
FPGA Virtualization Strategies for FPGA Virtualization Strategies for

Mainstream HighMainstream High--level Synthesislevel Synthesis

Greg Stitt
Assistant Professor of ECE

University of Florida

PhD Students: James Coole, Aaron Landy,

Robert Kirchgessner

HLS4HPC Workshop: HIPEAC 2013

This work is supported by National Science Foundation grant
CNS-1149285 and the I/UCRC Program of the National Science
Foundation under Grant No. EEC-0642422.

IntroductionIntroduction
� FPGAs advantages are widely known

� But, GPUs & CPUs used even when

FPGAs have significant benefits

� Problem: low productivity
� Limits usage to FPGA experts

� Mainstream designers miss out on
FPGA benefits

� Barriers to mainstream usage

High-Level

Synthesis

High-Level Code

RTL

Synthesis

RTL

Debugging

Non-mainstream,
high-level synthesis

Low-level debugging

� Barriers to mainstream usage

� Prohibitive device costs

� Specialized languages, low-level debugging

� Addressed by OpenCL, CUDA research

� Long compile times (hours to days)
� Prevents mainstream methodologies

� No portability

� Prevents design reuse

� Potential solution: virtualization

2

Device Tools

Mapped

Netlist

Bitfile

Long compile times

No portability

Prohibitive device
costs

Virtualization OverviewVirtualization Overview

OpenCL

High-level Synthesis

Application-Specialized FPGA

+ Fast Compilation

OpenCL

High-level Synthesis

Virtual FPGA (Intermediate Fabric)

Device Virtualization PlatformVirtualization

Platform A Platform B
. . .

3

COTS FPGA

+ Fast Compilation
- Expensive

+1000x faster
compilation

+ Cheap
+ Portable across

devices
- Overhead

HLS tools often limited
to specific platforms

Virtual FPGA (Intermediate Fabric)

Virtualization OverviewVirtualization Overview

SW

Middleware Virtual FPGA Platform

OpenCL

High-level Synthesis

+ Fast Compilation

Enables HLS tools to
target any platform

OpenCL

High-level Synthesis

Device Virtualization PlatformVirtualization

4

Platform API

Platform A Platform B

. . .

. . .
Host

Platform RTL

COTS FPGA

+ Fast Compilation
- Expensive

Enables code portability
across multiple platforms

+1000x faster
compilation

+ Cheap
+ Portable across

devices
- Overhead

Virtual FPGA (Intermediate Fabric)

OutlineOutline

SW

Middleware

SW

Middleware Virtual FPGA Platform

OpenCL

High-level Synthesis

+ Fast Compilation

Enables HLS tools to
target any platform

OpenCL

High-level Synthesis

Device Virtualization PlatformVirtualization

5

Platform API

Platform A Platform B

. . .

. . .
Host

Platform RTL

COTS FPGA

+ Fast Compilation
- Expensive

Enables code portability
across multiple platforms

+1000x faster
compilation

+ Cheap
+ Portable across

devices
- Overhead

Intermediate Fabric (IF) OverviewIntermediate Fabric (IF) Overview

Synthesis

> 10k lookup-tables (LUTS)

Traditional FPGA Tool Flow Intermediate Fabric Tool Flow

Synthesis,
Place & Route

* *
-

FFT

IFFT

FFT

* *
-

FFT

IFFT

FFT

Fast Compilation: several
coarse-grained resources

Fast Partial Reconfiguration:
even on devices without support

FPGA
FPGA

6

Bitfile FPGA-specific
(not portable)

FPGA

Lengthy
compilation

Place & Route (PAR)

FPGA

. . .

App Portability: same IF
bitfile for different FPGAs

Virtual Device Physical DevicePhysical Device(s)

Main Research Challenge: Minimizing Overhead

Intermediate Fabric (IF) ArchitectureIntermediate Fabric (IF) Architecture

� Fabric can implement any architecture

� Currently focus on island style layout

� Switch boxes, connection boxes, tracks

� App. specialized computational units (CUs)

� FFTs, floating-point resources, filters, etc.

� Specialized track widths

Virtual Track “Soft” RTL Track Implementation

Island-Style Layout

tracks

7

Virtual Track “Soft” RTL Track Implementation

For a n-bit track
with m sources,
circuit uses a
m:1, n-bit mux

Many tracks in IF,
largest source
of overhead

Intermediate Fabric (IF) Architecture, Cont.Intermediate Fabric (IF) Architecture, Cont.

� Switch boxes implemented similarly

� Mux defines every connection

� Supports any topology

� Specialized to application requirements

� Optional registers on outputs

� Eliminates combinational loops

� Minimizes delays across muxes

N
 O
u
t

R
e
g

R
e
g

EW N
EW S

N
 In“Soft” RTL Switch Box

8

S
 O
u
t

S
 In

� Pipelined interconnect can require complicated routing

� Ensures routing paths have same # of hops

� For pipelined circuits, avoid by using realignment registers

� Lengthens shorter path, adds pipeline stages

� Enables use of traditional place & route algorithms

.. ..

Area OptimizationArea Optimization
� Hard resources

� Map virtual routing resources directly onto physical resources

� Eliminates all routing muxes (> 90% of resource utilization)

� But, reduces flexibility and portability

� Partial reconfiguration not possible unless FPGA supports it

� Bitfile is specific to each FPGA

� Fabric Specialization

� Creating a new virtual fabric is basically free

9

� Creating a new virtual fabric is basically free

� Only cost is time for single FPGA place & route

� Therefore, fabrics can be highly specialized to

application requirements

� Both CUs and routing resources

� Specialization techniques
� Global: # of CUs, type of CUs, track density,

connection box flexibility, switch box topology,

long tracks, etc.

� Local: wide channels, jump tracks

Intermediate Fabric (IF) Tool FlowIntermediate Fabric (IF) Tool Flow

Choose appropriate fabric:
1) Synthesize custom fabric
• + Low area overhead
• - Requires one physical PAR

or
2) Select fabric from library
• + Fabric instantly available
• - Possibly no appropriate IF

IF Creation FlowApp Design Flow

1 time only

High-Level

Synthesis

Synth & Tech.

Mapping

Application

RTL

10

Fabric RTL

Device Tools

(Physical PAR)

FPGA Bitfile

IF Implementation

Soft Resources

Hard Resources

Implement IF on FPGA:
1) Soft resources implement
virtual fabric as RTL code
• + Portable, flexible
• - More overhead
2) Hard resources directly use
physical routing resources
• + Less overhead
• - Less portable, flexible

IF PAR

Mapped

Netlist

IF Bitfile

FPGA

IF

ImageImage--Processing Case StudyProcessing Case Study
� Intermediate fabric for sliding-window

image processing

� Reconfigurable controller

� Window generator
� Provides windows each cycle to datapath

� Pipelined datapath

� Address generators

� RAMs, memory controllers

� Datapath resources

Overall Intermediate Fabric Architecture

Pipelined Datapath Fabric� Datapath resources

� Island-style fabric

� 64 multipliers

� 64 subtractors with optional absolute
value

� 64 adders

� 5 delays, up to 9,000 cycles

� 1 square root

� 128 inputs, 1 output (not shown)

� All operations 16-bit fixed point

� Also, created smaller 32-bit floating-point
fabric

11

Pipelined Datapath Fabric

Experimental SetupExperimental Setup
� Evaluated 3 sliding-window image-processing circuits

� Sum-of-absolute differences

� 2D convolution

� Sobel edge detection

� Intermediate fabric

� 16-bit fixed-point fabrics supported up to 8x8 windows

� Floating-point examples limited to 5x5 windows

� Configured using FPGA block RAM to store intermediate fabric bitfile

Target system� Target system

� GiDEL PROCStar III PCIe x8 FPGA accelerator card

� Altera Stratix III E260 FPGA

� 2.26 GHz quad-core Intel E5520, used for data transfer

� Comparisons

� Circuit area and performance using IF vs. directly on FPGA

� Place & route times of IF tools vs. FPGA tools

� Quartus II 9.1, SP2 on 2.66 MHz Intel W3520, 12 GB of RAM

� Application speedup compared to sequential software

� C++ compiled with g++ 4.4.3 with –O3 optimizations

12

Experimental ResultsExperimental Results

IF Quartus 9.1 Speedup Clk FPGA

Clk

Overhead

Speedup

IF

Speedup

FPGA

Perf.

Overhead LUT REG DSP

Conv 3x3 0.9s 14min 48s 943 150 MHz 17% 3.2 3.5 9% 13% 14% 1%

Conv 4x4 1.5s 15min 06s 613 148 MHz 16% 5.9 6.3 6% 13% 14% 2%

Conv 5x5 2.1s 15min 33s 447 146 MHz 15% 8.0 8.5 6% 13% 14% 4%

Conv 6x6 3.0s 15min 41s 312 151 MHz 18% 11.1 11.9 7% 13% 15% 5%

Conv 7x7 4.0s 16min 19s 243 139 MHz 11% 14.7 15.5 5% 13% 15% 8%

Conv 8x8 5.3s 16min 08s 184 146 MHz 15% 18.8 20.0 6% 13% 15% 8%

Sobel 4.2s 14min 56s 214 154 MHz 19% 0.53 0.58 9% 13% 14% 1%

SAD 8x8 5.3s 16min 51s 190 143 MHz 13% 18.6 19.5 5% 15% 16% 0%

Conv 5x5 (float) 1.7s 25min 28s 919 148 MHz 23% 5.2 5.5 5% 21% 29% 13%

Sobel (float) 1.5s 18min 58s 759 144 MHz 21% 0.32 0.36 11% 16% 19% 3%

Place and Route Times Performance Area Util ization

� Avg. place & route speedup: 700x

� Avg. performance overhead: 7%

� IF used 2.2x to 4.4x more LUTs than FPGA circuits

� However, IF pessimistically implemented with only soft routing resources

� IF also capable of implementing numerous circuits with fast partial reconfiguration (28-72 cycles)

� Compared to an FPGA circuit with 3-4 kernels, IF saves area (assuming kernels are not concurrent)

13

Sobel (float) 1.5s 18min 58s 759 144 MHz 21% 0.32 0.36 11% 16% 19% 3%

SAD 5x5 (float) 0.6s 30min 43s 2880 140 MHz 19% 5.3 5.5 4% 25% 38% 0%

Average 2.7s 18min 14s 700 146 MHz 17% 8.3 8.8 7% 15% 18% 4%

IF 124 MHz 57% 58% 17%

IF (float) 114 MHz 59% 61% 13%

LowLow--Overhead InterconnectOverhead Interconnect
� Results show muxes are the largest IF overhead

� Goal: low-overhead interconnect that reduces muxes

� Eliminate redundant connections

� We can replace 1 n:1 mux with n, n-1:1 muxes

� e.g. 4:1 mux on each track -> 4 3:1 muxes

� Reduce number of source components to 2 per track

� Equivalent to two uni-directional wires

N
 O
u
t

R
e
g

S
 O
u
t

R
e
g

EW N
EW S

N
 In

S
 In

14

3x3:1 muxes per track

Component1

Output

Component2

Output

Component1

Sink

Component2

Sink

2x1:1 muxes per track

Component1

Output

Component2

Output

Component1

Sink

Component2

Sink

2 wires per track
(or 2 uni-directional tracks)

How to Achieve TwoHow to Achieve Two--Source Tracks?Source Tracks?
Component1

Output

Component2

Output

Component1

Sink

Component2

Sink

Connection

Box

Switch

Box

East

CU North

OutputInput

CU South

InputOutput

Switch

Box

West

Routing

Track

Routing

Track ?

� How can we reduce the

number of track

sources while

preserving routability?

Connect Adjacent

15

Connection

Box

Switch

Box

East

Switch

Box

West

Routing

Track

Routing

Track

CUs could never reach routing fabric

Connect Switch Boxes

Connection

Box

CU South

InputOutput

Routing

Track

Routing

Track

CU North

OutputInput

Connect Adjacent
Computation Units

Computation
Units could
only route to

adjacent
resources

How to Achieve TwoHow to Achieve Two--Source Tracks?Source Tracks?
Component1

Output

Component2

Output

Component1

Sink

Component2

Sink

?

� Need to connect two Switch Boxes and two CUs

� Begin by connecting adjacent Switch Boxes

� Now how can we route the remaining CU signals?

16

2 x Uni-Directional Routing Track

Reg
Configuration bits

Mux Area OptimizationMux Area Optimization

 512

� FPGA-implemented mux area utilization

plateaus as number of inputs grows

� For Xilinx Virtex 4 and later, no penalty to

move from 3-input to 4-input muxes

� Switchboxes contain 4x3-input muxes
� Therefore each has one unutilized input already paid-for

� Can we use these to route CU signals?

N
 O
u
t

N
 In

Component1

Output

Component2

Output

Component1

Sink

Component2

Sink

?

W In

E Out

Reg

E In

W Out

N

W

?

S

N

E

?

S

Configuration bits

17

8

16

32

64

128

256

512

2 3 4 5 6 7 8

#
 o

f
4

-I
n

p
u

t
L

U
T
s

 -
(l

o
g

2
 s

c
a
le

)

of Mux Inputs

16-bit

32-bit

64-bit

Data
Width R

e
g

S
 O
u
t

R
e
g

EW N
EW S

S
 In

N
E

O
ut

R
eg

N
W
 O
ut

R
eg

N
 O
u
t

Reg

N
 I
n

How to Achieve TwoHow to Achieve Two--Source Tracks?Source Tracks?
Component1

Output

Component2

Output

Component1

Sink

Component2

Sink

?

� Connect CUs directly to switch box using
free mux inputs

� Now, tracks require no muxes

� Switch box muxes may increase depending

on routing requirements

Reg
Configuration bits

N
 O
u
t

Reg

N
 I
n

S
 In

W In

E OutR
e
g

S
 O
u
t

Reg

E In
SW

 In
pu

t

SE Input

W Out

R
e
g

N

W

S

SW

N

E

S

SE

EWS
W

N S
E

SW

N
WE

S

SE

EW

S
W N S
E

N

S

18

W In

E Out

Reg

E In

W Out

N

W

?

S

N

E

?

S

Configuration bits

S
 In

W In

E OutR
e
g

S
 O
u
t

Reg

E In
S
W

 In
pu

t

SE
 Input

W Out

R
e
g

N

W

S

SW

N

E

S

SE

EWS
W

N S
E

EW

S
W N S
E

2 x Uni-Directional Routing Track

IF

P re v

IF

N e w

F P G A S pe e dup

P re v

S pe e dup

N e w

LUT

S a v ing s

F lip-F lo p

S a v ing s

R o uta bility

Ov e rhe a d

IF P re v IF N e w C lo c k

Ov e rhe a d

M atrix m ultiply FXD 0.6s 0.6s 1min 08s 112 x 112 x 5 6 % 6 0 % 1% 170 MHz 186 MHz -9 %

M atrix m ultiply FLT 0.6s 0.6s 6min 06s 6 0 2 x 6 0 2 x 5 9 % 5 9 % 1% 184 MHz 222 MHz -2 1%

FIR FXD 0.6s 0.6s 0min 33s 5 4 x 5 8 x 4 5 % 4 1% 5% 174 MHz 158 MHz 9 %

FIR FLT 0.6s 0.6s 4min 36s 4 5 4 x 4 8 4 x 3 5 % 3 5 % 5% 203 MHz 215 MHz -6 %

N-bo dy FXD 0.5s 0.2s 0min 57s 12 6 x 3 0 0 x 4 0 % 3 2 % 1% 185 MHz 165 MHz 11%

N-bo dy FLT 0.5s 0.2s 3min 42s 4 9 1x 116 8 x 3 7 % 2 6 % 1% 218 MHz 200 MHz 8 %

A c cum FXD 0.1s 0.02s 0min 26s 2 8 0 x 17 3 3 x 5 2 % 5 3 % 0% 186 MHz 187 MHz -1%

A c cum FLT 0.1s 0.02s 0min 30s 3 2 3 x 2 0 0 0 x 5 2 % 5 0 % 0% 225 MHz 241 MHz -7 %

No rm alize FXD 0.2s 0.3s 1min 10s 2 9 9 x 2 4 1x 6 6 % 7 1% -63% 178 MHz 162 MHz 9 %

No rm alize FLT 0.2s 0.3s 6min 44s 17 2 6 x 13 9 3 x 4 3 % 5 4 % -63% 197 MHz 222 MHz -13 %

A re a a nd R o uta bility C lo c k S pe e dP la c e -a nd-R o ute Tim e

Results: LowResults: Low--Overhead InterconnectOverhead Interconnect

� Average Results
� ~47% area reduction

� Uncertain impacts on

routability and clock

speed due to large

outliers and high No rm alize FLT 0.2s 0.3s 6min 44s 17 2 6 x 13 9 3 x 4 3 % 5 4 % -63% 197 MHz 222 MHz -13 %

B iline ar FXD 0.3s 0.3s 1min 08s 2 3 0 x 2 13 x 5 1% 4 7 % 0% 184 MHz 165 MHz 10 %

B iline ar FLT 0.3s 0.3s 8min 48s 17 8 4 x 16 5 0 x 4 1% 4 2 % 0% 206 MHz 200 MHz 3 %

Flo yd-S te inberg FXD 0.1s 0.1s 1min 27s 6 2 1x 9 2 6 x 5 3 % 5 0 % 2% 182 MHz 169 MHz 7 %

Flo yd-S te inberg FLT 0.1s 0.1s 5min 37s 2 4 0 7 x 3 5 8 5 x 4 8 % 4 4 % 2% 196 MHz 179 MHz 9 %

Thres ho lding 1.4s 1.3s 0min 33s 2 4 x 2 6 x 4 4 % 3 6 % 5% 167 MHz 181 MHz -8 %

S o bel 0.3s 0.4s 2min 28s 5 0 0 x 3 4 4 x 4 4 % 3 1% 2% 181 MHz 162 MHz 10 %

Gaus s ian B lur 3.3s 2.2s 3min 19s 6 0 x 9 0 x 3 9 % 4 1% -42% 170 MHz 181 MHz -6 %

M ax Filter 0.2s 0.03s 1min 16s 4 4 4 x 2 5 3 3 x 4 8 % 4 1% 0% 186 MHz 176 MHz 5 %

M ean Filter 3x3 0.2s 0.01s 2min 30s 9 6 2 x 10 7 14 x 5 2 % 5 2 % 10% 185 MHz 187 MHz -1%

M ean Filter 5x5 1.9s 1.9s 3min 25s 110 x 10 8 x 6 4 % 6 5 % -1% 169 MHz 161 MHz 5 %

M ean Filter 7x7 8.9s 4.7s 5min 03s 3 4 x 6 4 x 3 9 % 4 0 % -38% 157 MHz 183 MHz -17 %

Average 1.0s 0.7s 2min 56s 5 5 4 x 13 5 0 x 48% 4 6 % -8% 186 MHz 186 MHz 0 %

19

outliers and high

variability

� 2.4x PAR speedup vs.

previous interconnect

� 1350x PAR speedup

vs. FPGA

Intermediate Fabric SummaryIntermediate Fabric Summary

� Intermediate fabrics are application-specialized, virtual

FPGAs
� ~1000x faster place-and-route than vendor tools

� Application portability across physical FPGAs

� Main limitation: overhead
� Initial overhead was 2.2x-4.4x larger than individual FPGA

circuitscircuits

� Worse for small, embedded designs

� Optimizations to interconnect reduced overhead by 50%

� Future work
� Integrate with OpenCL synthesis

� Investigate novel virtual architectures (non-island-style)
� Preliminary results show 10x reduction in overhead

20

Virtual FPGA (Intermediate Fabric)

OutlineOutline

SW

Middleware Virtual FPGA Platform

OpenCL

High-level Synthesis

+ Fast Compilation

Enables HLS tools to
target any platform

OpenCL

High-level Synthesis

Device Virtualization PlatformVirtualization

21

Platform API

Platform A Platform B

. . .

. . .
Host

Platform RTL

COTS FPGA

+ Fast Compilation
- Expensive

Enables code portability
across multiple platforms

+1000x faster
compilation

+ Cheap
+ Portable across

devices
- Overhead

Platform VirtualizationPlatform Virtualization

Design C

Application
Core

Virtual Platform Interface

Design C

Application
Core

Virtual Platform Interface

� Introduced VirtualRC virtual platform

� Abstracts away platform-specific details

� Same virtual interface provided across different platforms

22

Platform A
VirtualRC

Platform B
VirtualRC

� Enables application and tool portability across

heterogeneous platforms

� VirtualRC handles underlying virtual-to-physical translation

VirtualRCVirtualRC
� VirtualRC is composed of two major components:

� SW Middleware provides a portable software API to virtual resources

� Virtual FPGA Platform provides virtual interfaces to platform resources

App. RTL Tools

SW

Middleware

App. SW

Virtual FPGA Platform

VirtualRC

23

� VirtualRC integrated into RC Middleware (RMCW) CHREC Project
� Available to public

Platform API

Virtual FPGA Platform

Platform A Platform B

. . .

. . .
Host

Platform RTL

Virtual Platform InterfaceVirtual Platform Interface
� VirtualRC’s virtual platform interface is user customizable

� Developers can customize the virtual platform based on
application requirements

Virtual Memories

Configurable

Memories

(Number, Size)

Configurable

Virtual FPGAs

(Number)

Configurable

Port Interfaces

(Number, Type,

Data width)

� Customizable options include:

� Virtual memories

� Number, size, and interface

Customizable virtual FPGAs

24

FPGA Comm. Controller

Virtual FPGAs

(Number)

Configurable

Interfaces

(Number, Type,

Data width)

To/From

Virtual

Memories

Host
Platform Bus

� Customizable virtual FPGAs

� Number of top-level interfaces

� Customizable host interface

� Number, type and data width

� For example, a developer working on convolution may use

two virtual memory inputs and one virtual memory output

� Also simplifies application development overhead

Experimental SetupExperimental Setup
� Evaluated VirtualRC performance overhead, resource

overhead, and portability
� Three significantly different FPGA platforms:

� GiDEL PROCStar III, Nallatech H101 and Pico Computing M501

25

GiDEL PROCStar III Pico M501 Nallatech H101

4 FPGAs/board 1 FPGA/board 1 FPGA/board

Altera Stratix-III Xilinx Virtex-6 Xilinx Virtex-4

3 memory banks/FPGA:

- 256/512 MB DDR2

- 2 x 2GB DDR2

- 512MB DDR3 - 512MB DDR2

- 4 x 4MB DDR2 SRAM

PCIe x8 PCIe x8 133MHz PCI-x

Overhead AnalysisOverhead Analysis
� Compared native platform vs. VirtualRC

� Two computational biology applications

2%

3%

4%

5%

6%

7%

8%

9%

10%

P
e

rc
e

n
t

O
v

e
rh

e
a

d

Smith-Waterman Overhead
Varying Sequence Lengths

2%

3%

4%

5%

6%

7%

8%

9%

10%

P
e

rc
e

n
t

O
v

e
rh

e
a

d

Needle-Distance Overhead
Varying Sequence Lengths

Max overhead of ~6%

Approaches 0%

Max overhead of ~5%

Approaches 0%

� Benchmarks demonstrate less than 1% overhead for large

transfers from FPGA to ext. memory and host to ext. memory

� Average resource overhead of less than 1% measured for

application case-studies

26

0%

1%

2%

1K 4K 16K 64K 256K 1M 4M 16M 64M

Database Size

350 450 550 650

0%

1%

2%

1K 4K 16K 64K 256K 1M 4M 16M 64M

Number of Sequence Comparisons

50 150 250 350 450

PROCStar III M501 H101

Portability AnalysisPortability Analysis
� Demonstrated application and tool portability using a

variety of applications and kernels
� Applications and kernels were created for VirtualRC or obtained

from OpenCores (www.opencores.org)

PROCStar III M501 H101

Freq. Time Freq. Time Freq. Time

Application Studies Tool Studies

Freq.

(MHz)

Time

(ms)

Freq.

(MHz)

Time

(ms)

Freq.

(MHz)

Time

(ms)

1D Convolution FP 125 39.29 125 247.90 100 91.06

2D Convolution FP 106 13.18 106 15.18 100 43.25

Option Pricing 125 12.15 s 125 14.40 s - -

Sum Abs. Differences 98 14.72 98 15.62 98 86.71

Needle Distance 125 194.00 125 116.20 100 199.51

Smith Waterman 125 116.00 125 133.00 100 225.00

Image Segmentation 125 12.40 125 16.39 100 4.81

OpenCores SHA256 125 64.05 125 120.49 100 25.97

OpenCores FIR 125 24.51 125 413.80 100 106.16

OpenCores AES128 125 25.33 125 503.78 100 126.18

OpenCores JPEG Enc. 125 15.29 125 23.93 100 21.24

27

� Applications worked on all platforms without any changes

� ROCCC and AutoESL transparently compiled to three different platforms

Freq.

(MHz)

Time

(ms)

Freq.

(MHz)

Time

(ms)

Freq.

(MHz)

Time

(ms)

ROCCC 8pt FFT 125 15.66 125 16.61 100 39.91

ROCCC 5-tap FIR 125 17.78 125 18.73 100 40.57

AutoESL Convolution 125 4.29 125 7.31 100 2.49

ConclusionsConclusions
� Long compilation times and portability prevent

mainstream high-level synthesis

� Demonstrated that virtualization can address

these problems

� Device virtualization (Intermediate Fabrics)
� 1000x faster place-and-route

28

� 1000x faster place-and-route

� Application portability across devices

� Area overhead can be significant (but improving)

� Platform virtualization (VirtualRC, CHREC RCMW)
� Allows code portability across platforms

� Enables high-level synthesis to target any platform

� Overhead is minimal

� Future work: maximize usage of platform-specific resources

Questions?Questions?

� COOLE, J., AND STITT, G. Intermediate fabrics: Virtual architectures for circuit

portability and fast placement and routing. In CODES/ISSS ’10: Proceedings of the

IEEE/ACM/IFIP international conference on hardware/Software codesign and

system synthesis (October 2010), pp. 13–22.

� STITT, G., AND COOLE, J. Intermediate fabrics: Virtual architectures for near-instant

FPGA compilation. Embedded Systems Letters, IEEE 3, 3 (sept. 2011), 81 –84.

� LANDY, A. AND STITT, G. A low-overhead interconnect architecture for virtual

reconfigurable fabrics. In CASES’12: Proceedings of the 2012 international

conference on compilers, architectures and synthesis for embedded systems

(October 2012), pp. 111-120.

� KIRCHGESSNER, R., STITT, G., GEORGE, A., AND LAM, H. VirtualRC: a virtual FPGA

platform for applications and tools portability. In FPGA ’12: Proceedings of the

ACM/SIGDA international symposium on Field Programmable Gate Arrays (New

York, NY, USA, February 2012), FPGA ’12, ACM, pp. 205–208.

29

