
TARGETED ARCHITECTURE AND COMMUNICATION CONSTRAINTSTARGETED ARCHITECTURE AND COMMUNICATION CONSTRAINTSPPROBLEM FORMULATIONROBLEM FORMULATION

Design Design MethodologyMethodologyfor Efficient for Efficient SpaceSpaceTimeTime AdapteRAdapteR
Cyrille CHAVET1, Philippe COUSSY2, Pascal URARD1, Eric MARTIN2

1STMicroelectronics, Crolles, FRANCE. {prénom.nom@st.com}
2LESTER, Université de Bretagne Sud, CNRS FRE 2734. {prénom.nom @univ-ubs.fr}

PPROPOSED DESIGN FLOWROPOSED DESIGN FLOW
RESSOURCE COMPATIBILITY GRAPH CONSTRUCTIONRESSOURCE COMPATIBILITY GRAPH CONSTRUCTION

MULTIMULTI--CONFIGURATION RCG GRAPH MERGINGCONFIGURATION RCG GRAPH MERGING

FIFO / LIFO BINDINGFIFO / LIFO BINDING

OPTIMIZATION OPTIMIZATION

ReReCONFIGURABLECONFIGURABLE DATAPATHDATAPATHUUWB INTERLEAVERWB INTERLEAVER

IINTERLEAVER RESULTSNTERLEAVER RESULTS RReCONFIGURABLEeCONFIGURABLE DATAPATH RESULTSDATAPATH RESULTS

CCONCLUSIONONCLUSION

Laboratoire dLaboratoire d’’ Electronique des SystElectronique des Systèèmes TEmps Rmes TEmps Rééelel
L.E.S.T.E.R

FRE 2734

FIFO

LIFO

Registers

Synchronization
processor

Synchronization
processor

Operation memoryOperation memory

Not empty

Pop Push

Not full

Operation word Operation address

Enable
Clock

FSM controller

FIFO

LIFO

Registers

FSM controller

Port IN

Port IN

Port OUT

Port OUT

Port OUT

* Fine grain memory architecture.

* Strong semantic memories.

* Interconnection network.

* Finite state machine FSM Controller.
* One STAR for each asynchronous Input port.
* Latency Insensitive System LIS Interface.

STAR
PE1 PE2?a,c,b,e,f,d c,a,e,b,d,f

a
b
c
d

time

e
f

StarTorStarTor

Algorithmic C level
function

User requirements

Communication
constraints

STARGeneSTARGene

VHDL RTLVHDL RTL

StarBenchStarBench

HLS tool
(Scheduling

results)

DC Ultra

ResultsReference

≠≠

??
Validation of the
STAR architecture

* Design validation by comparison

of simulation results.

* Automatic test bench generation.

* Inputs a constraints files

* Constraints formalization

* Constraints analysis

* Design space exploration

* VHDL RTL generation.

* Inputs a C level description

* User requirements

(latency, throughput, I/O

parallelism...).

* Extracts I/O data

communication order.

* Generates a constraints file.

a
b
c
d

time

e
f

a

d

eL

F

R

F

F

F

R

L

R
fc

F

RR

b

R L

F

* The vertex set V={v0, ..., vn} represents the data (with their lifetimes),
* The arc set E={(vi, vj)} represents the compatibility between the data,
* A label lij ∈ L is associated with each arc (vi,vj) depending of the compatibility type,

L= {Register R, FIFO F, LIFO L}

* Heuristic based on several user plotted metrics:

FIFO/LIFO filling factor, minimal/maximal size, Multiplexer complexity factor…

a

d

eL

F
R

F

F

F

R

L

R
f

c
F

RR

b

R L

F

d

e

Fc

R R

a

f

b

FIFO3

d

ec
a

f

b

FIFO3

FIFO2

* Architectural solution:

One 3-place FIFO and one 2-place FIFO

which handles 3 data (One memory point saved)

d

a

f

b

FIFO3

ec

FIFO2

R
L

L

* Hierarchical RCG construction.

* Remove irrelevant edges.

* Heuristic based on several user plotted metrics.

a
b
f
d

time

e
c

Join

Fork

Join

Fork

Join

Fork

Join

Fork

a

f

b

FIFO3

ec

FIFO2
d

Fork

Join

* IEEE 802.15 WPAN™ Task Group 3b (TG3b).

* Three interleaving modes (depending on frame

length): 300, 600 or 1200 data.

* Constraints: Throughput / Latency.

* Reference design generated using a widespread

industrial HLS tool.

* Three different STARs.

(Two ≠metric setting and one sea of register)

Saved Ctrl Saved Ctrl Saved Ctrl Saved Ctrl
300 0 300 56 77 60 240 60 240 434,8
600 0 600 83 101 130 470 130 470 438
1200 0 1200 96 117 120 609 168 1032 412,4

no FL
ThroughputMode

Ref FL 7 (Tx 95%) FL 15 (Tx 90%)

* Total area is 14% smaller using our tool,
without merging algorithm.

* Reconfigurable architecture generation flow, in

collaboration with C. Andriamisaina (LESTER).
* Two references:

- Naïve Cumulative Architecture.
- SPACT-MR methodology.

FFT64, FFT32, FFT16, FFT8 781082 524737 350821 55,1 33,1
FIR64, FIR32, FIR16 54132 26634 18786 65,3 29,5

FIR19, FIR15, FIR11, FIR7 37701 11103 9249 75,5 16,7
FFT16, IFFT16 118538 109238 81017 31,7 25,8
FFT8, IFFT8 36033 31545 25561 29,1 19
LMS16, FIR16 51396 38884 36016 29,9 7,4

DCT, PRODMAT 774351 530143 324809 58,1 38,7
DCT, FIR 370115 345813 335817 9,3 2,9

Improvement (%)
Our approachSPACT-MR Area

CA SPACT-MR
MM system CA Area

* Gain Vs CA : 44%.
* Gain Vs SPACT-MR : 22%.

* Multi-Algorithms and Multi-Throughput test cases.

* Space Time AdapteR architecture for communication

adaptation.

* Dedicated design flow (C+constraints => RTL VHDL)

- Formal model based on an original

Resource Compatibility Graph.

- Binding algorithm.

- Optimization step.

* Design space exploration through user plotted metrics.

* Generation of multi-mode datapath architecture in HLS

design methodologies.

* Incoming works will focus on :

- Pipelined architecture.

- Semi-automated design space exploration

through ILP methodologies.

* STAR is used in GAUT (HLS tool from LESTER lab.).

IP integration
(Timing

diagrams)

Good

Processing Element1 Processing Element2Output
order 1

Input
order 2

?

PE1 = IP1 Output
order 1

Input
order 2

Wrapper PE2 = IP2

PE1 = OP1 PE2 = OP2

Output
order 1

Input
order 2∏

Datapath synthesis
IP integrationInterleaving

algorithms

Memory
path

StarDFGStarDFG

A Design Space Exploration for Space-Time AdapteRs
Abstract

CHAVET Cyrille1, COUSSY Philippe2, URARD Pascal1, MARTIN Eric2

1STMicroelectronics, Crolles, FRANCE. {firstname.lastname@st.com}
2LESTER Lab, UBS University, CNRS FRE 2734. {firstname.lastname@univ-ubs.fr}

Digital Signal Processing (DSP) applications are know widely used from automotive to wireless communications. The ever
growing design complexity, and the performance requirements, and constraints, on design costs and power consumption still
require significant parts of a design to be implemented using a set of dedicated hardware accelerators. A classical complex DSP
application architecture uses several complex processing elements, a lot of memories, data mixing modules (interleaver for
TurboCodes, Spatial redundancy blocks for OFDM/MIMO systems…), and is based on a point to point communication network
for inter processing element communications. Such a system may also require to include several applications in a single
architecture ((re)configurable systems). Today, their cost in terms of memory elements is very expensive; that’s why the designers
try to reduce the size of the embedded buffers in order to reduce the overall design area and consumption, and to enhance design
performances. In our work, we focus on the optimisation of component communication interfaces. This problem can be seen as
the synthesis (1) of interfaces for IP cores integration, (2) of data mixing blocks (such as interleavers) with multi-modes
architectures, and (3) of (re)configurable datapath synthesis in high level synthesis flows.

We propose a design methodology to automatically generate and optimize a communication adapter named Space-Time AdapteR
(STAR). Our design flow inputs (1) a timing diagram (constraint file) or (2) a C description of I/O data scheduling (an
interleaving formula), and user requirements (throughput, latency…), or (3) a set of scheduled and bound CDFGs, and formalizes
communication constraints through a formal Multi-Modes Resource Constraints Graph (MMRCG). The MMRCG properties
enable efficient architecture space exploration to generate a Register Transfert Level (RTL) STAR component.
The STAR architecture is composed of a datapath (using FIFOs, LIFOs and/or registers) and the associated control state
machines. Spatial adaptation (a data can be send from any input port to any/several output ports) is performed by an
interconnection logic. Timing adaptation (data reordering) is realized by the storage elements. The STAR component uses a LIS
interface (Latency Insensitive System) that enables to implement a gated clock mechanism. The proposed design flow can
generate multi-modes architectures.

The design flow is based on the following tools:
- StarTor inputs a C level algorithmic description which specifies the interleaving scheme, and user requirements (latency,
throughput, communication interface, I/O parallelism...). It extracts I/O data order by generating a trace from the C functional
description. Next, it generates the constraints file. This tool is used to generate the constraints from a C description.
- StarDFG inputs a set of CFDGs generated by a High Level Synthesis tool. These CDFGs are supposed to be scheduled and
bound. This tool extracts data communication order. Then, it generates the constraints file. This tool is used to generate the
constraints from a CDFG.
- STARGene, based on a five-step flow, generates the STAR architecture: (1) Muli-Modes Resource Compatibility Graph
construction from constraint file (generated by StarTor or StarDFG)), (2) Modes merging step, (3) Storage resource binding on the
MMRCG, (4) Architecture optimization and (5) VHDL RTL generation.
- StarBenchgenerates a test bench based on constraints in order to validate the design by comparison of simulation results.

In a first experience [1], our design flow has been used to generate an industrial Ultra Wide Band interleaver example. This is an
industrial test case and these experiments have been performed in collaboration with STMicroelectronics. Using our flow, we
show that we can save memory resources and decrease the latency in any case, compared to classical approach based on memory.
Moreover the number of structure to be controlled is smaller, with our model, than in the reference design from
STMicroelectronics. Currently, the total area of the generated design is about 14% smaller than the reference design from
STMicroelectronics (generated with a widespread commercial HLS tool).

In a second experiment [2], we use de STAR design flow in a HLS flow in order to generate a reconfigurable (muli-modes)
datapath. These experiments have been performed to generate multi-throughputs (FFT 64 to 8, FIR 64 to 8…) and multi-
configurations (FFT and IFFT, DCT and FIR…) architectures. These experiments show the efficiency of the combination of (1)
our approach and (2) the multi-modes scheduling and binding algorithms developed in the HLS tool GAUT developed at the UBS
University / LESTER Lab, for the generation and the optimization of the memorising part and the steering logic of a datapath. We
reduce the total area up to 75% compared to a cumulative architecture, and up to 40% compared to the systems generated by a
dedicated multi-modes design flow (SPACT_MR).

Bibliography
[1] CHAVET Cyrille, COUSSY Philippe, URARD Pascal and MARTIN Eric, “A Methodology for Efficient Space-Time Adapter
Design Space Exploration: A Case Study of an Ultra Wide Band Interleaver”, IEEE International Symposium on Circuits and
Systems, ISCAS 2007
[2] CHAVET Cyrille, ANDRIAMISAINA Caaliph, COUSSY Philippe, JUIN Emmanuel, URARD Pascal, CASSEAU Emmanuel
and MARTIN Eric, “A design flow dedicated to multi-mode architecture for DSP applications”, IEEE International Conference
on Computer-Aided Design, ICCAD 2007.

