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1. Introduction
High-level synthesis tools offer great value to hardware designers,
a simple and clean behavioral specification can quickly lead to the
corresponding Register-Transfer Level (RTL) description. This au-
tomatic process is usually set to make implementation choices that
optimize design goals, such as chip area, throughput, energy con-
sumption, etc. However, as typically some of these goals conflict
with each other, there is not a sequence of choices that optimizes
at the same time every single metric. Thus, the degrees of freedom
in high-level synthesis tools can generate a large number of de-
signs, each with different characteristics, and from which the set of
Pareto optimal ones constitute very valuable information to users.
In order to confirm the optimality of a design, the entire design
space needs to be evaluated, typically by running time-consuming
synthesis processes.

One of our case studies is a design space created by an IP
generator for sorting networks [7]. The user specifies the number of
elements to sort and several tool configurations that affect the area
and the throughput of the generated design. The plot in Fig. 1 shows
the obtained area/throughput values after synthesizing each design
that the tool can generate, for a module that sorts 256 elements.
Area and throughput were found after running FPGA synthesis and
place-and-route for each design; this exploration took several days.
The Pareto-optimal designs are joined with a line and represent the
only tradeoffs that are of interest to the users. The fundamental
problem addressed in this work is how to predict the set of choices
that lead to Pareto-optimal designs at low cost, this is by evaluating
as few designs as possible.

2. Pareto Active Learning
We propose the Pareto Active Learning (PAL) algorithm, that is
specifically designed to efficiently address multi-objective opti-
mization problems in which the objective functions are expensive
to evaluate. PAL can be integrated with high-level synthesis tools
in which design tradeoffs can be exposed through parameterization,
to give the users a set of optimal solutions instead of hiding impor-
tant tradeoffs or of asking them for parameters that do not affect the
functionality of the resulting design.

PAL is parameterized by a user-defined variable ε to enable an
intuitive mechanism to find the desired tradeoff between sampling
cost and prediction accuracy. We now describe the main compo-
nents of the algorithm.

(1) Modeling. PAL uses Gaussian process modeling to capture
domain knowledge about the regularity in the design space. These
models are used to predict the objective values of the designs
that have not been evaluated yet, and to obtain the uncertainty
associated with this prediction.

(2) Sampling. An iterative training process takes place un-
til there is enough information to accurately predict the Pareto-
optimal designs. On every iteration, a design is chosen to be evalu-
ated with the goal of maximizing progress on accurately identifying
Pareto-optimal designs. Predicted values and their corresponding
uncertainties are used to guide this iterative sampling process.
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Figure 1. Evaluation of the design space generated for sorting
networks that process 256 elements. Throughput is measured in
mega samples per second (MSPS).

(3) Predictive classification. A set of classification rules pre-
dicts whether a design is Pareto-optimal or not Pareto-optimal with
high probability. This helps to evaluate progress and to determine
when there is enough information to generate an accurate predic-
tion.

(4) Stopping criteria. PAL terminates when all designs are
classified as either Pareto-optimal or not Pareto-optimal. At this
point, a prediction of the designs that are Pareto-optimal is gener-
ated. The user could make further evaluations within the optimal
set if the tradeoff of interest was not evaluated during the training
stage.

Fig. 2 shows an example of running PAL on a 2-objective max-
imization problem. At a given iteration the objective functions f1
and f2 are predicted for every configuration vector x in the design
space that has not been evaluated yet. From this prediction we cre-
ate the uncertainty region R(x), which contains all the values that
(f1(x), f2(x)) can have with high probability. A predictive classi-
fication is made taking into account that a point x can fall anywhere
within R(x). As some points are not classified yet, the iteration
continues with a new sample being evaluated. The next configu-
ration x chosen for evaluation is the one with the uncertainty re-
gion with the largest diagonal, within the set of unclassified points
plus the points classified as Pareto-optimal. This example consid-
ers ε = 0. Greater values of ε relax the classification rules allowing
the algorithm to stop earlier, trading off training cost for accuracy.
Our approach uses an ε-accurate classification rule similar to the
concept of ε-Pareto dominance [2].

PAL is an improvement over the GP-PUCB algorithm presented
in [6]. This new approach has been devised to tackle multi-objective
optimization as a general problem. Thus, it could be applied to a
large range of complex processes with an arbitrary number of tar-
get objectives. Moreover, we provide theoretical bounds on PAL’s
sampling cost required to achieve a desired accuracy.
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Figure 2. An example iteration of PAL in a 2-objective maximiza-
tion scenario.

3. Related Work
Evolutionary algorithms. Evolutionary algorithms are often used
to solve multi-objective optimization problems. Most of these ap-
proaches do not use models to generate predictions on the objective
functions. Therefore, typically they require a large number of itera-
tions in order to obtain an accurate prediction of the Pareto-optimal
set. A small subset of evolutionary algorithms uses modeling tech-
niques to speedup the search process. A well known algorithm in
this category is ParEGO [3]. We compare our results against this
approach.

Scalarization. Another approach is to combine the objective
functions to create one or several single-objective optimization
problems. A drawback of this solution is that it is hard to cover
all possible tradeoffs.

Bayesian optimization. Much work has been done on single-
objective optimization based on Bayasian modeling. The GP-UCB
algorithm, proposed in [4], uses Gaussian process to model the
objective function and to guide sampling. The authors also provide
convergence guarantees. We base our analysis on their results to
obtain similar guarantees in a multi-objective scenario.

4. Experimental Results
PAL was evaluated on two applications from the domain of hard-
ware design [1, 7], in which it is very expensive to run low-level
synthesis to obtain the exact cost and performance of a single de-
sign. We compare the performance of PAL against ParEGO. In
both data sets PAL outperforms ParEGO, requiring about 33% less
evaluations. Our metric to compare actual versus estimated Pareto
front is the percentage error Et,i, which expresses the percentage
error on the Pareto front prediction along the axis defined by the ob-
jective function i after evaluating t designs from the design space.
This metric is based on the logarithmic hypervolume [5], which
proportionally penalizes mispredictions across the objective space.
Fig. 3 shows the results obtained with the sorting network data set
in Fig. 1. These plots show, for different values of ε, the percentage
error obtained for each of the objective functions versus the number
of evaluations performed when the algorithm terminated.

5. Conclusion
This work proposes the PAL algorithm to solve an optimization
problem that is not uncommon in high-level synthesis processes.
A particularity of hardware design is that the cost-performance
tradeoff needs to be adjusted to every application requirements,
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Figure 3. An example iteration of PAL in a 2-objective maximiza-
tion scenario.

thus it is important to provide the users with a wide range of optimal
tradeoffs. We make use of state-of-the-art machine-learning theory
to efficiently solve this problem, thus enabling the construction of
more advanced high-level synthesis tools. Finally, we carried out
an extensive empirical evaluation, where we demonstrate PAL’s
effectiveness on several real-world multi-objective optimization
problems. Our results show that sampling a small fraction of the
design space can indeed yield predictions of the Pareto front that
are sufficiently accurate to be of use in a wide range of applications.
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