

Industry/University Cooperative Research (I/UCRC) Program

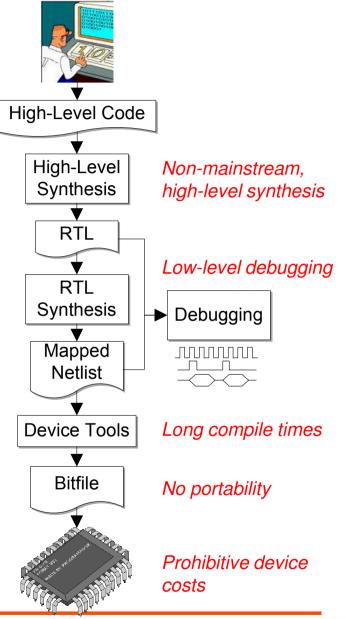
FPGA Virtualization Strategies for Mainstream High-level Synthesis

Greg Stitt Assistant Professor of ECE University of Florida

PhD Students: James Coole, Aaron Landy, Robert Kirchgessner

This work is supported by National Science Foundation grant CNS-1149285 and the I/UCRC Program of the National Science Foundation under Grant No. EEC-0642422.

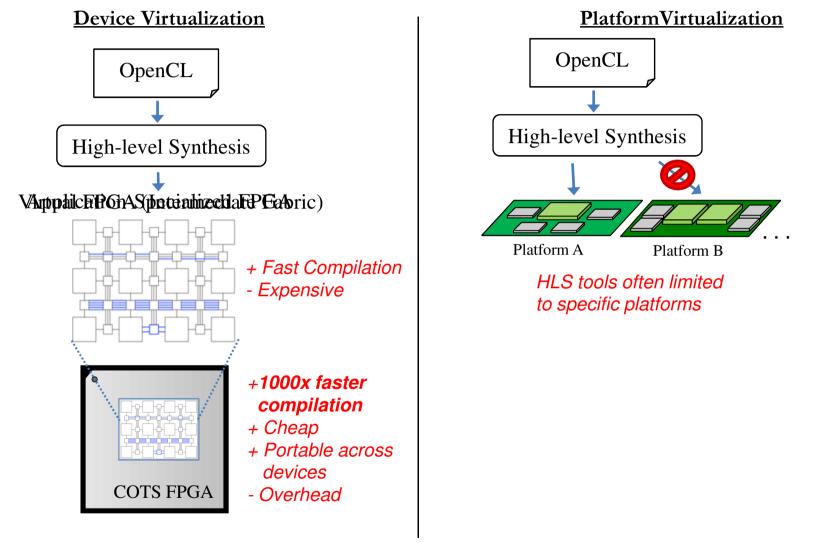
Introduction


- FPGAs advantages are widely known
 - But, GPUs & CPUs used even when FPGAs have significant benefits
- Problem: low productivity
 - Limits usage to FPGA experts
 - Mainstream designers miss out on FPGA benefits
- Barriers to mainstream usage
 - Prohibitive device costs
 - Specialized languages, low-level debugging
 - Addressed by OpenCL, CUDA research
 - Long compile times (hours to days)
 - Prevents mainstream methodologies
 - No portability

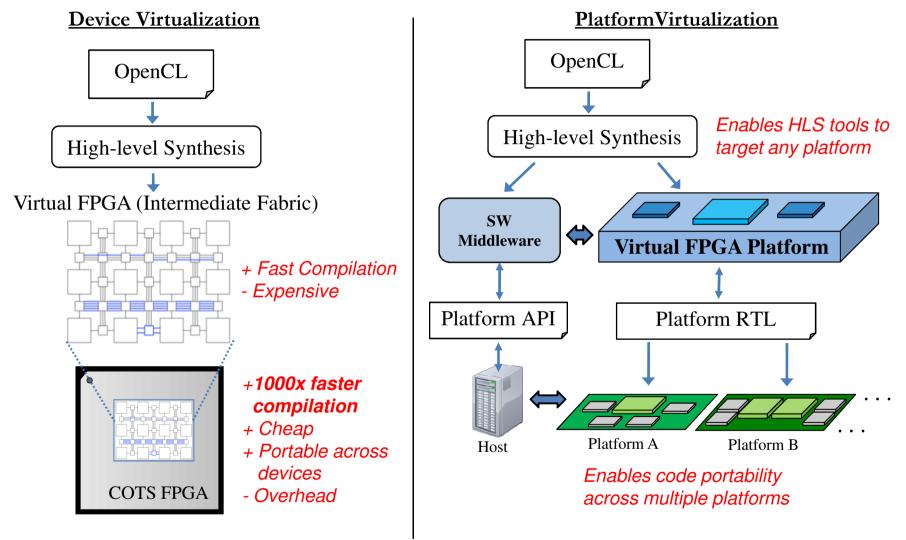
HRFC

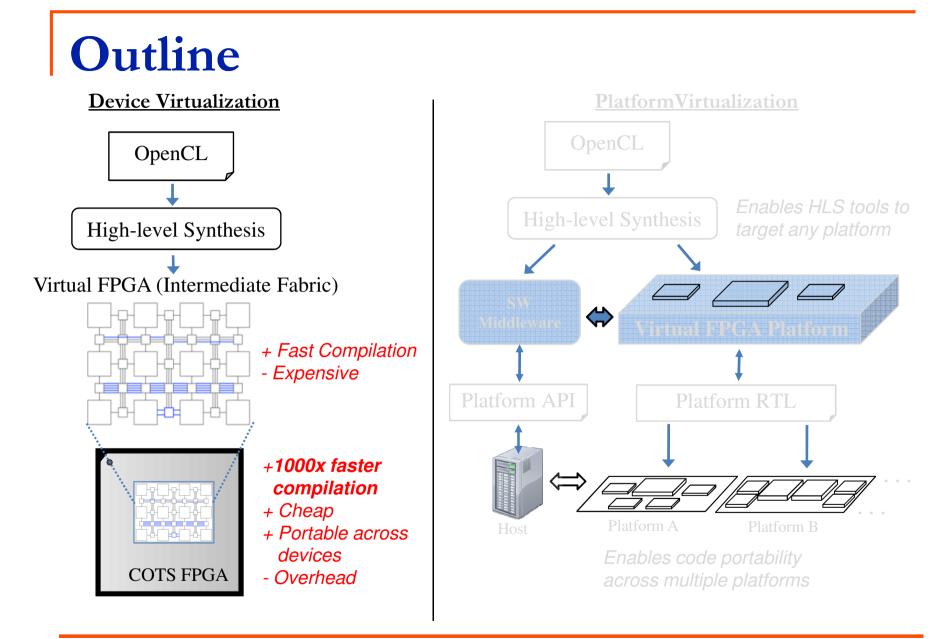
NSF Center for High-Perfor Reconfigurable Computing

Prevents design reuse

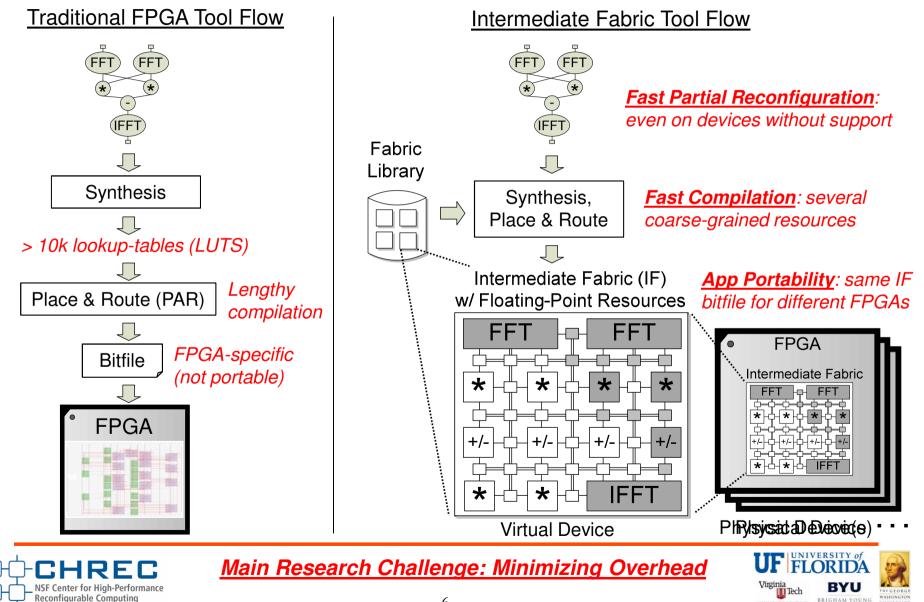

Potential solution: virtualization

2

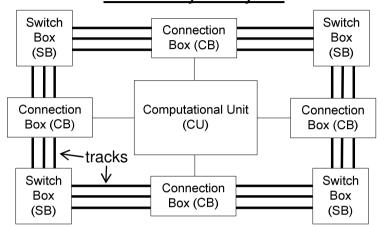

Virtualization Overview

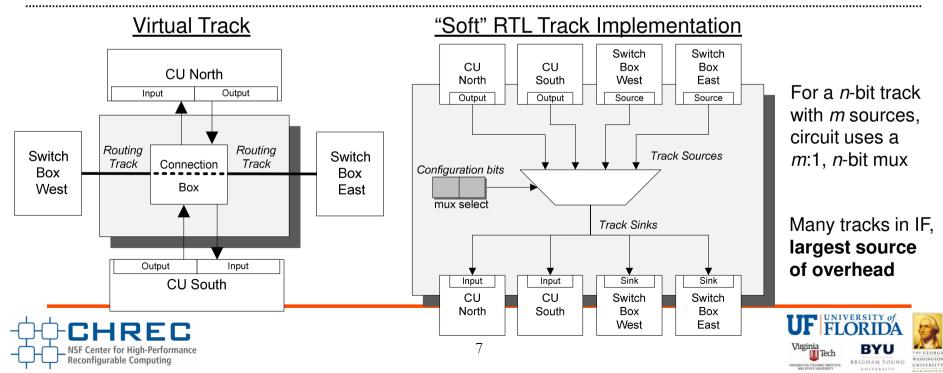


Virtualization Overview



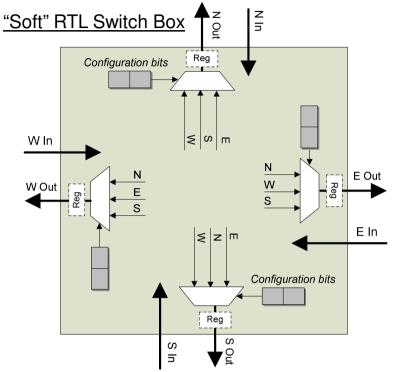
Intermediate Fabric (IF) Overview

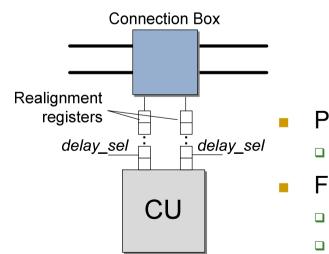

BRIGHAM YOUNG


UNIVERSIT

Intermediate Fabric (IF) Architecture

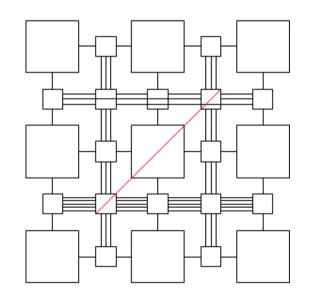
Island-Style Layout


- Fabric can implement *any* architecture
 - Currently focus on island style layout
 - Switch boxes, connection boxes, tracks
 - App. specialized computational units (CUs)
 - FFTs, floating-point resources, filters, etc.
 - Specialized track widths

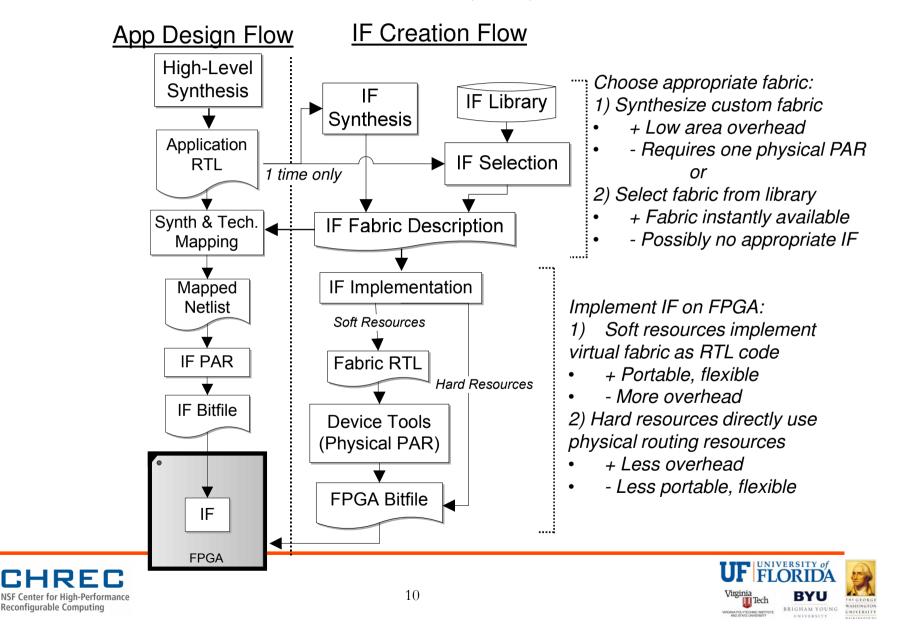


Intermediate Fabric (IF) Architecture, Cont.

- Switch boxes implemented similarly
 - Mux defines every connection
 - Supports any topology
 - Specialized to application requirements
- Optional registers on outputs
 - Eliminates combinational loops
 - Minimizes delays across muxes


- Pipelined interconnect can require complicated routing
 - Ensures routing paths have same # of hops
- For pipelined circuits, avoid by using realignment registers
 - Lengthens shorter path, adds pipeline stages
 - Enables use of traditional place & route algorithms

Area Optimization


- Hard resources
 - Map virtual routing resources directly onto physical resources
 - Eliminates all routing muxes (> 90% of resource utilization)
 - But, reduces flexibility and portability
 - Partial reconfiguration not possible unless FPGA supports it
 - Bitfile is specific to each FPGA
- Fabric Specialization
 - Creating a new virtual fabric is basically free
 - Only cost is time for single FPGA place & route
 - Therefore, fabrics can be highly specialized to application requirements
 - Both CUs and routing resources
- Specialization techniques
 - Global: # of CUs, type of CUs, track density, connection box flexibility, switch box topology, long tracks, etc.
 - Local: wide channels, jump tracks

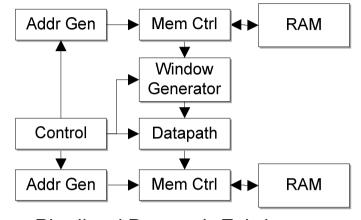
Intermediate Fabric (IF) Tool Flow

Image-Processing Case Study

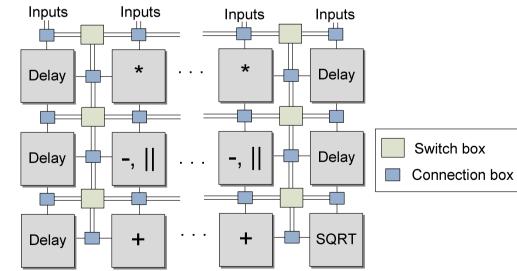
- Intermediate fabric for sliding-window image processing
 - Reconfigurable controller
 - Window generator
 - Provides windows each cycle to datapath
 - Pipelined datapath
 - Address generators
 - RAMs, memory controllers

Datapath resources

- Island-style fabric
- 64 multipliers
- 64 subtractors with optional absolute value
- 64 adders
- 5 delays, up to 9,000 cycles
- I square root


HRF

NSF Center for High-Perfori


Reconfigurable Computing

- 128 inputs, 1 output (not shown)
- All operations 16-bit fixed point
- Also, created smaller 32-bit floating-point fabric

Overall Intermediate Fabric Architecture

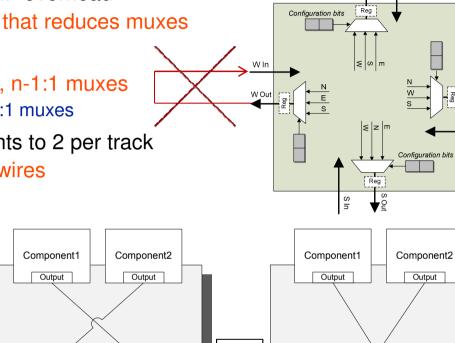
Pipelined Datapath Fabric

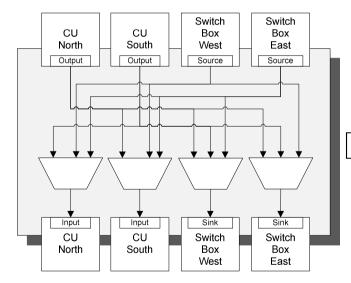
Experimental Setup

- Evaluated 3 sliding-window image-processing circuits
 - Sum-of-absolute differences
 - 2D convolution
 - Sobel edge detection
- Intermediate fabric
 - 16-bit fixed-point fabrics supported up to 8x8 windows
 - Floating-point examples limited to 5x5 windows
 - Configured using FPGA block RAM to store intermediate fabric bitfile
- Target system
 - GiDEL PROCStar III PCIe x8 FPGA accelerator card
 - Altera Stratix III E260 FPGA
 - 2.26 GHz quad-core Intel E5520, used for data transfer
- Comparisons
 - Circuit area and performance using IF vs. directly on FPGA
 - Place & route times of IF tools vs. FPGA tools
 - Quartus II 9.1, SP2 on 2.66 MHz Intel W3520, 12 GB of RAM
 - Application speedup compared to sequential software
 - C++ compiled with g++ 4.4.3 with –O3 optimizations

Experimental Results

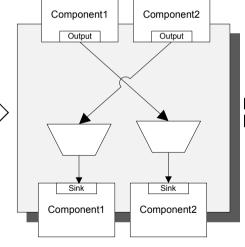
	Place and Route Times			Performance						Area Utilizat		
					Clk	Speedup	Speedup	Perf.				
	IF	Quartus 9.1	Speedup	Clk FPGA	Overhead	IF	FPGA	Overhead	LUT	REG	DSP	
Conv 3x3	0.9s	14min 48s	943	150 MHz	17%	3.2	3.5	9%	13%	14%	1%	
Conv 4x4	1.5s	15min 06s	613	148 MHz	16%	5.9	6.3	6%	13%	14%	2%	
Conv 5x5	2.1s	15min 33s	447	146 MHz	15%	8.0	8.5	6%	13%	14%	4%	
Conv 6x6	3.0s	15min 41s	312	151 MHz	18%	11.1	11.9	7%	13%	15%	5%	
Conv 7x7	4.0s	16min 19s	243	139 MHz	11%	14.7	15.5	5%	13%	15%	8%	
Conv 8x8	5.3s	16min 08s	184	146 MHz	15%	18.8	20.0	6%	13%	15%	8%	
Sobel	4.2s	14min 56s	214	154 MHz	19%	0.53	0.58	9%	13%	14%	1%	
SAD 8x8	5.3s	16min 51s	190	143 MHz	13%	18.6	19.5	5%	15%	16%	0%	
Conv 5x5 (float)	1.7s	25min 28s	919	148 MHz	23%	5.2	5.5	5%	21%	29%	13%	
Sobel (float)	1.5s	18min 58s	759	144 MHz	21%	0.32	0.36	11%	16%	19%	3%	
SAD 5x5 (float)	0.6s	30min 43s	2880	140 MHz	19%	5.3	5.5	4%	25%	38%	0%	
Average	2.7s	18min 14s	700	146 MHz	17%	8.3	8.8	7%	15%	18%	4%	
IF				124 MHz					57%	58%	17%	
IF (float)				114 MHz					59%	61%	13%	

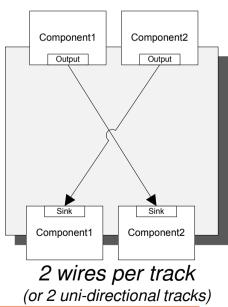

- Avg. place & route speedup: 700x
- Avg. performance overhead: 7%
- IF used 2.2x to 4.4x more LUTs than FPGA circuits
 - However, IF pessimistically implemented with only soft routing resources
 - IF also capable of implementing numerous circuits with fast partial reconfiguration (28-72 cycles)
 - Compared to an FPGA circuit with 3-4 kernels, IF saves area (assuming kernels are not concurrent)



Low-Overhead Interconnect

- Results show muxes are the largest IF overhead
 - Goal: low-overhead interconnect that reduces muxes
- Eliminate redundant connections
 - We can replace 1 n:1 mux with n, n-1:1 muxes
 - e.g. 4:1 mux on each track -> 4 3:1 muxes
- Reduce number of source components to 2 per track
 - Equivalent to two uni-directional wires



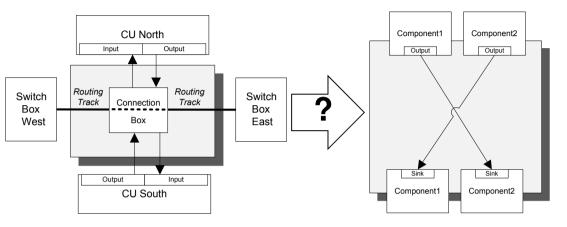

3x3:1 muxes per track

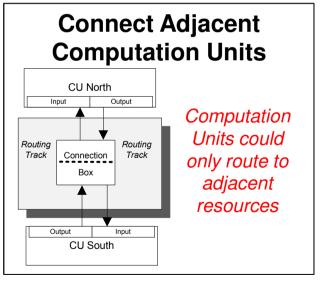
IRF

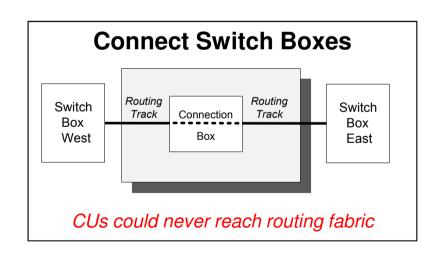
NSF Center for High-Performance Reconfigurable Computing

2x1:1 muxes per track

N N

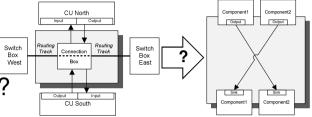

E Out

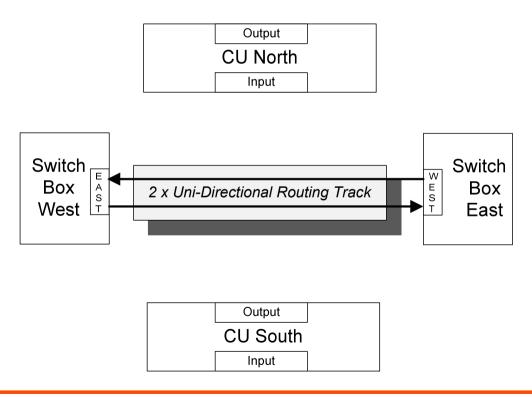

E In



How to Achieve Two-Source Tracks?

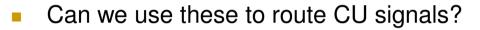
 How can we reduce the number of track sources while preserving routability?

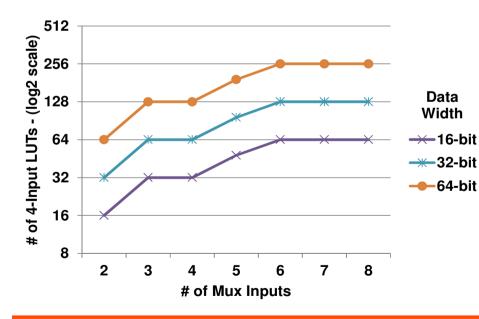


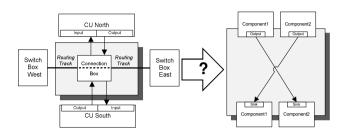


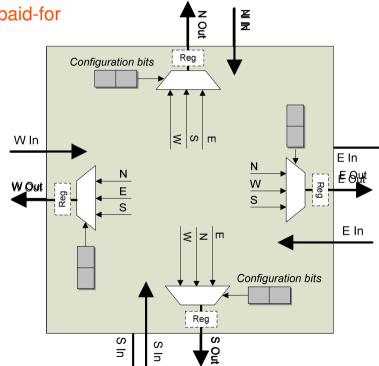
How to Achieve Two-Source Tracks?

- Need to connect two Switch Boxes and two CUs
- Begin by connecting adjacent Switch Boxes
- Now how can we route the remaining CU signals?

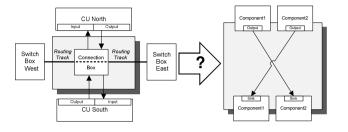


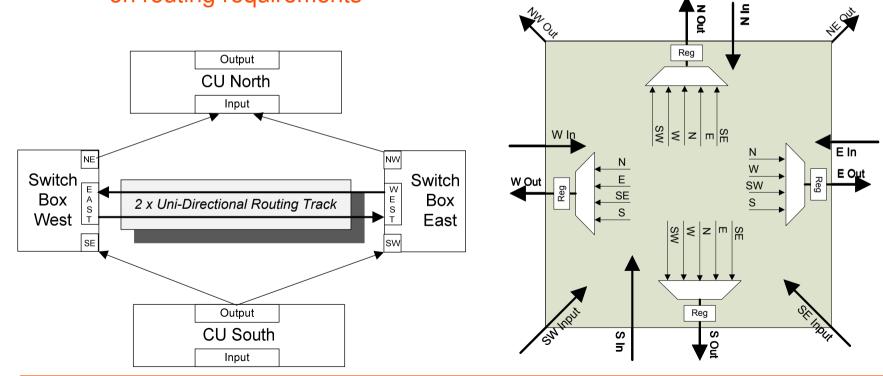





Mux Area Optimization

- FPGA-implemented mux area utilization plateaus as number of inputs grows
- For Xilinx Virtex 4 and later, no penalty to move from 3-input to 4-input muxes
- Switchboxes contain 4x3-input muxes
 - Therefore each has one unutilized input already paid-for





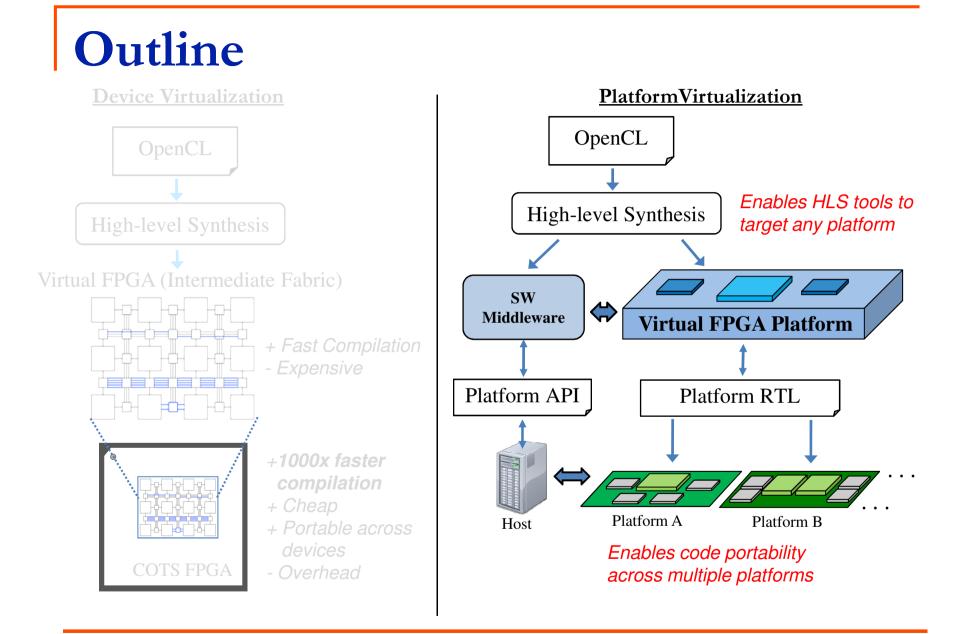
How to Achieve Two-Source Tracks?

- Connect CUs directly to switch box using free mux inputs
- Now, tracks require no muxes
 - Switch box muxes may increase depending on routing requirements

Results: Low-Overhead Interconnect

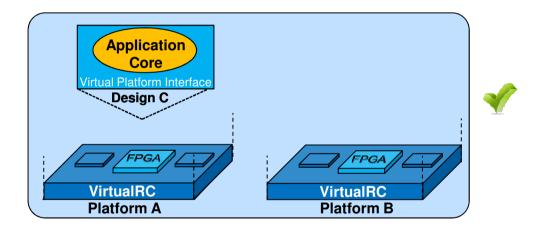
		Place-and-Route Time				Area and Routability			Clock Speed			
		IF P re v	IF New	FPGA	S pe e dup P re v	Speedup New	LUT Savings	Flip-Flop Savings	Routability Overhead	IF Prev	IF New	Clock Overhead
	Matrix multiply FXD	0.6s	0.6s	lm in 08s	112 x	112 x	56%	60%	1%	170 MHz	186 M H z	-9%
	Matrix multiply FLT	0.6s	0.6s	6min 06s	602 x	602 x	59%	59%	1%	184 MHz	222 MHz	-21%
	FIR FXD	0.6s	0.6s	0min 33s	54x	58 x	45%	41%	5%	174 MHz	158 MHz	9%
	FIR FLT	0.6s	0.6s	4min 36s	454x	484x	35%	35%	5%	203 MHz	215 MHz	-6%
ults	N-bo dy FXD	0.5s	0.2s	0min 57s	126 x	300 x	40%	32%	1%	185 MHz	165 M H z	11%
duction	N-bo dy FLT	0.5s	0.2s	3min 42s	491x	1168 x	37%	26%	1%	218 M Hz	200 MHz	8 %
acts on	AccumFXD	0.1s	0.02s	0min 26s	280 x	1733 x	52%	53%	0%	186 M Hz	187 M H z	-1%
l clock	Accum FLT	0.1s	0.02s	0min 30s	323 x	2000 x	52%	50%	0%	225 MHz	241MHz	-7 %
large	Normalize FXD	0.2s	0.3s	lmin 10s	299 x	241x	66%	71%	-63%	178 MHz	162 M H z	9%
igh	Normalize FLT	0.2s	0.3s	6min 44s	17 2 6 x	1393 x	43%	54%	-63%	197 MHz	222 MHz	- 13 %
0	B iline ar FXD	0.3s	0.3s	lm in 08s	230 x	2 13 x	51%	47%	0%	184 MHz	165 M H z	10 %
edup vs.	B iline ar FLT	0.3s	0.3s	8min 48s	1784 x	1650 x	41%	42%	0%	206 MHz	200 MHz	3%
connect	Floyd-Steinberg FXD	0.1s	0.1s	lm in 27s	6 2 1x	926x	53%	50%	2%	182 M Hz	169 M H z	7 %
beedup	Floyd-Steinberg FLT	0.1s	0.1s	5min 37s	2407x	3585 x	48%	44%	2%	196 M H z	179 MHz	9 %
	Thres holding	1.4 s	1.3 s	0min 33s	24x	26 x	44%	36%	5%	167 M H z	181 M H z	-8%
	Sobel	0.3s	0.4s	2min 28s	500 x	344x	44%	31%	2%	181 M H z	162 M H z	10 %
	Gaus sian Blur	3.3s	2.2s	3min 19s	60x	90 x	39%	41%	-42%	170 M Hz	181 M H z	-6%
	Max Filter	0.2s	0.03s	lmin 16s	444 x	2533x	48%	41%	0%	186 M H z	176 MHz	5 %
	Mean Filter 3x3	0.2s	0.0 ls	2min 30s	962 x	10 7 14 x	52%	52%	10 %	185 M Hz	187 M H z	-1%
	Mean Filter 5x5	1.9 s	1.9 s	3min 25s	110 x	10 8 x	64%	65%	- 1%	169 M H z	l61MHz	5 %
	Mean Filter 7x7	8.9s	4.7s	5min 03s	34x	64 x	39%	40%	-38%	157 M Hz	183 MHz	- 17 %
	Average	1.0 s	0.7s	2min 56s	554x	1350 x	48%	46%	-8%	186 MHz	186 M Hz	0 %

- □ ~47% area reduction
- Uncertain impacts on routability and clock speed due to large outliers and high variability
- 2.4x PAR speedup vs. ^B previous interconnect F
- 1350x PAR speedup vs. FPGA



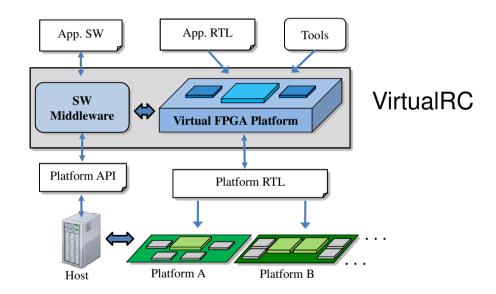
Intermediate Fabric Summary

- Intermediate fabrics are application-specialized, virtual FPGAs
 - ~1000x faster place-and-route than vendor tools
 - Application portability across physical FPGAs
- Main limitation: overhead
 - Initial overhead was 2.2x-4.4x larger than individual FPGA circuits
 - Worse for small, embedded designs
 - Optimizations to interconnect reduced overhead by 50%
- Future work
 - Integrate with OpenCL synthesis
 - Investigate novel virtual architectures (non-island-style)
 - Preliminary results show 10x reduction in overhead



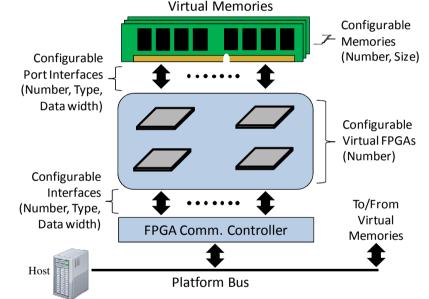
Platform Virtualization

- Introduced VirtualRC virtual platform
 - Abstracts away platform-specific details
 - Same virtual interface provided across different platforms


- Enables application and tool portability across heterogeneous platforms
 - VirtualRC handles underlying virtual-to-physical translation

VirtualRC

- VirtualRC is composed of two major components:
 - SW Middleware provides a portable software API to virtual resources
 - Virtual FPGA Platform provides virtual interfaces to platform resources


- VirtualRC integrated into RC Middleware (RMCW) CHREC Project
 - Available to public

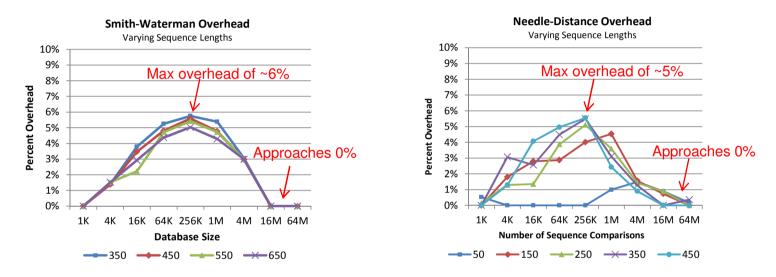
Virtual Platform Interface

- VirtualRC's virtual platform interface is user customizable
 - Developers can customize the virtual platform based on application requirements
- Customizable options include:
 - Virtual memories
 - Number, size, and interface
 - Customizable virtual FPGAs
 - Number of top-level interfaces
 - Customizable host interface
 - Number, type and data width

- For example, a developer working on convolution may use two virtual memory inputs and one virtual memory output
 - Also simplifies application development overhead

Experimental Setup

- Evaluated VirtualRC performance overhead, resource overhead, and portability
 - Three significantly different FPGA platforms:
 - GiDEL PROCStar III, Nallatech H101 and Pico Computing M501


GDEL GIDEL PROCStar III	Pico Pico M501	Kallatech H101
4 FPGAs/board	1 FPGA/board	1 FPGA/board
Altera Stratix-III	Xilinx Virtex-6	Xilinx Virtex-4
3 memory banks/FPGA: - 256/512 MB DDR2 - 2 x 2GB DDR2	- 512MB DDR3	- 512MB DDR2 - 4 x 4MB DDR2 SRAM
PCIe x8	PCle x8	133MHz PCI-x

Overhead Analysis

- Compared native platform vs. VirtualRC
 - Two computational biology applications

- Benchmarks demonstrate less than 1% overhead for large transfers from FPGA to ext. memory and host to ext. memory
- Average resource overhead of less than 1% measured for application case-studies

Portability Analysis

- Demonstrated application and tool portability using a variety of applications and kernels
 - Applications and kernels were created for VirtualRC or obtained from OpenCores (<u>www.opencores.org</u>)

	PROCStar III		М	501	H101		
	Freq. (MHz)	Time (ms)	Freq. (MHz)	Time (ms)	Freq. (MHz)	Time (ms)	
1D Convolution FP	125	39.29	125	247.90	100	91.06	
2D Convolution FP	106	13.18	106	15.18	100	43.25	
Option Pricing	125	12.15 s	125	14.40 s	-	-	
Sum Abs. Differences	98	14.72	98	15.62	98	86.71	
Needle Distance	125	194.00	125	116.20	100	199.51	
Smith Waterman	125	116.00	125	133.00	100	225.00	
Image Segmentation	125	12.40	125	16.39	100	4.81	
OpenCores SHA256	125	64.05	125	120.49	100	25.97	
OpenCores FIR	125	24.51	125	413.80	100	106.16	
OpenCores AES128	125	25.33	125	503.78	100	126.18	
OpenCores JPEG Enc.	125	15.29	125	23.93	100	21.24	

Application Studies

Tool Studies

	PROCStar III		M	501	H101		
	Freq.	Time	Freq.	Time	Freq.	Time	
	(MHz)	(ms)	(MHz)	(ms)	(MHz)	(ms)	
ROCCC 8pt FFT	125	15.66	125	16.61	100	39.91	
ROCCC 5-tap FIR	125	17.78	125	18.73	100	40.57	
AutoESL Convolution	125	4.29	125	7.31	100	2.49	

- Applications worked on all platforms without any changes
- ROCCC and AutoESL transparently compiled to three different platforms

Conclusions

- Long compilation times and portability prevent mainstream high-level synthesis
- Demonstrated that virtualization can address these problems
- Device virtualization (Intermediate Fabrics)
 - 1000x faster place-and-route
 - Application portability across devices
 - Area overhead can be significant (but improving)
- Platform virtualization (VirtualRC, CHREC RCMW)
 - Allows code portability across platforms
 - Enables high-level synthesis to target any platform
 - Overhead is minimal
 - Future work: maximize usage of platform-specific resources

Questions?

- COOLE, J., AND STITT, G. Intermediate fabrics: Virtual architectures for circuit portability and fast placement and routing. In CODES/ISSS '10: Proceedings of the IEEE/ACM/IFIP international conference on hardware/Software codesign and system synthesis (October 2010), pp. 13–22.
- STITT, G., AND COOLE, J. Intermediate fabrics: Virtual architectures for near-instant FPGA compilation. *Embedded Systems Letters, IEEE 3*, 3 (sept. 2011), 81 –84.
- LANDY, A. AND STITT, G. A low-overhead interconnect architecture for virtual reconfigurable fabrics. In CASES'12: Proceedings of the 2012 international conference on compilers, architectures and synthesis for embedded systems (October 2012), pp. 111-120.
- KIRCHGESSNER, R., STITT, G., GEORGE, A., AND LAM, H. VirtualRC: a virtual FPGA platform for applications and tools portability. In *FPGA '12: Proceedings of the ACM/SIGDA international symposium on Field Programmable Gate Arrays* (New York, NY, USA, February 2012), FPGA '12, ACM, pp. 205–208.

