
EDC - VHDL Language, from Specification to model - Renaud PACALET Page 1Mar 13, 2007

VHDL language, from specification to
model

Very high speed integrated circuits
Hardware Description Language

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 2Mar 13, 2007

Agenda

� Introduction

�Principles of Event Driven Simulation

�Practical Organization of Files and Projects

�Compilation Units

�Syntax
�Sequential VHDL

�Concurrent VHDL

�Standardized Packages

�Logic Synthesis

�Advices

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 3Mar 13, 2007

History of the VHDL Language

� VHDL (IEEE 1076-1987) was born in 1987 from the joint
efforts of:
� IEEE ->

Computer Society ->
Design Automation Technical Committee ->
Design Automation Standards Subcommittee ->
VHDL Analysis and Standardization Group

� CAD Language Systems Inc.

� VHDL (IEEE 1076-2002) is the most recent revision

� Some companion standards:
� VITAL

� Synthesis

� etc.

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 4Mar 13, 2007

Warning

�This course presents VHDL revision 1993
�Some modifications in the following revisions of the standard

may be contradictory with this course

�Please read the IEEE Language Reference Manuals (LRMs)
for more information

�The most important reason for this choice is that
some tools still don’t implement 100% of VHDL-
2002

�This course presents VHDL for synthesis. A lot of
features that are very important for modeling are
omitted

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 5Mar 13, 2007

Agenda

� Introduction

�Principles of Event Driven Simulation

�Practical Organization of Files and Projects

�Compilation Units

�Syntax
�Sequential VHDL

�Concurrent VHDL

�Standardized Packages

�Logic Synthesis

�Advices

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 6Mar 13, 2007

P1P1

P3P3

P4P4

P5P5

P2

P3

P4

P5

P1

Simulating parallel systems on
sequential computers

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 7Mar 13, 2007

SIG1 <= 1;
SIG2 <= RED;
SIG3 <= TEN;

SIG1 <= 1;
SIG2 <= RED;
SIG3 <= TEN;

Simulating parallel systems on
sequential computers

�Parallelism is needed

�Non-determinism is an issue:
�Let’s introduce a new king of variable,

dedicated to communication between
sequential programs (processes): the
signal

�When executing an assignment statement
the value of the signal is not affected

�The value of the signals is modified once
every process was executed (after 1 ∆∆∆∆)

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 8Mar 13, 2007

1

23

wait until A = 25;
B <= 3; -- (after ∆)

wait until A = 25;
B <= 3; -- (after ∆)

The symbolic time

wait until B = 3;
C <= 12; -- (after ∆)

wait until B = 3;
C <= 12; -- (after ∆)

�Used to specify
dependencies between
events, that is, to order
events

�Needed to distinguish the
cause and the effect

� Is the only one logic
synthesizers support

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 9Mar 13, 2007

VAR1 := 1;
VAR2 := RED;
VAR3 := TEN;

VAR1 := 1;
VAR2 := RED;
VAR3 := TEN;

Simulating Parallel Systems on
Sequential Computers

�Sequential programming is still
needed:

�Classical variables still exist
inside the processes

�Variable assignment is
immediate

�Processes run in a very classical
way

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 10Mar 13, 2007

A <= 25 after 1 hr;A <= 25 after 1 hr;

Physical time

�Physical events occur at a
physical time

�We want to model physical
events too

�The physical time must be
modeled

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 11Mar 13, 2007

...
if (A = 25) then

B <= 3;
end if ;
...

...
A <= 25 after 1 hr;
...

4747 25 @ T + 1 h25 @ T + 1 hAA

if (A = 25) then

B <= 3 ;B <= 3 ;

55 3 @ T + 1 ∆3 @ T + 1 ∆BB

The signal and its driver

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 12Mar 13, 2007

Synchronization between processes

�Delta cycles have no physical duration
�So the physical time cannot increase during simulation!

�For most processes incremental step by step
execution is very inefficient
�How to run processes when and only when it’s needed

�At each simulation step the simulator resumes
only those processes which inputs changed
�So it must be able to identify what signals are an input of any

particular process…

�… and decide whether they changed since the last execution of
the process (or since the last simulation step)

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 13Mar 13, 2007

wait on A;wait on A;

if (A = 25) then

B <= 3;B <= 3;

wait on A;
A <= not A;

wait on A;
A <= not A;

Synchronization between processes

if (A = 25) then

B <= 3;B <= 3;

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 14Mar 13, 2007

P1

P2

P3

5 3 @ T + 2 hA

47 25 @ T + 1 hB

7 18 @ T + 10 mnC

12 0 @ T + 1 sG

Drivers

Scheduler

The simulation engine

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 15Mar 13, 2007

The process and the time

process
begin

S <= A + B;
wait until RISING_EDGE(CLK);
R := S;
A <= I0;
B <= I1;
wait until RISING_EDGE(CLK);
if (R > 1023) then

ALARM <= TRUE;
COUNTER <= 127;

else
COUNTER <= COUNTER - 1;

end if ;
wait until RISING_EDGE(CLK);
ISO <= COUNTER * 7;

end process ;

process
begin

S <= A + B;
wait until RISING_EDGE(CLK);
R := S;
A <= I0;
B <= I1;
wait until RISING_EDGE(CLK);
if (R > 1023) then

ALARM <= TRUE;
COUNTER <= 127;

else
COUNTER <= COUNTER - 1;

end if ;
wait until RISING_EDGE(CLK);
ISO <= COUNTER * 7;

end process ;

� The time evolves when
the process is suspended
on one of its
synchronization points

� Between 2
synchronization points
the time is constant

� This is the “Zero-Time”
execution

� Signal assignment is
delayed

� The process is an infinite
loop

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 16Mar 13, 2007

entity REGS is

port (CK, DIN : in BIT;
DOUT : out BIT);

end entity REGS;

entity REGS is

port (CK, DIN : in BIT;
DOUT : out BIT);

end entity REGS;

architecture ARC of REGS is

signal A0, A1 : BIT;

begin

REGS_PR : process (CK)

begin

if (CK = ‘1’) then
A0 <= DIN;
A1 <= A0;
DOUT <= A1;

end if ;

end process REGS_PR;

end architecture ARC;

architecture ARC of REGS is

signal A0, A1 : BIT;

begin

REGS_PR : process (CK)

begin

if (CK = ‘1’) then
A0 <= DIN;
A1 <= A0;
DOUT <= A1;

end if ;

end process REGS_PR;

end architecture ARC;

D

CK

Q

DFF

D

CK

Q

DFF

D

CK

Q

DFF

din

ck

a0 a1
dout

Example

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 17Mar 13, 2007

architecture SIM of INC is
signal CK: Bit;
signal D, Q: Natural;

begin
P1: process
begin

CK <= ‘0’;
wait for 10 ns;
CK <= ‘0’;
wait for 10 ns;

end process P1;
P2: process
begin

wait on Q;
D <= Q+1 after 15 ns;

end process P2;
P3: process
begin

wait on CK;
if (CK = ‘1’) then

Q <= D;
end if ;

end process P3;
end architecture SIM;

architecture SIM of INC is
signal CK: Bit;
signal D, Q: Natural;

begin
P1: process
begin

CK <= ‘0’;
wait for 10 ns;
CK <= ‘0’;
wait for 10 ns;

end process P1;
P2: process
begin

wait on Q;
D <= Q+1 after 15 ns;

end process P2;
P3: process
begin

wait on CK;
if (CK = ‘1’) then

Q <= D;
end if ;

end process P3;
end architecture SIM;

Event-driven simulation step by step

(50 MHz)(50 MHz)

+1
(15 ns)

+1
(15 ns)

DQ

CK

P1: process
begin

CK <= ‘0’;
wait for 10 ns;
CK <= ‘1’;
wait for 10 ns;

end process P1;

P1: process
begin

CK <= ‘0’;
wait for 10 ns;
CK <= ‘1’;
wait for 10 ns;

end process P1;

P3: process
begin

wait on CK;
if (CK = ‘1’) then

Q <= D;
end if ;

end process P3;

P3: process
begin

wait on CK;
if (CK = ‘1’) then

Q <= D;
end if ;

end process P3;

P2: process
begin

wait on Q;
D <= Q+1 after 15 ns;

end process P2;

P2: process
begin

wait on Q;
D <= Q+1 after 15 ns;

end process P2;

See animationSee animation

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 18Mar 13, 2007

Agenda

� Introduction

�Principles of Event Driven Simulation

�Practical Organization of Files and Projects

�Compilation Units

�Syntax
�Sequential VHDL

�Concurrent VHDL

�Standardized Packages

�Logic Synthesis

�Advices

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 19Mar 13, 2007

CompilerCompiler

LinkerLinker

Structure of the language

SimulatorSimulator

� To simulate we need:
� Analysis (compilation) of source files

� Elaboration (link) of compilation results

� We always simulate the result of an
elaboration

� The result of an analysis or an
elaboration is stored in a library

� The content of an existing library
may be used in another program
(after the proper declaration)

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 20Mar 13, 2007

CompilerCompiler

a b

p
c

e
LinkerLinker

E A P B C

Structure of the language

� 5 compilation units:
� Entity

� Architecture

� Package declaration

� Package body

� Configuration

� Only the 5 compilation units can
be compiled (analyzed)

� Only the result of the
compilation of an architecture
or a configuration can be
elaborated (linked)

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 21Mar 13, 2007

Libraries

�The symbolic name WORKdesignates the target
library of a compilation (the library in which the
result of the compilation will be stored)

�To access a library it must first be declared:
� library LIB ;

use LIB.PAQ.OBJ ;

�Creation and management of the libraries are not
defined in the standard, they are tool-dependant.
Every environment has its own solutions

�Libraries may be shared between users

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 22Mar 13, 2007

Agenda

� Introduction

�Principles of Event Driven Simulation

�Practical Organization of Files and Projects

�Compilation Units

�Syntax
�Sequential VHDL

�Concurrent VHDL

�Standardized Packages

�Logic Synthesis

�Advices

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 23Mar 13, 2007

CI

A

B

CO

S

FA

entity FA is

port (A, B, CI: in BIT;
S, CO: out

BIT);

end entity FA;

entity FA is

port (A, B, CI: in BIT;
S, CO: out

BIT);

end entity FA;

The entity

� It’s the interface
specification. It provides:
�The module name (FA)

� Its input-output ports:
� Name
� Direction (in , out , inout , ...)
� Type (BIT , BIT_VECTOR,

BOOLEAN, INTEGER, ...)

�The ports are visible and
usable as signals inside the
associated architecture. They
must not be re-declared in
the architecture

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 24Mar 13, 2007

CI

A

B

CO

S

architecture DF of FA is
signal I0, I1: BIT;

begin
P1: process (A, B)
begin

I0 <= A xor B;
I1 <= A and B;

end process P1;
P2: process (I0, I1, CI)
begin

S <= I0 xor CI;
CO <= (I0 and CI) or I1;

end process P2;
end architecture DF;

architecture DF of FA is
signal I0, I1: BIT;

begin
P1: process (A, B)
begin

I0 <= A xor B;
I1 <= A and B;

end process P1;
P2: process (I0, I1, CI)
begin

S <= I0 xor CI;
CO <= (I0 and CI) or I1;

end process P2;
end architecture DF;

architecture BEV of FA is
begin

PR: process (A, B, CI)
begin

S <= A xor B xor CI;
CO <= (A and B) or (A and CI) or

(B and CI);
end process PR;

end architecture BEV;

architecture BEV of FA is
begin

PR: process (A, B, CI)
begin

S <= A xor B xor CI;
CO <= (A and B) or (A and CI) or

(B and CI);
end process PR;

end architecture BEV;

The architecture

� It’s the internal
description. It’s always
associated with its
entity

� A single entity may be
associated with several
architectures

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 25Mar 13, 2007

1

2

Structure of the language

�VHDL is a heavily
declarative language:
�Every object must be declared

before usage:
� Variable
� Signal
� Constant
� Function
� Procedure
� Component
� ...

�There are dedicated declaration
area

�One cannot declare anything
anywhere…

ANDAND

ANDAND

ANDAND

ANDAND

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 26Mar 13, 2007

architecture DF of FA is

signal SI: BIT;
component MAJ

port (X, Y, Z: in BIT; M: out BIT);
end component ;

begin

PP: process (SI, CI)
begin

S <= SI xor CI;
end process PP;

SI <= A xor B;

RET: MAJ port map (X => A, Y => B,
Z => CI, M => CO);

end architecture DF;

architecture DF of FA is

signal SI: BIT;
component MAJ

port (X, Y, Z: in BIT; M: out BIT);
end component ;

begin

PP: process (SI, CI)
begin

S <= SI xor CI;
end process PP;

SI <= A xor B;

RET: MAJ port map (X => A, Y => B,
Z => CI, M => CO);

end architecture DF;

The architecture

�Declaration areas

�Body (concurrent
instructions)
�Process

�Concurrent signal
assignment

�Component
instantiation...

�Parallel execution,
file order not
relevant

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 27Mar 13, 2007

entity FA is

port (A, B, CI: in BIT;
S, CO: out BIT);

end entity FA;

architecture BUG of FA is

signal A, B, CI, S, CO: BIT;

begin

A <= B or CI;

CO <= (A and B) or (A and CI) or
(B and CI);

S <= (A or B or CI) and not CO or
A and B and CI;

end architecture BUG;

entity FA is

port (A, B, CI: in BIT;
S, CO: out BIT);

end entity FA;

architecture BUG of FA is

signal A, B, CI, S, CO : BIT;

begin

A <= B or CI;

CO <= (A and B) or (A and CI) or
(B and CI);

S <= (A or B or CI) and not CO or
A and B and CI;

end architecture BUG;

The architecture

� The ports of the
associated entity are
visible and usable as
signals inside the
associated
architecture. They
must not be re-
declared in the
architecture

� Input ports (in) are
read-only

� Output ports (out)
are write-only

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 28Mar 13, 2007

The package

� It’s a collection of reusable things

� It’s made of two compilation units:
� Package declaration

� Package body

� The content of the package
declaration is “visible” from
another compilation unit if it
declared its use (public part)

� The package body is “invisible”
from the other compilation units
(private part)

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 29Mar 13, 2007

The package declaration

package PAQ is

subtype WORD is BIT_VECTOR(7 downto 0);
type ANYRAM is array (NATURAL range <>) of WORD;
subtype TRAM is ANYRAM(0 to 1023);

constant NBITS: POSITIVE;
constant VERSION: NATURAL := 8;

component K
generic (N: POSITIVE := 12);
port (A, B: in BIT; S: out BIT);

end component ;

function MAX(A, B, C: INTEGER) return INTEGER;

end package PAQ;

package PAQ is

subtype WORD is BIT_VECTOR(7 downto 0);
type ANYRAM is array (NATURAL range <>) of WORD;
subtype TRAM is ANYRAM(0 to 1023);

constant NBITS: POSITIVE;
constant VERSION: NATURAL := 8;

component K
generic (N: POSITIVE := 12);
port (A, B: in BIT; S: out BIT);

end component ;

function MAX(A, B, C: INTEGER) return INTEGER;

end package PAQ;

Declarations of
types and
subtypes

Declarations of
types and
subtypes

Constant
declarations

(with or without
value)

Constant
declarations

(with or without
value)

Component
declarations
Component
declarations

Subprograms
declarations

Subprograms
declarations

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 30Mar 13, 2007

The package body

package body PAQ is

constant NBITS: POSITIVE := 32;

function MAX(A, B: INTEGER) return INTEGER is
begin

if (A>B) then
return A;

else
return B;

end if ;
end MAX;

function MAX(A, B, C: INTEGER) return INTEGER is
begin

return MAX(A, MAX(B,C));
end MAX;

end package body PAQ;

package body PAQ is

constant NBITS: POSITIVE := 32;

function MAX(A, B: INTEGER) return INTEGER is
begin

if (A>B) then
return A;

else
return B;

end if ;
end MAX;

function MAX(A, B, C: INTEGER) return INTEGER is
begin

return MAX(A, MAX(B,C));
end MAX;

end package body PAQ;

Public or private
subprogram
bodies. Here
with name

overloading

Public or private
subprogram
bodies. Here
with name

overloading

Constant
declarations

Constant
declarations

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 31Mar 13, 2007

entity AND3 is

port (A0, A1, A2: in BIT;

Z: out BIT);

end entity AND3;

architecture STR of AND3 is

signal TMP: BIT;

component AND2

port (A, B: in BIT;

C: out BIT);

end component ;

begin

I0: AND2 port map (A => A0,

B => A1,

C => TMP);

I1: AND2 port map (A => A2,

B => TMP,

C => Z);

end architecture STR;

entity AND3 is

port (A0, A1, A2: in BIT;

Z: out BIT);

end entity AND3;

architecture STR of AND3 is

signal TMP: BIT;

component AND2

port (A, B: in BIT;

C: out BIT);

end component ;

begin

I0: AND2 port map (A => A0,

B => A1,

C => TMP);

I1: AND2 port map (A => A2,

B => TMP,

C => Z);

end architecture STR;

Components

�Structural description =
assembly of simpler devices

�Based on the declaration
and instantiation of a
component

�The component is not a
compilation unit it’s a
prototype for an entity

�Components allow for a
top-down design strategy

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 32Mar 13, 2007

configuration CF1 of AND2 is

for CMP

end for ;

end configuration CF1;

library BIB;

configuration CF2 of AND3 is

for STR

for I0: AND2

use configuration BIB.CF1;

end for ;

for I1: AND2

use entity BIB.AND2(CMP);

end for ;

end for ;

end configuration CF2;

configuration CF1 of AND2 is

for CMP

end for ;

end configuration CF1;

library BIB;

configuration CF2 of AND3 is

for STR

for I0: AND2

use configuration BIB.CF1;

end for ;

for I1: AND2

use entity BIB.AND2(CMP);

end for ;

end for ;

end configuration CF2;

The configuration

� It binds component instances on
entity / architectures pairs

� If it exists it is the compilation
unit to elaborate before
simulation

� The simulator always needs a
kind of configuration

� Logic synthesizers usually
implement a default
configuration scheme. Some
don’t even support
configurations

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 33Mar 13, 2007

configuration C3 of E3 is

for A3

for I2: K2

use entity BIB.E2(A2);

for A2

for all : K1

use entity BIB.E1(A1);

end for ;

end for ;

end for ;

end for ;

end configuration C3;

configuration C3 of E3 is

for A3

for I2: K2

use entity BIB.E2(A2);

for A2

for all : K1

use entity BIB.E1(A1);

end for ;

end for ;

end for ;

end for ;

end configuration C3;

The configuration

� It may be flat or
hierarchical (in this case
the top level configuration
is the one to elaborate)

�The for all statement
simplifies its source code

�Even when empty it gives
useful information (an
entity name and an
associated architecture
name)

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 34Mar 13, 2007

Immediate configuration

� It’s possible to immediately bind instantiated
components to entity / architecture pairs with an
immediate configuration statement. Syntax:
� for all : COMPONENT_NAME use entity

ENTITY(ARCHITECTURE);

�or:
� for LABEL1, LABEL2: COMPONENT_NAME use

entity ENTITY(ARCHITECTURE);

� Immediate configuration statements must appear
just after the local declarations and before the
architecture body

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 35Mar 13, 2007

Instantiation of entities or
configurations

�One can avoid components and directly
instantiate:
�An entity – architecture pair

�A configuration

entity AND3 is

port (A0, A1, A2: in BIT;

Z: out BIT);

end entity AND3;

architecture STR of AND3 is

signal TMP: BIT;

begin

I0: entity WORK.AND2(CMP)

port map (A => A0, B => A1, C => TMP);

I1: configuration WORK.CF2

port map (A => A2, B => TMP, C => Z);

end architecture STR;

entity AND3 is

port (A0, A1, A2: in BIT;

Z: out BIT);

end entity AND3;

architecture STR of AND3 is

signal TMP: BIT;

begin

I0: entity WORK.AND2(CMP)

port map (A => A0, B => A1, C => TMP);

I1: configuration WORK.CF2

port map (A => A2, B => TMP, C => Z);

end architecture STR;

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 36Mar 13, 2007

Hierarchical design

�To build a design from sub-designs
� Instantiate entity – architecture pair

�Wire them together

� It’s the structural description style (vs. behavioral)

entity AND3 is

port (A0, A1, A2: in BIT;

Z: out BIT);

end entity AND3;

architecture STR of AND3 is

signal TMP: BIT;

begin

I0: entity WORK.AND2(CMP)

port map (A => A0, B => A1, C => TMP);

I1: entity WORK.AND2(CMP)

port map (A => A2, B => TMP, C => Z);

end architecture STR;

entity AND3 is

port (A0, A1, A2: in BIT;

Z: out BIT);

end entity AND3;

architecture STR of AND3 is

signal TMP: BIT;

begin

I0: entity WORK.AND2(CMP)

port map (A => A0, B => A1, C => TMP);

I1: entity WORK.AND2(CMP)

port map (A => A2, B => TMP, C => Z);

end architecture STR;

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 37Mar 13, 2007

Agenda

� Introduction

�Principles of Event Driven Simulation

�Practical Organization of Files and Projects

�Compilation Units

�Syntax
�Sequential VHDL

�Concurrent VHDL

�Standardized Packages

�Logic Synthesis

�Advices

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 38Mar 13, 2007

The process

�A process is a sequential program

�Every object it manipulates has a type

� It manipulates objects with operators

� Its control flow is specified by control structures

int max, i , sum, avr ;
int tab [10];
...
max=0;
for(i =0; i <10; i ++) {

if(tab [i]> max)
max=tab [i];

sum+=tab [i];
}

avr =sum/10;

int max, i , sum, avr ;
int tab [10];
...
max=0;
for(i =0; i <10; i ++) {

if(tab [i]> max)
max=tab [i];

sum+=tab [i];
}

avr =sum/10;

variable MAX, SUM, AVR: INTEGER;
type T is array(0 to 9) of INTEGER;
variable TAB: T;
...
MAX:=0;
for I in 0 to 9 loop

if(TAB(I)> MAX) then
MAX:= TAB(I);

end if;
SUM:= TAB(I)+ SUM;

end loop;
AVR:= SUM/10;

variable MAX, SUM, AVR: INTEGER;
type T is array(0 to 9) of INTEGER;
variable TAB: T;
...
MAX:=0;
for I in 0 to 9 loop

if(TAB(I)> MAX) then
MAX:= TAB(I);

end if;
SUM:= TAB(I)+ SUM;

end loop;
AVR:= SUM/10;

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 39Mar 13, 2007

Processes with sensitivity lists

�A process may have a sensitivity list

�The sensitivity list is a list of signals

� It’s the only synchronization point of the process

STAT: process(TAB)
variable SUM, TMP: INTEGER;

begin
TMP:=0;
for I in 0 to 9 loop

if(TAB(I)> TMP) then
TMP:= TAB(I);

end if;
SUM:= TAB(I)+ SUM;

end loop;
MAX<=TMP;
AVR<=SUM/10;

end process STAT;

STAT: process(TAB)
variable SUM, TMP: INTEGER;

begin
TMP:=0;
for I in 0 to 9 loop

if(TAB(I)> TMP) then
TMP:= TAB(I);

end if;
SUM:= TAB(I)+ SUM;

end loop;
MAX<=TMP;
AVR<=SUM/10;

end process STAT;

Declaration areaDeclaration area

Process bodyProcess body

Sensitivity listSensitivity list

Optional labelOptional label

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 40Mar 13, 2007

signal X, Y, Z: BIT;
P1: process (X, Y)
begin

if X = '1' then
Z <= '1';

elsif Y = '1' then
Z <= '1';

else
Z <= '0';

end if ;
end process P1;

signal X, Y, Z: BIT;
P1: process (X, Y)
begin

if X = '1' then
Z <= '1';

elsif Y = '1' then
Z <= '1';

else
Z <= '0';

end if ;
end process P1;

signal X, Y, Z: BIT;
P2: process(Z)
begin

if Z = ‘1’ then
Y <= X;

end if;
end process P2;

signal X, Y, Z: BIT;
P2: process(Z)
begin

if Z = ‘1’ then
Y <= X;

end if;
end process P2;

Exercise #1: examples of processes

� This process models a combinatorial
function of signals X and Y. What
function? As soon as X or/and Y changes
the function is re-executed. Write a
combinatorial process implementing the
majority function of 3 signals. Same
question with the full adder

� This process is a synchronous one. It
models the behavior of a D-flip-flop
(DFF).What signal is the clock? The
input? The output? Explain the behavior
of this process. Write a process modeling
a DFFon rising edge of its clock and with
asynchronous, active low, reset.

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 42Mar 13, 2007

Comments, identifiers, literals, ...

� Comments start with a double dash (--) and extend until
end of line (no multi-line comment /* … */)

� Identifiers are sequences of letters, digits and underscores (
_). They must start with a letter. VHDL is case insensitive

� Literals are constant explicit values:
� 45 and 7.89 are numeric literals

� “this is a string of characters “

� ‘C’ is a character literal

� “000111010110“ , B“000111010110“ , O“726“ and X“1E6“
are bit-string literals

� null is an access (pointer) literal

� Expressions are terminated by a semicolon (;)

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 43Mar 13, 2007

Kinds of value containers

�Value containers can be one of three kinds:
�Variables, very similar to variables in any other programming

language, they are dedicated to classical sequential
programming (inside processes)

�Constants, similar too to what is found in other languages

�Signals, the VHDL originality, dedicated to parallel
programming and, more precisely, to the exchanges between
several programs running in parallel

� In order to avoid common mistakes assignments
are denoted in different ways depending on the
kind of container:
�A := 178 for variables and constants

�S <= 178 for signals

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 44Mar 13, 2007

Initialization of variables and signals

� A variable or a signal is initialized at the beginning of the
simulation (time zero). Its default initialization value is the
leftmost value of the declaration of its type:
� type T is (RED, GREEN, BLUE);

...
variable V: T; -- Initialization value of V is
RED

� It is possible to declare another initialization value when
declaring a variable or a signal:
� signal S: INTEGER := 0;

...
variable V: BOOLEAN := TRUE;

� Very often it’s a bad idea because it may hide real “reset”
defaults

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 45Mar 13, 2007

FilesFiles

PointersPointers

TYPESTYPES

CompositesComposites

ArraysArrays

RecordsRecords

ScalarsScalars

EnumeratedEnumerated

Reals

PhysicalPhysical

INTEGER
NATURAL
POSITIVE

INTEGER
NATURAL
POSITIVE

BIT_VECTORBIT_VECTOR

BIT
BOOLEAN

BIT
BOOLEAN

variable V: BIT_VECTOR(1 to 10);
variable W: BIT_VECTOR(7 downto 0);

variable V: BIT_VECTOR(1 to 10);
variable W: BIT_VECTOR(7 downto 0);

The types

�Signals, variables and constants always have a
type

IntegersIntegers

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 46Mar 13, 2007

The integer types

� The type Integer is build from the integer type of the host
CPU. The LRM requires that its length is larger or equal to
32 bits. Subtypes my be defined.
� type INTEGER is range CPU_DEPENDENT;

� The types NATURALand POSITIVE are range subtypes,
(range) of the same base type Integer
� subtype NATURAL is INTEGER range 0 to

INTEGER'HIGH

� subtype POSITIVE is INTEGER range 1 to
INTEGER'HIGH;

� A subtypes inherits the properties of its base types.
Compatibility errors may occur during assignment

� The type attribute INTEGER'HIGH represents the largest
element of type Integer. Its value is CPU-dependent. 'HIGH
is a type attribute, as in ADA

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 47Mar 13, 2007

The integer types

� Integer objects are used to represent array indices, loop
indices, data, …

� They are defined from a base type by giving the range
(bounds and direction):
� subtype ONE_TO_TEN is NATURAL range (1 to 10);

� subtype TEN_TO_ONE is NATURAL range (10 downto
1);

� Warning there is a difference between types and subtypes:
� type ONE_TO_TEN is range 1 to 10;

� type TEN_TO_ONE is range 10 downto 1;

� Warning: the bounds must be compatible with the base type

� Warning: a type for which bounds order and direction are
different is an empty type

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 48Mar 13, 2007

The real types

�The type REAL is based on the architecture of the
host CPU. The LRM says that it emulates the
mathematical behavior of real numbers and
requires it’s dynamic to allow the representation
of numbers from -1.0E+38 to 1.0E+38

� In VHDL a real number is written:
�+/-number. number{E+/- number}

�Examples:
�A := 1.0;

�A := 1.0E10;

�A := 1.5E-20;

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 49Mar 13, 2007

The physical types

� VHDL allows the definition of physical types. They are
dedicated to representing physical values such as time,
voltage, etc. A physical type is a combination of an integer
type and a units system…

� The type TIME is the only predefined physical type:
� type TIME is range CPU_DEPENDENT units

fs;
ps = 1000 fs;
ns = 1000 ps;
us = 1000 ns;
ms = 1000 us;
sec = 1000 ms;
min = 60 sec;
hr = 60 min;

end units ;

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 50Mar 13, 2007

The enumerated types

�An enumerated type is a type with an exhaustive
definition by enumeration:
� type COLORS is (RED, YELLOW, BLUE, GREEN,

ORANGE);

� type FOUR_STATES is ('X', '0', '1', 'Z');

� type STD_ULOGIC is (‘U’, ‘X’, ’0’, ’1’, ’Z’,
’W’, ’L’, ’H’, ’-’);

�The order in which an enumerated type is
declared is meaningful. Example: a signal or a
variable of enumerated type T takes T’LEFT as
default initialization value

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 51Mar 13, 2007

Predefined enumerated types

type BOOLEAN is (FALSE, TRUE);

type BIT is ('0', '1');

type SEVERITY_LEVEL is (NOTE, WARNING, ERROR, FAILURE);
type CHARACTER is

(NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL,
BS, HT, LF, VT, FF, CR, SO, SI,
DLE, DC1, DC2, DC3, DC4, NAK, SYN, ETB,
CAN, EM, SUB, ESC, FSP, GSP, RSP, USP,
‘ ‘, ‘!’, ‘“‘, ‘#’, ‘$‘, ‘%‘, ‘&‘, ‘‘‘,
‘(‘, ‘)’, ‘*‘, ‘+’, ‘,‘, ‘-‘, ‘.‘, ‘/‘,
‘0‘, ‘1’, ‘2‘, ‘3’, ‘4‘, ‘5‘, ‘6‘, ‘7‘,
‘8‘, ‘9’, ‘:‘, ‘;’, ‘<‘, ‘=‘, ‘>‘, ‘?‘,
‘@‘, ‘A’, ‘B‘, ‘C’, ‘D‘, ‘E‘, ‘F‘, ‘G‘,
‘H‘, ‘I’, ‘J‘, ‘K’, ‘L‘, ‘M‘, ‘N‘, ‘O‘,
‘P‘, ‘Q’, ‘R‘, ‘S’, ‘T‘, ‘U‘, ‘V‘, ‘W‘,
‘X‘, ‘Y’, ‘Z‘, ‘[’, ‘\‘, ‘]‘, ‘^‘, ‘_‘,
‘`‘, ‘a’, ‘b‘, ‘c’, ‘d‘, ‘e‘, ‘f‘, ‘g‘,
‘h‘, ‘i’, ‘j‘, ‘k’, ‘l‘, ‘m‘, ‘n‘, ‘o‘,
‘p‘, ‘q’, ‘r‘, ‘s’, ‘t‘, ‘u‘, ‘v‘, ‘w‘,
‘x‘, ‘y’, ‘z‘, ‘{’, ‘|‘, ‘}‘, ‘~‘, ‘DEL‘, etc.);

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 52Mar 13, 2007

The array types

� Array types are collections of identical objects indexed by
ranges of integer or enumerated types

� Example :
� type BUS is array (0 to 31) of BIT;

� type RAM is array (0 to 1024, 0 to 31) of BIT;

� type PRICE is range 0 to INTEGER’HIGH units
cent;
nickel = 5 cent;
dime = 2 nickel;
dollar = 10 dime;

end units ;

� type COLORS is (WHITE, BLUE, GREEN, RED, YELLOW,
BLACK, RAINBOW);

� type PAINTINGS_PRICES is array (COLOR range WHITE
to BLACK) of PRICE;

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 53Mar 13, 2007

Unconstrained arrays

�An array type may be declared with an unknown
range:
� type BIT_VECTOR is array (NATURAL range <>)

of BIT;

�Unconstrained array types may be used to model
parameters of subprograms. But of course
variable or even infinite size objects cannot exist.
In order to create an object of type BIT_VECTOR
its actual size must be declared:
�subtype TYPE_BUS is BIT_VECTOR(0 to 31);

�variable VARIABLE_BUS1: TYPE_BUS;

�variable VARIABLE_BUS2: BIT_VECTOR(0 to 31);

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 54Mar 13, 2007

The STRING type

� VHDL defines character strings:
� type STRING is array (POSITIVE range <>) of

CHARACTER;

� “This is a string" -- STRING

� Some literals are ambiguous and cannot be typed only by
evaluating the context:
� '1’ -- BIT or CHARACTER ?

� B"01010101" -- BIT_VECTOR in binary form

� O"0120768" -- BIT_VECTOR in octal form

� X"0134DF54" -- BIT_VECTOR in hexadecimal form

� "01010101" -- BIT_VECTOR or STRING ?

� Qualification may be used to solve the ambiguity:
� BIT_VECTOR'("01010101")

� Warning: qualification is not a conversion

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 55Mar 13, 2007

The records

�A record is an object which elements are
heterogeneous

�Example:
� type OPTYPE is (ADD, SUB, MPY, DIV , JMP);

� type INSTRUCTION is record
OPCODE: OPTYPE;
SRC: INTEGER;
DST: INTEGER;

end record;

�VHDL has no records with variants (the C unions)

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 56Mar 13, 2007

The access types (pointers)

� The concept of pointers is very far from hardware but one
can create pointer types in VHDL to reference dynamic
data. Pointer types may be useful to very abstract high level
hardware descriptions not intended for logic synthesis

� Dynamic objects are allocated with the statement new

� Destruction is done with the statement deallocate which
is implicitly self-declared when the access type is declared

� Example :
� type FIFO_ELEMENT is array (0 to 3) of STD_LOGIC;

� type FIFO_ACCESS is access FIFO_ELEMENT;

� variable FIFO_PTR: FIFO_ACCESS;

� FIFO_PTR := new FIFO_ELEMENT;

� dealocate (FIFO_PTR);

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 57Mar 13, 2007

type T;

type T_PTR is access T;

type T is

record

VALUE: INTEGER;

NEXT: T_PTR;

end record ;

type PI is access INTEGER;

type T;

type T_PTR is access T;

type T is

record

VALUE: INTEGER;

NEXT: T_PTR;

end record ;

type PI is access INTEGER;

variable V, W: T_PTR;

variable VI: PI;

...

V := new T’(1, null);

V.NEXT := new T’(2, new T’(3, null));

V. NEXT. NEXT. NEXT := new T;

W := V. NEXT. NEXT. NEXT;

W.all := (4, null);

VI. all := W.VALUE = 4;

variable V, W: T_PTR;

variable VI: PI;

...

V := new T’(1, null);

V.NEXT := new T’(2, new T’(3, null));

V. NEXT. NEXT. NEXT := new T;

W := V. NEXT. NEXT. NEXT;

W.all := (4, null);

VI. all := W.VALUE = 4;

The access types (pointers)

�A dynamic object is created and elaborated with
the standard rules of VHDL. To create linked lists
where objects point to objects of the same type an
“incomplete declaration” is used:

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 58Mar 13, 2007

The file types

� A file is an object allowing data exchanges with the outside. It is
external to the VHDL system

� A file is a sequence of records of the same base type (scalar,
record or array). It is readable, writable or appendable

� A file type is declared:
� type FT is file of TM;

� As soon as a file type is declared several associated subprograms
are implicitly self-declared:

� Opening and closing procedures, end of file test function:
� procedure FILE_OPEN (file F: FT; External_Name: in STRING;

Open_Kind: in FILE_OPEN_KIND := READ_MODE);

� procedure FILE_OPEN (Status: out FILE_OPEN_STATUS; file F: FT;
External_Name: in STRING; Open_Kind: in FILE_OPEN_KIND :=
READ_MODE);

� procedure FILE_CLOSE (file F: FT);

� function ENDFILE (file F: FT) return BOOLEAN;

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 59Mar 13, 2007

The file types

� As soon as a file type is declared several associated
subprograms are implicitly self-declared:

� Read and write procedures:
� procedure READ (file F: FT; VALUE: out TM);

� procedure WRITE (file F: FT; VALUE: in TM);

� Declaration of an object F1 of type FT :
� file F1: FT; FILE_OPEN(F1, “foo.txt"); -- read mode

� file F1: FT is “foo.txt"; -- read mode

� file F1: FT open WRITE_MODE is “foo.txt"; -- write mode

� A file must be opened either in read mode (READ_MODE), in
write mode (WRITE_MODE) or in append mode
(APPEND_MODE)

� Note: when TMis an unconstrained array type the READ
procedure is declared:

� procedure READ (file F: FT; VALUE: out TM; LENGTH: out
NATURAL);

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 60Mar 13, 2007

use STD.TEXTIO. all ;use STD.TEXTIO. all ;

type TEXT is file of STRING;type TEXT is file of STRING;

file INPUT: TEXT open READ_MODE

is “STD_INPUT”;

file OUTPUT: TEXT open WRITE_MODE

is “STD_OUTPUT”;

file INPUT: TEXT open READ_MODE

is “STD_INPUT”;

file OUTPUT: TEXT open WRITE_MODE

is “STD_OUTPUT”;

file FOO: TEXT;

FILE_OPEN(FOO, “foo.txt”);

file FOO: TEXT;

FILE_OPEN(FOO, “foo.txt”);

file BAR: TEXT;

FILE_OPEN(BAR, “bar.txt”, WRITE_MODE);

file BAR: TEXT;

FILE_OPEN(BAR, “bar.txt”, WRITE_MODE);

The text files

�The package TEXTIO from
the library STDcontains
subprograms and
declarations for text I/O

�One file type TEXT

�Two predefined TEXT files:
INPUT and OUTPUT

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 61Mar 13, 2007

procedure READ(L: inout LINE;

VALUE: out BIT;

GOOD: out BOOLEAN);

procedure READ(L: inout LINE;

VALUE: out BIT);

procedure WRITE(L: inout LINE;

VALUE: in BIT;

JUSTIFIED: in SIDE := RIGHT;

FIELD: in WIDTH := 0);

procedure READ(L: inout LINE;

VALUE: out BIT;

GOOD: out BOOLEAN);

procedure READ(L: inout LINE;

VALUE: out BIT);

procedure WRITE(L: inout LINE;

VALUE: in BIT;

JUSTIFIED: in SIDE := RIGHT;

FIELD: in WIDTH := 0);

type LINE is access STRING;type LINE is access STRING;

procedure READLINE(F: in TEXT;

L: out LINE);

procedure WRITELINE(F: out TEXT;

L: out LINE);

procedure READLINE(F: in TEXT;

L: out LINE);

procedure WRITELINE(F: out TEXT;

L: out LINE);

The text files

� Besides the implicitly declared
functions and procedures TEXT
files may be accessed line by line
through LINE objects

� The READLINE and
WRITELINE procedures read
and write one entire line of a text
file

� The READand WRITE
procedures read and write inside
the line; they are defined for the
types BIT , BIT_VECTOR,
BOOLEAN, CHARACTER,
INTEGER, REAL, STRING and
TIME

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 62Mar 13, 2007

READING: process
variable L: LINE;
file INPUTS: TEXT is « in.dat";
variable A: BIT_VECTOR(7 downto 0);
variable B: NATURAL range 0 to 11;

begin
READLINE(INPUTS, L);
READ(L, A);
VA <= A;
READ(L, B);
VB <= B;
wait for 20 ns;

end process READING;

READING: process
variable L: LINE;
file INPUTS: TEXT is « in.dat";
variable A: BIT_VECTOR(7 downto 0);
variable B: NATURAL range 0 to 11;

begin
READLINE(INPUTS, L);
READ(L, A);
VA <= A;
READ(L, B);
VB <= B;
wait for 20 ns;

end process READING;

WRITING: process(S)
variable L: LINE;
file OUTPUTS: TEXT open WRITE_MODE

is « out.dat";
begin

WRITE(L, S);
WRITE(L, STRING'(" at time "));
WRITE(L, NOW);
WRITELINE(OUPUTS, L);

end process WRITING;

WRITING: process(S)
variable L: LINE;
file OUTPUTS: TEXT open WRITE_MODE

is « out.dat";
begin

WRITE(L, S);
WRITE(L, STRING'(" at time "));
WRITE(L, NOW);
WRITELINE(OUPUTS, L);

end process WRITING;

VA

VB

S

design under test

Files

� Examples of use: simulation
environments (reading of input
patterns in a file, writing of
output results in another file)

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 63Mar 13, 2007

The type attributes

� The type attributes are used to examine already declared types
� type COLORS is (RED, YELLOW, BLUE, GREEN, ORANGE);

� type FOUR_STATES is ('X', '0', '1', 'Z');

� Some attributes are implicitly self-declared at type declaration.
Examples:

� T’BASE – returns the base type of type T

� COLORS'LEFT = RED

� COLORS'RIGHT = ORANGE

� FOUR_STATES'HIGH = 'Z‘

� FOUR_STATES'LOW = 'X'

� Exercise #2: what is the returned value of these 5 attributes for
this subtype?

� subtype REVERSE_COLORS is COLORS range ORANGE downto
RED;

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 65Mar 13, 2007

The type attributes

� Let variable A be of discrete type T
� T’POS(A) -- returns the position of A in the type

� T'VAL(N) -- returns the Nth value in the type

� T'SUCC(A) -- returns the successor of A
-- T'SUCC(A) = T'VAL(T'POS(A) + 1)

� T'PRED(A) -- returns the predecessor of A
-- T'PRED(A) = T'VAL(T'POS(A) - 1)

� T'LEFTOF(A) -- returns the element at the left of A
-- in the declaration of the type

� T'RIGHTOF(A) -- returns the element at the right of A
-- in the declaration of the type

� VHDL is a strongly typed language. Any call to one of these
attributes issues an error when the result is out of bounds of the
type. The error will be issued at compile, elaboration or run time
depending on the context

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 66Mar 13, 2007

The array types attributes

type T is array (0 to 3, 7 downto 0) of BIT ;

variable TAB: T;

TAB'LEFT(1) -- returns 0

TAB'LEFT(2) -- returns 7

TAB'RIGHT(1) -- returns 3

TAB'RIGHT(2) -- returns 0

TAB'HIGH(1) -- returns 3

TAB'HIGH(2) -- returns 7

TAB'LOW(1) -- returns 0

TAB'LOW(2) -- returns 0

TAB'RANGE(1) -- returns 0 to 3

TAB'RANGE(2) -- returns 7 downto 0

TAB'REVERSE_RANGE(2) -- returns 0 to 7

TAB'REVERSE_RANGE(1) -- returns 3 downto 0

TAB'LENGTH(1) -- returns 4

TAB'LENGTH(2) -- returns 8

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 67Mar 13, 2007

Aggregate

type OPTYPE is (ADD, SUB, MPY, DIV , JMP)

type T is array (1 to 5) of OPTYPE;

type U is

record

R1, R2, R3: INTEGER range 0 to 31;

OP: OPTYPE;

end record ;

variable A: T; variable B: U;

...

A := (ADD , SUB, MPY, DIV , JMP);

A := (ADD, SUB, MPY, 5 => JMP, 4 => DIV);

A := (3 => ADD, SUB, MPY, JMP, DIV);

A := (ADD, 2 | 4 => MPY, others => DIV);

A := (SUB, 2 to 4 => DIV, 5 => JMP);

B := (0, 1, 2, ADD);

B := (OP => JMP, others => 0);

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 68Mar 13, 2007

Operators

� Logical: and , or , nand , nor , xor, not

� Relational: =, /=, <, <=, >, >=

� Addition: +, -, & (concaténation)

� Sign: +, -

� Multipliers: *, /, mod, rem
� A = (A / B) * B + (A rem B)

� sign(A rem B) = sign(A)

� abs (A rem B) < abs (B)

� (-A) / B = -(A / B) = A / (-B)

� ∃N, A = B * N + (A mod B)

� sign(A mod B) = sign(B)

� abs(A mod B) < abs (B)

� Miscellaneous: ** (exponentiation), abs
(absolute value)

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 69Mar 13, 2007

if C1 = -65 then
A := 10;

B := ‘0’;
elsif C1 = -64 then

A := 20;

B := ‘1’;

elsif C1 >= -63 and C1 <= -60
then

A := 20;

B := ‘0’;

elsif C1 = -59 or C1 = 187 then
A := 30;

B := ‘0’;

else
A := 30;

B := ‘1’;
end if ;

if C1 = -65 then
A := 10;

B := ‘0’;
elsif C1 = -64 then

A := 20;

B := ‘1’;

elsif C1 >= -63 and C1 <= -60
then

A := 20;

B := ‘0’;

elsif C1 = -59 or C1 = 187 then
A := 30;

B := ‘0’;

else
A := 30;

B := ‘1’;
end if ;

case C1 is
when -65 => A := 10;

B := ‘0’;

when -64 => A := 20;

B := ‘1’;

when -63 to -60 => A := 20;

B :=
‘0’;

when -61 | 187 => A := 30;

B := ‘0’;

when others => A := 30;

B := ‘1’;
end case ;

case C1 is
when -65 => A := 10;

B := ‘0’;

when -64 => A := 20;

B := ‘1’;

when -63 to -60 => A := 20;

B :=
‘0’;

when -61 | 187 => A := 30;

B := ‘0’;

when others => A := 30;

B := ‘1’;
end case ;

Control structures

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 70Mar 13, 2007

L1: for I in 0 to 13 loop

...

L2: loop

...

L3: while NON_STOP_L3 loop

...

exit L2 when STOP_L2;

next L3 when CONT_L3;

if STOP_L1 then

exit L1;

end if ;

end loop L3;

end loop L2;

end loop L1;

L1: for I in 0 to 13 loop

...

L2: loop

...

L3: while NON_STOP_L3 loop

...

exit L2 when STOP_L2;

next L3 when CONT_L3;

if STOP_L1 then

exit L1;

end if ;

end loop L3;

end loop L2;

end loop L1;

Control structures

�Loop indices must not be
declared

�Loop indices are considered
as constants inside the loop
body

�Loop labels are optional

�Control flow may be
modified by next and
exit statements

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 71Mar 13, 2007

The wait instruction

� A process must contain at least one synchronization point
� Either implicit: a list of signals, named sensitivity list, is declared in

the process header. The equivalent wait instruction (wait on
list) is the last instruction of the process body. It is forbidden to
put other wait statements in the process

� Or explicit: no signal list in the header. The process may then contain
several wait statements

� The complete form of the wait instruction:
� wait [on S1, S2, ...] [until CONDITION] [for

DURATION];

�S1, S2 must be signals

�CONDITION is an expression that evaluates as a boolean

�DURATIONis a timeout

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 72Mar 13, 2007

wait : examples

� Eternal:
� wait ;

� No condition, no timeout:
� wait on S1, S2;

� No list, no timeout:
� wait until (S1 = '0') and (S2 > ORANGE);

� Equivalent loop:
� loop

wait on S1, S2;
exit when (S1 = '0') and (S2 > ORANGE);

end loop;

� Warning: if the condition contains no signals the wait
becomes eternal. Classical example:
� wait until NOW > 10 s;

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 73Mar 13, 2007

signal X, Y, Z: BIT;

PA: process (X, Y)

begin

if X = '1' then
Z <= '1';

elsif Y = '1' then
Z <= '1';

else
Z <= '0';

end if ;

end process PA;

signal X, Y, Z: BIT;

PA: process (X, Y)

begin

if X = '1' then
Z <= '1';

elsif Y = '1' then
Z <= '1';

else
Z <= '0';

end if ;

end process PA;

signal X, Y, Z: BIT;

PA: process

begin

if X = '1' then
Z <= '1' ;

elsif Y = '1' then
Z <= '1' ;

else
Z <= '0' ;

end if ;
wait on X, Y;

end process PA;

signal X, Y, Z: BIT;

PA: process

begin

if X = '1' then
Z <= '1' ;

elsif Y = '1' then
Z <= '1' ;

else
Z <= '0' ;

end if ;
wait on X, Y;

end process PA;

wait : examples

�These two processes are equivalent

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 74Mar 13, 2007

Assert

�Check a property and issues a message if it is not
verified. Can also stop the simulation. Used to
check the proper use of a model
�assert CONDITION

[report MESSAGE]
[severity LEVEL];

�CONDITION: Boolean condition asserted true

�MESSAGE: message (string) to print in case of violation
�LEVEL: assertion level from predefined type : NOTE,

WARNING, ERROR, FAILURE

�An assertion which level is ERRORor FAILURE
usually stops the simulation (usually a parameter
in the simulator). ERRORis the default level

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 75Mar 13, 2007

Signal assignments

� Signal assignments are of two types:
� Inertial

� SIG1 <= reject 2 ns inertial 3 after 2 ns, 5 after 6 ns, 0 after 10 ns;

� SIG1 <= inertial 3 after 2 ns, 5 after 6 ns, 0 after 10 ns;

� SIG1 <= 3 after 2 ns, 5 after 6 ns, 0 after 10 ns;

� Transport
� SIG1 <= transport 3 after 2 ns, 5 after 6 ns, 0 after 10 ns;

� The rejection delay is:
� Always less than the delay of the first transaction in the waveform

� By default equal to the delay of the first transaction in the waveform

� Zero for transport

� Algorithm to update the driver of the signal (transport type assignment):
� 1) Delete old transactions which date is equal or greater than the date of the first

transaction of the new waveform

� 2) Add new transactions at the end of the driver

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 76Mar 13, 2007

Signal assignments

� Algorithm to update the driver of the signal (inertial type
assignment):

�1) Delete old transactions which date is equal or greater than
the date of the first transaction of the new waveform

�2) Add new transactions at the end of the driver

�3) Mark the new transactions

�4) Old transactions which date is before the date of the first
transaction of the new waveform minus the rejection limit are
marked too

�5) Every transaction preceding a marked transaction of same
value is marked

�6) The transaction presently driving the signal is marked

�7) Unmarked transactions are deleted

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 77Mar 13, 2007

Signal assignments

� Let A be a signal which driver at date 1 ns is:
� [0@0ns][5@3ns][1@5ns][3@6ns][8@12ns]

� Let’s execute the assignment:
� A <= transport 1 after 5 ns, 2 after 10 ns, 3 after 15 ns ;

� The driver becomes:
� R1: [0@0ns][5@3ns][1@5ns]

� R2: [0@0ns][5@3ns][1@5ns][1@6ns][2@11ns][3@16ns]

� If the assignment had been:
� A <= 1 after 5 ns, 2 after 10 ns, 3 after 15 ns ; -- rejection = 5 ns

� The driver would be:
� R1: [0@0ns][5@3ns][1@5ns]

� R2: [0@0ns][5@3ns][1@5ns][1@6ns][2@11ns][3@16ns]

� R3: [0@0ns][5@3ns][1@5ns] [1@6ns][2@11ns][3@16ns]

� R4: [0@0ns][5@3ns][1@5ns] [1@6ns][2@11ns][3@16ns]

� R5: [0@0ns][5@3ns] [1@5ns][1@6ns][2@11ns][3@16ns]

� R6: [0@0ns] [5@3ns] [1@5ns][1@6ns][2@11ns][3@16ns]

� R7: [0@0ns][1@5ns][1@6ns][2@11ns][3@16ns]

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 78Mar 13, 2007

process (Y)

begin

X1 <= Y after 2 ns;

X2 <= transport Y after 2 ns;
end process ;

process (Y)

begin

X1 <= Y after 2 ns;

X2 <= transport Y after 2 ns;
end process ;

Exercise #3

�Draw the waveforms of signals X1 and X2

Y
X1
X2

0ns 1ns 2ns 3ns 4ns 5ns 6ns 7ns 8ns

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 80Mar 13, 2007

Exercise #4

�Draw the waveforms of signal C

process (A, B)

begin

C <= A or B after 2 ns;

end process ;

process (A, B)

begin

C <= A or B after 2 ns;

end process ;

A

B

C

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 82Mar 13, 2007

Signal attributes

� If S is a signal, VHDL defines several attributes to
investigate the signal’s status:
�The attribute S'EVENT is a function returning a BOOLEAN. It

returns TRUE if the signal changed during the current
simulation step. Example: to detect the rising edge of a clock:

� if (CLK = '1') and CLK'EVENT then
Q <= D;

end if ;

�The attribute S'LAST_EVENT is a function returning a TIME.
It returns the time elapsed since the last event on signal S.

�The attribute S'LAST_VALUE is a function returning a S. It
returns the value the signal S had before the last event.

�The attribute S'STABLE(T) is a signal of type BOOLEAN. Its
value is TRUE if there wasn’t any event of S for the duration
T.

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 83Mar 13, 2007

Signal attributes

�The following attributes are about transactions
and not events:
�The attribute S'ACTIVE is a function returning a BOOLEAN.

It returns TRUE if the signal had a transaction during the
current simulation step

�The attribute S'LAST_ACTIVE is a function returning a
TIME. It returns the elapsed time since the last transaction on
S.

�The attribute S'QUIET(T) is a signal of type type BOOLEAN.
Its value is TRUE if there was no transaction on S during T.

�The attribute S’TRANSACTIONis a signal of type BIT that
toggles at every transaction on S.

�The attribute S’DELAYED(T) is a signal of type of S. Its
behavior is the behavior of R in:

� R <= transport S after T;

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 84Mar 13, 2007

D
CP Q

DFFDFF

Exercise #5

RST QN

�Design the process(es)
modeling a DFF which ports
are:
�RST is an active low (‘0’)

asynchronous reset

�CP is the clock; the DFF is
synchronized on the rising edge of
CP

�D is the input

�Q is the output, QNis the inverted
output

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 86Mar 13, 2007

D
CP Q

DFF

ts = 0.3 ns th = 0.5 ns

tp = 0.7 ns

CP

D

Q

Exercise #6

�Design the process(es) modeling a DFFwhich
setup, hold and propagation times are represented
on the following waveforms:

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 88Mar 13, 2007

function F(A: BIT_VECTOR)

return BIT is

...

begin

...

end function F;

function F(A: BIT_VECTOR)

return BIT is

...

begin

...

end function F;

procedure P(A: in BIT_VECTOR;

S: out BIT) is

...

begin

...

end procedure P;

procedure P(A: in BIT_VECTOR;

S: out BIT) is

...

begin

...

end procedure P;

The subprograms

�2 types of subprograms :
�Functions

� Read only parameters

� Return a value

�Procedures
� Writable parameters

� No value returned

�Both pertain to the sequential
domain

�Same usage as in every
programming language

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 89Mar 13, 2007

Name overloading

� In VHDL, as in ADA, several subprograms may share the
same name

� The compiler identifies the right subprogram depending on:
� The name used for the call

� The shape of the parameters:
� Number and type of parameters

� Type of the returned value (for functions)

� The compiler issues an error if there are more than one or
zero candidates. It usually provides the list of the
considered candidates

� Operators may also be overloaded by using their functional
representation:
� function “+”(A, B: bit) return bit ;

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 90Mar 13, 2007

function NAT2VEC(VAL: NATURAL; SIZE: POSITIVE) return BIT_VECTOR;function NAT2VEC(VAL: NATURAL; SIZE: POSITIVE) return BIT_VECTOR;

function NAT2VEC(VAL: NATURAL; SIZE: POSITIVE) return BIT_VECTOR is

variable RES: BIT_VECTOR(SIZE - 1 downto 0) := (others => ‘0’);

variable TMP: NATURAL := VAL;

begin

for I in 0 to SIZE - 1 loop

exit when TMP = 0;

if (TMP mod 2 = 1) then RES(I) := ‘1’; end if ;

TMP := TMP / 2;

end loop ;

assert (TMP = 0) report “NAT2VEC: overflow”

severity WARNING;

return RES;

end function NAT2VEC;

function NAT2VEC(VAL: NATURAL; SIZE: POSITIVE) return BIT_VECTOR is

variable RES: BIT_VECTOR(SIZE - 1 downto 0) := (others => ‘0’);

variable TMP: NATURAL := VAL;

begin

for I in 0 to SIZE - 1 loop

exit when TMP = 0;

if (TMP mod 2 = 1) then RES(I) := ‘1’; end if ;

TMP := TMP / 2;

end loop ;

assert (TMP = 0) report “NAT2VEC: overflow”

severity WARNING;

return RES;

end function NAT2VEC;

Subprogram example

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 91Mar 13, 2007

Exercise #7

� Imagine the function VEC2NAT

�VEC2NAT(“001011100”) = 92

�VEC2NAT(“1001001”) = 73

�Write the functions PP and PG

�PP(12, 18) = 12

�PP(“001”, “110”) = “001”

�PG(7, 0) = 7

�PG(“001”, “110”) = “110”

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 95Mar 13, 2007

Combinational processes: warning

process (A, B)
begin

if (A=‘1’) then
S<=‘1’;

elsif (B=‘1’) then
S<=‘1’;

else
S<=‘0’;

end if ;
end process ;

process (A, B)
begin

if (A=‘1’) then
S<=‘1’;

elsif (B=‘1’) then
S<=‘1’;

else
S<=‘0’;

end if ;
end process ;

process (A, B)
begin

if (A=‘1’) then
S<=‘1’;

elsif (B=‘1’) then
S<=‘1’;

end if ;
end process ;

process (A, B)
begin

if (A=‘1’) then
S<=‘1’;

elsif (B=‘1’) then
S<=‘1’;

end if ;
end process ;

NO!NO!

YESYES

�The sensitivity list must be complete
�All the outputs must receive a value

in every execution of the process
�The best logic synthesizers issue

warnings
�The violation of one of this rules will

probably lead to different behaviors
before and after logic synthesis

�Unwanted memory units inferred by
the synthesizer are usually the
indicator that one of this rules is
violated

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 96Mar 13, 2007

Warning: the process without
synchronization Point

� It’s the most frequent error. The process has no
sensitivity list and no wait statements. Warning:
wait statements may be present but masked by
control structures (if , case , loop , . . .)

�Effect : the simulation time (symbolic and
physical) is stuck at 0. Nothing happens, the
simulator executes the same process forever and
the other processes are never executed

�Solution: stop the simulation, identify what
process was running and that time and fix it

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 97Mar 13, 2007

Warning: the combinational loop

� It’s a process or a collection of processes
equivalent to a combinational loop with a zero
physical propagation time

�Effect: the symbolic time increases very fast while
the physical time is stuck. Nothing happens

�Solution: stop the simulation, identify what
process was running and that time and fix it

�Note: several processes may be involved in a
combinational loop

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 98Mar 13, 2007

DONE

CP INIT

STB

LSB

SHIFT

ADD

SM

S0

S1S3S4

S2

STB=‘0’

DONE=‘1’

L
S

B
=

‘1
’

LSB=‘ 0’

STB=‘1’

INITADDSHIFT
D

O
N

E
=

‘0
’

DO
NE=‘

0’

Exercise #8

� This is the interface
and state diagram of
a Moore finite state
machine. It is
synchronized on the
rising edge of the
clock CP. The inputs
and outputs are
active high (‘1’).
Design the
process(es) needed
to model this state
machine

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 101Mar 13, 2007

Agenda

� Introduction

�Principals of Event Driven Simulation

�Practical Organization of Files and Projects

�Compilation Units

�Syntax
�Sequential VHDL

�Concurrent VHDL

�Standardized Packages

�Logic Synthesis

�Advices

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 102Mar 13, 2007

Concurrent VHDL

�VHDL models are made of concurrent instructions

�The 5 concurrent instructions are:
�Processes

�Entity (or component) instantiations

�Concurrent procedure calls

�Concurrent assertions

�Concurrent signal assignments

�Concurrent instructions execute in pseudo-
parallelism, their order of appearance in the file
has no impact on the behavior

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 103Mar 13, 2007

Concurrent VHDL

architecture ARC of FOO is
signal I0, I1: INTEGER;

begin

P1: process (A, B)
begin

I0 <= A+B;
I1 <= A*B;

end process P1;

P2: process (I0, I1)
begin

if (I0 /= 0) then
S <= I1/I0;
ALARM <= FALSE;

else
S <= 0;
ALARM <= TRUE;

end if ;
end process P2;

end architecture ARC;

architecture ARC of FOO is
signal I0, I1: INTEGER;

begin

P1: process (A, B)
begin

I0 <= A+B;
I1 <= A*B;

end process P1;

P2: process (I0, I1)
begin

if (I0 /= 0) then
S <= I1/I0;
ALARM <= FALSE;

else
S <= 0;
ALARM <= TRUE;

end if ;
end process P2;

end architecture ARC;

�The body of an
architecture is a set of
concurrent instructions

�A process is ONE
concurrent instructions.
And it is made of several
sequential instructions

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 104Mar 13, 2007

Concurrent VHDL

� In order to make some models simpler some
alternate forms of the process are provided:
�Concurrent procedure calls

�Concurrent assertions

�Concurrent signal assignments

�These concurrent instructions look like sequential
instructions but they are not

� It is very important to remember that they are
simplified versions of processes (short hands)

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 105Mar 13, 2007

architecture AR of SUM is

begin

PR: process (A, B, CI)

begin

S <= A xor B xor CI;

end process PR;

end architecture AR;

architecture AR of SUM is

begin

PR: process (A, B, CI)

begin

S <= A xor B xor CI;

end process PR;

end architecture AR;

architecture AR of SUM is

begin

S <= A xor B xor CI;

end architecture AR;

architecture AR of SUM is

begin

S <= A xor B xor CI;

end architecture AR;

Short hands

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 106Mar 13, 2007

architecture AR of SUM is

begin

PR: process (A, B, CI)

begin

if (A = ‘0’) then
S <= B xor CI;

elsif (B = ‘0’) then
S <= not CI;

else
S <= CI;

end if ;

end process PR;

end architecture AR;

architecture AR of SUM is

begin

PR: process (A, B, CI)

begin

if (A = ‘0’) then
S <= B xor CI;

elsif (B = ‘0’) then
S <= not CI;

else
S <= CI;

end if ;

end process PR;

end architecture AR;

architecture AR of SUM is

begin

S <= B xor CI when (A = ‘0’) else
not CI when (B = ‘0’) else
CI;

end architecture AR;

architecture AR of SUM is

begin

S <= B xor CI when (A = ‘0’) else
not CI when (B = ‘0’) else
CI;

end architecture AR;

Short hands

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 107Mar 13, 2007

architecture AR of SUM is

begin

PR: process (STATE)

begin

case STATE is
when INIT =>

NEXT_STATE <= RUN;
when RUN =>

NEXT_STATE <= WAIT;
when WAIT =>

NEXT_STATE <= INIT;
when others =>

NEXT_STATE <= INIT;
end case ;

end process PR;

end architecture AR;

architecture AR of SUM is

begin

PR: process (STATE)

begin

case STATE is
when INIT =>

NEXT_STATE <= RUN;
when RUN =>

NEXT_STATE <= WAIT;
when WAIT =>

NEXT_STATE <= INIT;
when others =>

NEXT_STATE <= INIT;
end case ;

end process PR;

end architecture AR;

architecture AR of SUM is

begin

with STATE select
NEXT_STATE <= RUN when INIT,

WAIT when RUN,
INIT when WAIT,
INIT when others ;

end architecture AR;

architecture AR of SUM is

begin

with STATE select
NEXT_STATE <= RUN when INIT,

WAIT when RUN,
INIT when WAIT,
INIT when others ;

end architecture AR;

Short hands

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 108Mar 13, 2007

LABEL: assert CONDITION

report "Message"

severity LEVEL;

LABEL: assert CONDITION

report "Message"

severity LEVEL;

LABEL: process

begin

assert CONDITION

report "Message"

severity LEVEL;

wait on SIGNALS_LIST;

end process LABEL;

LABEL: process

begin

assert CONDITION

report "Message"

severity LEVEL;

wait on SIGNALS_LIST;

end process LABEL;

Concurrent assertions

�The concurrent assertion is equivalent to a regular
process containing a single sequential assertion
where SIGNALS_LIST is the list of signals
appearing in CONDITION

ZERO_DIV: assert DIVIDOR /= 0

report "Zero-div error"

severity FAILURE;

ZERO_DIV: assert DIVIDOR /= 0

report "Zero-div error"

severity FAILURE;

ZERO_DIV: process

begin

assert DIVIDOR /= 0

report "Zero-div error"

severity FAILURE;

wait on DIVIDOR;

end process ZERO_DIV;

ZERO_DIV: process

begin

assert DIVIDOR /= 0

report "Zero-div error"

severity FAILURE;

wait on DIVIDOR;

end process ZERO_DIV;

ZERO_DIV: process(DIVIDOR)

begin

assert DIVIDOR /= 0

report "Zero-div error"

severity FAILURE;

end process ZERO_DIV;

ZERO_DIV: process(DIVIDOR)

begin

assert DIVIDOR /= 0

report "Zero-div error"

severity FAILURE;

end process ZERO_DIV;

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 109Mar 13, 2007

LABEL: PROCEDURE_NAME(PARAMETER_LISTS);LABEL: PROCEDURE_NAME(PARAMETER_LISTS);

LABEL: processus

begin

PROCEDURE_NAME(PARAMETER_LISTS);

wait on SIGNALS_LIST;

end processus LABEL;

LABEL: processus

begin

PROCEDURE_NAME(PARAMETER_LISTS);

wait on SIGNALS_LIST;

end processus LABEL;

Concurrent procedures

�Concurrent procedure calls are supported. They
can, for instance, be used to monitor signals. It is
equivalent to a regular process where
SIGNALS_LIST is the list of signals in
PARAMETERS_LIST that are declared in or
inout

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 110Mar 13, 2007

Structural VHDL

� VHDL supports hierarchical descriptions. Two mechanisms
can be used:
� Entity instantiations. Simple and fast but the less flexible. Does not

allow top-down design flows. Every instantiated entity must be
compiled prior compilation of embedding architecture

� ADD16: entity WORK.ADD(DTW)
generic map (N => 16) port map (A, B, S);

� Component instantiations. More complex because every component
instance must be bound to an actual entity (configuration). More
flexible too because components are declarations. Allows compilation
of top-level first (top-down design flows)

� component ADD is generic (N: Positive);
port (X, Y: in Unsigned(15 downto 0);

Z: out Unsigned(15 downto 0));
…
ADD16: ADD generic map (N => 16) port map (A, B, S);

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 111Mar 13, 2007

Structural VHDL

�When compiling the compiler checks the
compatibility between component or entity
interface and port mapping to actual signals

� If configurations are used they can be flat or
hierarchical and they allow specifying actual
circuits versions

�Configurations are a powerful tool but may lead to
complex descriptions

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 112Mar 13, 2007

Component declaration

� The syntax is very similar to the syntax of an entity
declaration
� component COMPONENT_NAME is

port (PORTS_DECLARATION);
end component COMPONENT_NAME;

� A component declaration my be found in:
� The declarative part of an architecture

� In a package declaration (reusable)

� Example :
� component AND2

port (A, B: in STD_LOGIC; C: out STD_LOGIC);
end component ;

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 113Mar 13, 2007

Component instantiation

� A component instantiation (in an architecture body) has the
following syntax:
� INSTANCE_NAME: COMPONENT_NAME

port map (PORTS_BINDING);

� Where INSTANCE_NAMEis a unique name for this instance

� The port map statement binds formal input/output ports
to actual signals

� Ports – signals associations may be:
� Positional:

� FA: FULL_ADDER(A, B, CI, S, CO);

� Named:
� FA: FULL_ADDER(A => X, B => Y, CI => Z, S => U, CO =>

V);

� As with aggregates both syntaxes may be mixed

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 114Mar 13, 2007

Component instantiation: example

architecture STR of AND3 is

component AND2

port (A, B: in BIT; C: out BIT);

end component ;

signal TMP: BIT;

begin

A0: AND2 port map (A => I1, B => I2,

C => TMP);

A1: AND2 port map (A => I3, B => TMP,

C => S);

end architecture STR;

configuration AND3_CFG of AND3 is

for STR

for all : AND2

use configuration WORK.AND2_CFG;

end for ;

end for ;

end configuration AND3_CFG;

architecture STR of AND3 is

component AND2

port (A, B: in BIT; C: out BIT);

end component ;

signal TMP: BIT;

begin

A0: AND2 port map (A => I1, B => I2,

C => TMP);

A1: AND2 port map (A => I3, B => TMP,

C => S);

end architecture STR;

configuration AND3_CFG of AND3 is

for STR

for all : AND2

use configuration WORK.AND2_CFG;

end for ;

end for ;

end configuration AND3_CFG;

entity AND3 is

port(I1 , I2 , I3 : in BIT ;

S: out BIT);

end entity AND3;

entity AND3 is

port(I1 , I2 , I3 : in BIT ;

S: out BIT);

end entity AND3;

entity AND2 is

port(A, B: in BIT ;

C: out BIT);

end entity AND2;

architecture ARC of AND2 is

begin

C <= A and B;

end architecture ARC;

configuration AND2_CFG of AND2 is

for ARC

end for ;

end configuration AND2_CFG;

entity AND2 is

port(A, B: in BIT ;

C: out BIT);

end entity AND2;

architecture ARC of AND2 is

begin

C <= A and B;

end architecture ARC;

configuration AND2_CFG of AND2 is

for ARC

end for ;

end configuration AND2_CFG;

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 115Mar 13, 2007

Component-entity binding rules

�When binding a component instance to an actual
entity the exact one to one association between
component ports and entity ports must be known

� If the entity has a different interface (port names,
order) the configuration must also associate
component ports and entity ports (with a port
map statement):
� for all : NAND2 use entity WORK.AND2(BEHAVE)

port map (I1 => A, I2 => B, S => C);

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 116Mar 13, 2007

Generic parameters

entity ADD is

generic (N: POSITIVE range 1 to 32 := 8);

port (A, B: in BIT_VECTOR(N - 1 downto 0);

CI: in BIT;

S: out BIT_VECTOR(N - 1 downto 0);

CO: out BIT);

end entity ADD;

entity ADD is

generic (N: POSITIVE range 1 to 32 := 8);

port (A, B: in BIT_VECTOR(N - 1 downto 0);

CI: in BIT;

S: out BIT_VECTOR(N - 1 downto 0);

CO: out BIT);

end entity ADD;

�VHDL offers several mechanisms to build generic
descriptions. Generic parameters are one of them

� Inside the associated architecture a generic
parameter is considered as a constant

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 117Mar 13, 2007

Generic parameters

�Generic parameters may have a default value

�The actual value of a generic parameter may be
given by:
�The component or entity instantiation statement (generic

map)

�De default value in component declaration

�The default value in associated entity declaration

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 118Mar 13, 2007

Generic parameters, example of use

architecture ARC of MUL is

component ADD

generic (N: POSITIVE range 1 to 32 := 8);

port (A, B: in BIT_VECTOR(N - 1 downto 0);

S: out BIT_VECTOR(N - 1 downto 0));

end component ;

signal X1, X2, S: BIT_VECTOR(16 downto 0);

. . .

begin

. . .

I_ADD: ADD generic map (N => 17);

port map (A => X0, B => X1, S => Z);

. . .

end architecture ARC;

architecture ARC of MUL is

component ADD

generic (N: POSITIVE range 1 to 32 := 8);

port (A, B: in BIT_VECTOR(N - 1 downto 0);

S: out BIT_VECTOR(N - 1 downto 0));

end component ;

signal X1, X2, S: BIT_VECTOR(16 downto 0);

. . .

begin

. . .

I_ADD: ADD generic map (N => 17);

port map (A => X0, B => X1, S => Z);

. . .

end architecture ARC;

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 119Mar 13, 2007

architecture RTL of ADD is

component ADD1

port (A, B, CI: in BIT;

S, CO: out BIT);

end component ;

signal C: BIT_VECTOR(N downto 0);

begin

G: for I in 0 to N - 1 generate

IA: ADD1 port map (A(I), B(I), C(I), S(I), C(I + 1));

end generate G;

C(0) <= CI;

CO <= C(N);

end architecture RTL;

architecture RTL of ADD is

component ADD1

port (A, B, CI: in BIT;

S, CO: out BIT);

end component ;

signal C: BIT_VECTOR(N downto 0);

begin

G: for I in 0 to N - 1 generate

IA: ADD1 port map (A(I), B(I), C(I), S(I), C(I + 1));

end generate G;

C(0) <= CI;

CO <= C(N);

end architecture RTL;

The generate statement

�The generate statement are another mechanism
to build generic descriptions

�They are the concurrent equivalent of the
sequential for loops and if statements

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 120Mar 13, 2007

entity FA

port (X, Y, Z: in BIT;

I, J: out BIT);

end entity FA;

architecture BEV of FA is

begin

I <= X xor Y xor Z;

J <= (X and (Y or Z)) or

(Y and Z);

end architecture BEV;

entity FA

port (X, Y, Z: in BIT;

I, J: out BIT);

end entity FA;

architecture BEV of FA is

begin

I <= X xor Y xor Z;

J <= (X and (Y or Z)) or

(Y and Z);

end architecture BEV;

configuration CFG of ADD is

for RTL

for G

for IA: ADD1

use entity BIB.FA(BEV);

port map (X => A, Y => B,

Z => CI, I => S,

J => CO);

end for ;

end for ;

end for ;

end configuration CFG;

configuration CFG of ADD is

for RTL

for G

for IA: ADD1

use entity BIB.FA(BEV);

port map (X => A, Y => B,

Z => CI, I => S,

J => CO);

end for ;

end for ;

end for ;

end configuration CFG;

The generate statement

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 121Mar 13, 2007

function OU_CABLE(VAL: BIT_VECTOR)
return BIT is

begin
if (VAL’LENGTH = 0) then

return ‘0’;
end if ;
for I in VAL’RANGE loop

if (VAL(I) = ‘1’) then
return ‘1’;

end if ;
end loop ;
return ‘0’;

end function OU_CABLE;

function OU_CABLE(VAL: BIT_VECTOR)
return BIT is

begin
if (VAL’LENGTH = 0) then

return ‘0’;
end if ;
for I in VAL’RANGE loop

if (VAL(I) = ‘1’) then
return ‘1’;

end if ;
end loop ;
return ‘0’;

end function OU_CABLE;

subtype RESOLVED_BIT is
OU_CABLE BIT;

signal S1: RESOLVED_BIT;
signal S2: OU_CABLE BIT;

subtype RESOLVED_BIT is
OU_CABLE BIT;

signal S1: RESOLVED_BIT;
signal S2: OU_CABLE BIT;

Resolution functions

� When a signal is driven by multiple processes it has as
many drivers as source processes. In order to compute its
actual value a function is needed; the resolution function.
This function is associated to the type of the signal which is
said to be a resolved signal:

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 122Mar 13, 2007

Resolution functions: example of use

A

IO

WEB

OEB

A

IO

WEB

OEB

CPU RAM

entity CPU is
port (A: out STD_ULOGIC_VECTOR(7 downto 0);

IO: inout STD_LOGIC_VECTOR(15 downto 0);
WEB, OEB: out STD_ULOGIC);

end entity CPU;
architecture ARC of CPU is
. . .

IO <= “010011000110111”; -- ecriture
. . .

IO <= “ZZZZZZZZZZZZZZZ”; -- lecture
. . .
end architecture ARC;

entity CPU is
port (A: out STD_ULOGIC_VECTOR(7 downto 0);

IO: inout STD_LOGIC_VECTOR(15 downto 0);
WEB, OEB: out STD_ULOGIC);

end entity CPU;
architecture ARC of CPU is
. . .

IO <= “010011000110111”; -- ecriture
. . .

IO <= “ZZZZZZZZZZZZZZZ”; -- lecture
. . .
end architecture ARC;

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 123Mar 13, 2007

Resolution functions: example of use

signal S: STD_LOGIC;
. . .
S <= I0 when C0 = ‘1’ else

‘Z’ when others ;
. . .
S <= I1 when C1 = ‘1’ else

‘Z’ when others ;
. . .
S <= I2 when C2 = ‘1’ else

‘Z’ when others ;
. . .

signal S: STD_LOGIC;
. . .
S <= I0 when C0 = ‘1’ else

‘Z’ when others ;
. . .
S <= I1 when C1 = ‘1’ else

‘Z’ when others ;
. . .
S <= I2 when C2 = ‘1’ else

‘Z’ when others ;
. . .

C0 C2C1I0 I1 I2

S

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 124Mar 13, 2007

Resolved type: beware

�Never use a resolved type if it’s not needed

�Compiler and linker would not help detecting
unwanted shortcuts

�Systematically using resolved types (STD_LOGIC
instead of STD_ULOGIC) is thus dangerous

�Systematically using resolved types (STD_LOGIC
instead of STD_ULOGIC) also slows down the
simulations (resolving a conflict takes time)

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 125Mar 13, 2007

Agenda

� Introduction

�Principals of Event Driven Simulation

�Practical Organization of Files and Projects

�Compilation Units

�Syntax
�Sequential VHDL

�Concurrent VHDL

�Standardized Packages

�Logic Synthesis

�Advices

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 126Mar 13, 2007

Library STD, package STANDARD

� The STD package is a standard one that comes with any
VHDL design environment

� The STD library is implicitly declared in each source file. It
is never necessary to re-declare it

� The STANDARDpackage defines the base types:
� Enumerated: BOOLEAN, BIT, CHARACTER, SEVERITY_LEVEL

� Numeric: INTEGER, NATURAL, POSITIVE, REAL, TIME

� Composite: STRING, BIT_VECTOR

� And the NOWfunction

� The STANDARDpackage is implicitly declared in each
source file. It is never necessary to re-declare it

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 127Mar 13, 2007

Library STD, package TEXTIO

�This package is dedicated to ASCII files I/O

�Unfortunately it is very poor

� It defines:
�Types LINE, TEXT, SIDE and WIDTH

�Files INPUT and OUTPUT

�Procedures READLINE, READ, WRITELINE and WRITE

�Function ENDLINE

� It has to be explicitly declared:
�use STD.TEXTIO. all ;

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 128Mar 13, 2007

Library IEEE , package
STD_LOGIC_1164

� Defines a multi-valued logic as an enumerated type:
� type STD_ULOGIC is (

'U', -- Uninitialized
'X', -- Forcing Unknown
'0', -- Forcing 0
'1', -- Forcing 1
'Z', -- High Impedance
'W', -- Weak Unknown
'L', -- Weak 0
'H', -- Weak 1
'-' -- Don't care);

� Also defines a resolution function for STD_ULOGICand the
associated resolved type: STD_LOGIC

� And also defines the corresponding vector types
STD_ULOGIC_VECTORand STD_LOGIC_VECTOR

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 129Mar 13, 2007

Library IEEE , package
STD_LOGIC_1164

�Also defines:
�Some resolved sub-types of STD_ULOGIC (X01, X01Z, etc.)

�All the logic operators for STD_ULOGIC, STD_LOGIC,
STD_ULOGIC_VECTOR and STD_LOGIC_VECTOR

�Conversion functions from and to types BIT and
BIT_VECTOR

�Functions RISING_EDGE and FALLING_EDGE to detect
edges on signals of type STD_ULOGIC

�Functions IS_X to detect undefined values (‘U’, ‘X’ ,
‘Z’ , ‘W’ , ‘-’)

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 130Mar 13, 2007

Library IEEE , others packages

�The IEEE library contains some other useful
packages

�Two are dedicated to arithmetic on vectors:
�NUMERIC_BIT:

� Defines types SIGNED and UNSIGNED (arrays of BIT)

� Overloads the arithmetic, logic and relational operators for those
types

� Defines the conversion function from and to Integer types
� Adds various dedicated functions (rotations, shifts, etc.)

�NUMERIC_STD
� Defines types SIGNED and UNSIGNED (arrays of STD_LOGIC)

� Overloads the arithmetic, logic and relational operators for those
types

� Defines the conversion function from and to Integer types
� Adds various dedicated functions (rotations, shifts, etc.)

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 131Mar 13, 2007

Agenda

� Introduction

�Principals of Event Driven Simulation

�Practical Organization of Files and Projects

�Compilation Units

�Syntax
�Sequential VHDL

�Concurrent VHDL

�Standardized Packages

�Logic Synthesis

�Advices

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 132Mar 13, 2007

Combinational logic inference

process (a, b, c)
begin

z <= a+b+c;
end process ;

process (a, b, c)
begin

z <= a+b+c;
end process ;

process (a, b, c)
begin

if b = ‘1’ then
z <= a;

else
z <= c;

end if ;
end process ;

process (a, b, c)
begin

if b = ‘1’ then
z <= a;

else
z <= c;

end if ;
end process ;

�Combinational logic is inferred
from variables or signals that
are:
�Unconditionally assigned

�Before being read

�Every time the process resumes

�Or
�Conditionally assigned

�For every possible condition

�Every time the process resumes

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 133Mar 13, 2007

Latches inference

process (data_in, enable)
begin

if enable = ‘1’ then
data_out <= data_in;

end if ;
end process ;

process (data_in, enable)
begin

if enable = ‘1’ then
data_out <= data_in;

end if ;
end process ;

process (data_in, enable,
set_sig, reset_sig)

begin
if enable = '1' then

if set_sig = '1' then
data_out <= '1';

elsif reset_sig = '1' then
data_out <= '0';

else
data_out <= data_in;

end if ;
end if ;

end process ;

process (data_in, enable,
set_sig, reset_sig)

begin
if enable = '1' then

if set_sig = '1' then
data_out <= '1';

elsif reset_sig = '1' then
data_out <= '0';

else
data_out <= data_in;

end if ;
end if ;

end process ;

�Latches are inferred from variables or signals that
are:
�Not affected for every process execution

�On a particular level of a control signal

�With or without initialization
� Synchronous

� Asynchronous

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 134Mar 13, 2007

Latches inference

process (data_in, enable,
set_sig, reset_sig)

begin
if set_sig = '1' then

data_out <= '1';
elsif reset_sig = '1' then

data_out <= '0';
elsif enable = '1' then

data_out <= data_in;
end if ;

end process ;

process (data_in, enable,
set_sig, reset_sig)

begin
if set_sig = '1' then

data_out <= '1';
elsif reset_sig = '1' then

data_out <= '0';
elsif enable = '1' then

data_out <= data_in;
end if ;

end process ;

�Latches are inferred from variables or signals that
are:
�Not affected for every process execution

�On a particular level of a control signal

�With or without initialization
� Synchronous

� Asynchronous

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 135Mar 13, 2007

Flip-flops inference

process (clk)
begin

if clk = ‘1’ and
clk’event then

data_out <= data_in;
end if ;

end process ;

process (clk)
begin

if clk = ‘1’ and
clk’event then

data_out <= data_in;
end if ;

end process ;

process (clk)
begin

if clk = ‘1’ and
clk’event then

if set_sig = '1' then
data_out <= '1';

elsif reset_sig = '1' then
data_out <= '0';

else
data_out <= data_in;

end if ;
end if ;

end process ;

process (clk)
begin

if clk = ‘1’ and
clk’event then

if set_sig = '1' then
data_out <= '1';

elsif reset_sig = '1' then
data_out <= '0';

else
data_out <= data_in;

end if ;
end if ;

end process ;

�D flip-flops are inferred from variables or signals
that are:
�Not affected for every process execution

�On a particular edge of a control signal (clock)

�With or without initialization
� Synchronous

� Asynchronous

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 136Mar 13, 2007

Flip-flops inference

process (clk, set_sig, reset_sig)
begin

if set_sig = '1' then
data_out <= '1';

elsif reset_sig = '1' then
data_out <= '0';

elsif clk = ‘1’ and clk’event then
data_out <= data_in;

end if ;
end process ;

process (clk, set_sig, reset_sig)
begin

if set_sig = '1' then
data_out <= '1';

elsif reset_sig = '1' then
data_out <= '0';

elsif clk = ‘1’ and clk’event then
data_out <= data_in;

end if ;
end process ;

�D flip-flops are inferred from variables or signals
that are:
�Not affected for every process execution

�On a particular edge of a control signal (clock)

�With or without initialization
� Synchronous

� Asynchronous

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 137Mar 13, 2007

Clock edge specification

�Clock edge specification supported by most
synthesizers:
� if (clk'event and clk = '1') then

�wait until (clk'event and clk = '1');

� if (rising_edge(clk)) then

�wait until rising_edge(clk);

� if (clk'event and clk = ’0') then

�wait until (clk'event and clk = ’0');

� if (falling_edge(clk)) then

�wait until falling_edge(clk);

� ...

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 138Mar 13, 2007

Unwanted latches inference

signal curr_state, next_state, modifier:
std_logic_vector(2 downto 0);

process (curr_state, modifier)
begin

case curr_state is
when "000" => next_state <= "100" or modifier;
when "001" => next_state <= "110" or modifier;
when "010" => next_state <= "001" and modifier;
when "100" => next_state <= "101" and modifier;
when "101" => next_state <= "010" or modifier;
when "110" => next_state <= "000" and modifier;
when others => null ;

end case ;
end process ;

signal curr_state, next_state, modifier:
std_logic_vector(2 downto 0);

process (curr_state, modifier)
begin

case curr_state is
when "000" => next_state <= "100" or modifier;
when "001" => next_state <= "110" or modifier;
when "010" => next_state <= "001" and modifier;
when "100" => next_state <= "101" and modifier;
when "101" => next_state <= "010" or modifier;
when "110" => next_state <= "000" and modifier;
when others => null ;

end case ;
end process ;

�Unwanted latches inference

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 139Mar 13, 2007

Unwanted latches inference

signal curr_state, next_state, modifier:
std_logic_vector(2 downto 0);

process (curr_state, modifier)
begin

next_state <= "100";
case curr_state is

when "000" => next_state <= "100" or modifier;
when "001" => next_state <= "110" or modifier;
when "010" => next_state <= "001" and modifier;
when "100" => next_state <= "101" and modifier;
when "101" => next_state <= "010" or modifier;
when "110" => next_state <= "000" and modifier;
when others => null ;

end case ;
end process ;

signal curr_state, next_state, modifier:
std_logic_vector(2 downto 0);

process (curr_state, modifier)
begin

next_state <= "100";
case curr_state is

when "000" => next_state <= "100" or modifier;
when "001" => next_state <= "110" or modifier;
when "010" => next_state <= "001" and modifier;
when "100" => next_state <= "101" and modifier;
when "101" => next_state <= "010" or modifier;
when "110" => next_state <= "000" and modifier;
when others => null ;

end case ;
end process ;

�Avoid unwanted latches inference

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 140Mar 13, 2007

Unwanted latches inference

signal curr_state, next_state, modifier:
std_logic_vector(2 downto 0);

process (curr_state, modifier)
begin

case curr_state is
when "000" => next_state <= "100" or modifier;
when "001" => next_state <= "110" or modifier;
when "010" => next_state <= "001" and modifier;
when "100" => next_state <= "101" and modifier;
when "101" => next_state <= "010" or modifier;
when "110" => next_state <= "000" and modifier;
when others => next_state <= "100";

end case ;
end process ;

signal curr_state, next_state, modifier:
std_logic_vector(2 downto 0);

process (curr_state, modifier)
begin

case curr_state is
when "000" => next_state <= "100" or modifier;
when "001" => next_state <= "110" or modifier;
when "010" => next_state <= "001" and modifier;
when "100" => next_state <= "101" and modifier;
when "101" => next_state <= "010" or modifier;
when "110" => next_state <= "000" and modifier;
when others => next_state <= "100";

end case ;
end process ;

�Avoid unwanted latches inference

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 141Mar 13, 2007

Supported loops

�Loops
�Can be synthesized

�But they are unrolled first

�Bounds of for loops must be static:
� This is synthesizable: for I in 0 to 7 loop

� Not this: for I in F(X) to G(Y) loop (except when X and
Y are compile-time constants)

�Conditions of while loops must be static
� This is synthesizable: while FALSE loop

� Not this: while C(X, Y) loop (except when X and Y are
compile-time constants)

� The while and infinite loops are usually not synthesizable

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 142Mar 13, 2007

wait statement

�The wait statements are sometimes supported
but with limitations. Examples of such limitations:
�One single wait statement per process

�Always as the first (or last) instruction

�Only for clock edge specification

�With clock as single signal in on part…

� ...

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 143Mar 13, 2007

Synthesis options

�Synthesis options
�May be special comments

�VHDL attributes

�Multiple usages:
� synthesis on/off

� translate on/off

� Set and reset

� Arithmetic architectures

� Encoding of enumerated types

� Wired or multiplexed logic (case)

� Coding and optimization of state machines

� Semantics of resolution functions

� ...

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 144Mar 13, 2007

Synthesis packages

�Some packages are dedicated to logic synthesis
� IEEE standard:

� IEEE.STD_LOGIC_1164

� IEEE.NUMERIC_BIT

� IEEE.NUMERIC_STD

�Proprietary packages:
� Attributes declarations – Synthesis options

� Proprietary arithmetic functions

� Macro-functions VHDL models

� VHDL models of standard cells libraries

� ...

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 145Mar 13, 2007

NUMERIC_BIT and NUMERIC_STD

� Standard arithmetic on BIT (or STD_ULOGIC) based types
� Types SIGNED and UNSIGNED

� Classical arithmetic operators are overloaded for SIGNED and
UNSIGNED

� SIGNED and integres or UNSIGNED and integers can be mixed in
expressions

� Integer to and from vector conversion functions are defined:
� TO_INTEGER

� TO_SIGNED, TO_UNSIGNED

� Vector types being compatible one with the other the corresponding
conversion functions all have the same name as the destination type:

� SIGNED

� UNSIGNED

� BIT_VECTOR

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 146Mar 13, 2007

Dangers

�Beware:
�Unwanted registers

� Flip-flops

� Latches

� Incomplete sensitivity lists

�Loops

�Combinational loops

�Sign in arithmetic operations

�Partitioning

�Portability
� The semantics for synthesis is not standard

� Proprietary packages are … proprietary

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 147Mar 13, 2007

Agenda

� Introduction

�Principals of Event Driven Simulation

�Practical Organization of Files and Projects

�Compilation Units

�Syntax
�Sequential VHDL

�Concurrent VHDL

�Standardized Packages

�Logic Synthesis

�Advices

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 148Mar 13, 2007

...
wait for 10 * PERIODE;
...

...
wait for 10 * PERIODE;
...

...
for I in 0 to 9 loop

wait until (CK = ‘1’);
end loop ;
...

...
for I in 0 to 9 loop

wait until (CK = ‘1’);
end loop ;
...

Synchronize

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 149Mar 13, 2007

PR: process (CK)
begin

if (CK = ‘1’) then
S <= S + 1;

end if ;
end process PR;

PR: process (CK)
begin

if (CK = ‘1’) then
S <= S + 1;

end if ;
end process PR;

PRS: process (CK)
begin

if (CK = ‘1’) then
S <= E;

end if ;
end process PRS;

PRS: process (CK)
begin

if (CK = ‘1’) then
S <= E;

end if ;
end process PRS;

PRC: process (SORTIE)
begin

E <= S + 1;
end process PRC;

PRC: process (SORTIE)
begin

E <= S + 1;
end process PRC;

For Synthesis separate synchronous and
combinational

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 150Mar 13, 2007

architecture ARC of REGS is
signal A0, A1: BIT;

begin
REGS_PR: process (CK)
begin

if (CK = ‘1’) then
A0 <= DIN;
A1 <= A0;
DOUT <= A1;

end if;
end process REGS_PR;

end ARC;

architecture ARC of REGS is
signal A0, A1: BIT;

begin
REGS_PR: process (CK)
begin

if (CK = ‘1’) then
A0 <= DIN;
A1 <= A0;
DOUT <= A1;

end if;
end process REGS_PR;

end ARC;

architecture ARC of REGS is
begin

REGS_PR: process (CK)
variable A0, A1: BIT;

begin
if (CK = ‘1’) then

DOUT <= A1;
A1 := A0;
A0 := DIN;

end if;
end process REGS_PR;

end ARC;

architecture ARC of REGS is
begin

REGS_PR: process (CK)
variable A0, A1: BIT;

begin
if (CK = ‘1’) then

DOUT <= A1;
A1 := A0;
A0 := DIN;

end if;
end process REGS_PR;

end ARC;

To speed up simulation, avoid signals

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 151Mar 13, 2007

architecture ARC of REGS is

begin

REGS_PR: process (CK) -- 3 bits registers
variable A0, A1: BIT;

begin
if (CK = ‘1’) then

DOUT <= A1;
A1 := A0;
A0 := DIN;

end if;
end process REGS_PR;

end ARC;

architecture ARC of REGS is

begin

REGS_PR: process (CK) -- 3 bits registers
variable A0, A1: BIT;

begin
if (CK = ‘1’) then

DOUT <= A1;
A1 := A0;
A0 := DIN;

end if;
end process REGS_PR;

end ARC;

For synthesis count registers

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 152Mar 13, 2007

!!

Comment a lot and don’t mix models
and reality

�One line of code = 10 lines of comments

�HDL /= matériel

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 153Mar 13, 2007

Master complexity

�Very frequently the problem turns out to be much
more complex than initially expected. In such
situations the designer progressively piles up
modifications

�Effect: il the problem is serious the code rapidly
becomes a unusable piece of code, impossible to
understand or maintain

�Solution: Restart from scratch, taking into
account the discovered new problems. Re-design
the partitioning, the data structures, rewrite
everything

EDC - VHDL Language, from Specification to model - Renaud PACALET Page 154Mar 13, 2007

Hardware and software

�VHDL is a programming language but it’s main
goal is to model hardware. Writing VHDL without
a clear idea of the underlying hardware cannot
give good results

�Effects: impossibility to refine the code into a
synthesizable form, different behaviors before and
after synthesis

�Solution: think hardware first. To model a
hardware architecture you must have a clear idea
of it

