => next_state <= "000" and modifier;
when others => next_state <= "100";
end case ;
end process

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 140

TELECOM

Supported loops

aLoops
0 Can be synthesized

0 But they are unrolled first

0 Bounds offor loops must be static:
This is synthesizablefor | in 0 to 7 loop

Notthis:for | in F(X) to G(Y) loop (exceptwhenX and
Y are compile-time constants)

0 Conditions of while loops must be static
This is synthesizablewhile FALSE loop

Not this: while C(X,Y) loop (exceptwhenX andY are
compile-time constants)

The while and infinite loops are usually not synthesizable

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 141

TELECOM

wait statement

aThewait statements are sometimes supported
but with limitations. Examples of such limitations:
0 One singlewait statement per process
0 Always as the first (or last) instruction

0 Only for clock edge specification
0 With clock as single signal inon part...

Q...

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 142

TELECOM

Synthesis options

1 Synthesis options
0 May be special comments
0 VHDL attributes

0 Multiple usages:
synthesis on/off
translate on/off
Set and reset
Arithmetic architectures
Encoding of enumerated types
Wired or multiplexed logic (case)
Coding and optimization of state machines
Semantics of resolution functions

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 143

ionale

Synthesis packages B

aSome packages are dedicated to logic synthesis
0 IEEE standard:
IEEE.STD LOGIC 1164
IEEE.NUMERIC_BIT
IEEE.NUMERIC_STD

0 Proprietary packages:
Attributes declarations — Synthesis options
Proprietary arithmetic functions
Macro-functions VHDL models
VHDL models of standard cells libraries

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 144

NUMERIC_BIT and NUMERIC_STD [&ig

0 Standard arithmetic on BIT (or STD_ULOGIQ based types
0 TypesSIGNED and UNSIGNED

0 Classical arithmetic operators are overloaded foSIGNED and
UNSIGNED

0 SIGNED and integres orUNSIGNED and integers can be mixed in
expressions

a Integer to and from vector conversion functions arelefined:
TO_INTEGER
TO_SIGNED, TO_UNSIGNED

0 Vector types being compatible one with the other t corresponding
conversion functions all have the same name as tdestination type:

SIGNED
UNSIGNED
BIT_VECTOR

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 145

TELECOM

Dangers

JBeware:

0 Unwanted registers
Flip-flops
Latches

0 Incomplete sensitivity lists
aLoops

0 Combinational loops

0 Sign in arithmetic operations
a Partitioning

0 Portability
The semantics for synthesis is not standard
Proprietary packages are ... proprietary

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 146

TELECOM

Agenda

2 Introduction

aPrincipals of Event Driven Simulation
aPractical Organization of Files and Projects
2 Compilation Units

aSyntax
0 Sequential VHDL
0 Concurrent VHDL

aStandardized Packages
aLogic Synthesis
a2 Advices

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 147

Synchronize

TELECOM

PARIS

école nationale
supérieure des
télécommunications

wait for 10 * PERIODE;

for 1 in O to 9 loop
wait until (CK=17;
end loop

EDC - VHDL Language, from Specification to model - Reaud PACALET

Mar 13, 2007 Page 148

For Synthesis separate synchronous and
combinational

TELECOM

PR: process (CK)

begin
if (CK='1) then
S<=S+1,;
endif ;

end process PR;

PRS: process (CK)

PRC: process (SORTIE) begin

begin if (CK=1) then
E<=S+1; S.<= E;

end process PRC; endif ;

end process PRS;

EDC - VHDL Language, from Specification to model - Reaud PACALET

Mar 13, 2007

Page 149

To speed up simulation, avoid signals

ARC of REGSIs
AOQ, Al: BIT,;

architecture
signal
begin
REGS_PR: process (CK)
begin
if (CK='1)
AO <= DIN;
Al <= A0;
DOUT <= Al;
end if;
end process
end ARC,;

then

REGS_PR;

architecture ARC of REGSIis
begin
REGS_PR: process (CK)
variable A0, Al: BIT;
begin
if (CK='1) then
DOUT <= Al;
Al = AQ;
AO := DIN;
end if;
end process REGS_PR;
end ARC,;

EDC - VHDL Language, from Specification to model - Reaud PACALET

Mar 13, 2007

TELECOM

Page 150

TELECOM

For synthesis count registers

architecture ARC of REGSIs
begin

REGS_PR: process (CK) -- 3 bits registers
variable A0, Al: BIT;
begin
if (CK='1) then
DOUT <= A1l;
Al = AO;
AO := DIN;
end if;
end process REGS PR;

end ARC;

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 151

Comment a lot and don’t mix models grar
and reality

20ne line of code = 10 lines of comments
JHDL /= matériel

o e

EDC - VHDL Language, from Specification to model - Reaud PACALET Mar 13, 2007 Page 152

Master complexity

aVery frequently the problem turns out to be much
more complex than initially expected. In such
situations the designer progressively piles up
modifications

2 Effect: il the problem is serious the code rapidly
becomes a unusable piece of code, impossible to
understand or maintain

aSolution: Restart from scratch, taking into
account the discovered new problems. Re-design
the partitioning, the data structures, rewrite
everything

EDC - VHDL Language, from Specification to model - Reaud PACALET

Hardware and software

aVHDL Is a programming language but it’'s main
goal is to model hardware. Writing VHDL without
a clear idea of the underlying hardware cannot
give good results

2 Effects: impossibility to refine the code into a
synthesizable form, different behaviors before and
after synthesis

a Solution: think hardware first. To model a
hardware architecture you must have a clear idea
of it

EDC - VHDL Language, from Specification to model - Reaud PACALET

