Static Address Generation Easing: a Design Methodology for Parallel Interleaver Architecture

Cyrille CHAVET², Philippe COUSSY², Pascal URARD¹, Eric MARTIN² ¹STMicroelectronics, Crolles, FRANCE. {FirstName.Surname@st.com} ²LabSTICC, Université de Bretagne Sud, CNRS UMR 3192. {FirstName.Surname@univ-ubs.fr}

order (natural order; e.g. Nat = 0, 1, 2, 3, 4...), to a different output order (interleaved order; e.g. Int = 1, 5, 2, 6, 9...)

The problem is to find an in-place memory mapping avoiding memory access conflicts in both natural and interleaved order

Related Works

	Standard Interleaver	Architectural complexity	Algorithm complexity	
Gnaedig <i>et al</i> .	NO	Low	High	
When <i>et al</i> .	YES	High	Medium	
Benedetto <i>et al</i> .	YES	High	High	
Jezequel <i>et al</i> .	YES	High	Medium	
STAR	YES	Medium	Medium	
SAGE	YES	Low / Medium	Low	

Proposed Design Flow

In the mapping matrix each element is filled with a memory bank (i.e. the corresponding data will be stored in this memory bank)

This memory mapping is done according to: Structural constraints

- A data must be mapped in the same memory bank in natural and interleaved order (i.e. in matrix MAP_{Nat} and matrix MAP_{Int})

- In any column of MAP_{Nat} and MAP_{Int} each memory has to be used only one time

Architectural objectives

- The memory mapping in any column has respect the rules of the steering components that compose the network

	Α	_	С	-	-	-	С	A	
	В	-	A	I	-	Α	I	С	
lap _{Nat}	С	-	В	-	В	-	-	В	Map _{Int}

Let's suppose that we target a barrel-shifter, then

Conclusion

SAGE is a memory mapping methodology dedicated to design parallel interleaver architecture

This approach allows to generate a valid memory mapping in any case, and if the interleaving law enables it, then the resulting memory mapping will respect a targeted interconnection network

> Patent in France n°0754793 and patent pending in USA n°20090031094: C.Chavet, P.Coussy, P.Urard, E.Martin, "Apparatus for data interleaving algorithm"

« We can't solve problems by using the same kind of thinking we used when we created them »

Albert Einstein

Update the memory mapping in the other 6 matrix

The mapping performed in step 5 is reported in the second matrix

