Advantages of High-Level
Synthesis in an OpenCL
Based FPGA
Programming
Methodology

Alex Bartzas, George Economakos and Dimitrios Soudris
Microprocessors and Digital Systems Laboratory,
National Technical University of Athens, Greece

HLS4HPC Workshop @ HIiPEAC 2013

Outline

Motivation

Methodology

Experimental results

Conclusions and future work

™
—
o
~
')
N
c
©
i
£
res
[}
[aa]
™
i
(@]
~
Q
<
L
=
I
S
O
a
T
<
n
|
I

Motivation — FPGAs in Parallel
Programming

Press Release, Moscow, Russia —July 17, 2012 - ElcomSoft Co.
Ltd. releases world’s fastest password cracking solutions by
supporting Pico’s range of high-end hardware acceleration
platforms. ElcomSoft updates its range of password recovery
tools, employing Pico FPGA-based hardware to greatly
accelerate the recovery of passwords.

At this time, two products received the update: Elcomsoft Phone
Password Breaker and Elcomsoft Wireless Security Auditor.
Users of these products can now recover Wi-Fi WPA/WPA2
passwords as well as passwords protecting Apple and
Blackberry offline backups even faster than with the already
supported clusters of high-end video accelerators produced by
AMD and NVIDIA. Pico support is planned for Elcomsoft
Distributed Password Recovery.

(99}
—
o
N
o
N
c
(g%}
i
£
=
o}
@
o
—
o
(@]
@)
<
(NE]
=
T
®
O
o
T
<
(%}
|
T

Motivation - FPGAs in Parallel
Programming

) FLOOMSOFT WPA-PSK Password Recovery

peoscswsorss 475600

i7-920 | 4,000

AMD Radeon HD
5970 - 103,000

nviDia 6Txaso [30,000

o
—
(@]
(@\]
o
N
c
[
o
=
e
(D]
o0
o
—
o
o
Q
<
L
a
I
(©)
(a1
I
<
(¥p]
|
I

- - -+ 4 +
100000 200000 oo &00e OO0 £O0000 20000

—
D
|

Passwords per second

Motivation — OpenCL Adoption

Intel AMD |NVIDIA |AMD |IBM Altera/
CPUs |CPUs |Tesla GPUs | Power |Xilinx

GPUs Systems | FPGAs ‘E
C/C++ Yes Yes Yes 8
OpenGL SL Ej
g
OpenCL 2
Intel TBB
CUDA

@ GE Healthcare

Motivation - ESL & HLS

C++ Class
__Library

C++ Design
Verification

Berlin, Jan. 23, 2013

Constraints

. Algorithm &
Micro-architecture
Analysis Cycle Accurate

Simulation

v
v
w
X
—_
Zz
S
w
w
o
<<
—
o
w
o
—

'+ .SISTHLNAS 3DV4H¥3LNI--

(90
—
)
N
8}
<
(NN}
L
T
®
)
(a1
T
N
)
|
T

RTL
Simulation

RTL Synthesis

Gate
Simulation

Source: Calypto ASIC/FPGA
Design Systems

OpenCL Platform Model

1000 ;
Processing SR - =
Element — H .
\ - Host %
UL '\

/‘ Compute Device

—
~
|

Compute Unit

OpenCL Execution Model

work-group size Sy

NDRange size Gy

NDRange size Gx

work-group (w,, w,)

work-item
(Wi Sx+SxtFy, Wy-Sy#s,+Fy)
(%S y) =(0,0)

work-item
(WySxtSy+Fy, Wy Sy +5,+F,)

(5 Sy)=(5x-1,0)

work-item
(Wx'5x+5x+F X WV'SV+SV+F y)
(Sx,Sy)=(0,5y-1)

work-item
(Sx;sy)=(sx'1;5y'1)

work-group size S,

OpenCL Memory Model

Compute Device

Work-group 1 Work-group N =
(@]

o

Private Private Private Private ‘:
Memory 1 Memory M Memory 1 Memory M =

£

m

(90
—
)
~
8}
<
(NN}
L
T
®
)
(a1
T
N
)
|
T

Device Memory

Difference with Related
Approaches

* Other related approaches are template based, i.e. they recognize
OpenCL constructs and map them into HDL code previously filled
into corresponding templates

* Jaaskelainen, de La Lama, Huerta and Takala, “OpenCL-based Design
Methodology for Application-Specific Processors”

« Mingjie, Lebedev and Wawrzynek, “OpenRCL: Low-Power High-
Performance Computing with Reconfigurable Devices”

« Owaida, Bellas, Antonopoulos, Daloukas and Antoniadis, “Massively
Parallel Programming Models Used as Hardware Description
Languages: The OpenCL Case”

e http://www.altera.com/opencl

* The proposed work is synthesis based, searching for different
microarchitectural styles and generating application specific kernels
through HLS

* The same difference is found between IP based design and HLS in
ESL environments.

(99}
—
o
N
%)
N

c

(g%}
i
£
=

[}
@
o
—
o
(@]
@)
<
(NE]
=
T
®
o
[a 8
T
<
(%}
|
T

—
[EEY
o

—

Proposed Methodology

OpenCL Kernels

o
—
(@)
(@\]
o
N
c
[
o
=
e
(D]
o0
o
—
o
N
Q
<
(NN
o
I
(©)
o
I
<
(¥p]
|
I

—
[HY
[

—

Optimized Hardware
Implementations

Proposed Methodology Steps

Translate OpenCL kernels into CatapultC ready code.

Iteratively apply HLS transformations (exhaustive
application/exploration) to find the best FPGA based
implementation (meta-engine), with respect to
performance and area consumption.

3. Manually transform host OpenCL code into an FPGA based
controller, to control kernel deployment (number of kernels
and memory architecture), invocation (parameter passing)
and synchronization, on selected FPGA devices.

(99}
—
o
N
%)
N
c
(g%}
i
£
=
[}
@
o
—
o
(@]
@)
<
(NE]
=
T
S
o
[a 8
T
<
(%}
|
T

—
[EEY
N

—

Work-in-Progress Steps

Apply heuristics to the meta-engine for run time efficiency.
Consider FPGA based power consumption.

Automate the transformation of the host code into either
small scale hardware controllers or OpenCL code for an
embedded processor.

™
—
o
~
%)
N
c
©
i
£
res
[}
[aa]
™
i
(@]
~
Q
<
L
=
I
S
O
a
T
<
n
|
I

—
(Y
w

—

Translation Methodology

* Each kernel is isolated and HLS synthesizes a hardware
component for it.

* Pointers used as formal parameters in functions are converted
to arrays with specific dimensions, for correct memory
allocation.

* Return values are inserted as formal pointer parameters in
the kernel function. This coding technique generates output
registers for them.

(99}
—
o
N
%)
N
c
(g%}
i
£
=
[}
@
o
—
o
(@]
@)
<
(NE]
=
T
®
o
[a 8
T
<
(%}
|
T

* Barrier OpenCL instructions are converted into CatapultC I/0O
transactions with ready/acknowledge interfaces.

* Array sizes are enlarged to reach powers of 2, when feasible.
This simplifies synthesis of memory access related hardware.

—
—_
D

—

Translation Methodology

* Data types are changed into bit accurate and simulation efficient
types supported by CatapultC.

For example, integer data types can be changed into ac_int<16,false>
(16 bit unsigned integer).
* Conditional statements are supplemented so that all mutually
exclusive paths are clearly defined.

For example, if statements are supplemented with else clauses when
possible. This helps {CatapultC} schedule them correctly.

* OpenCL specific directives are temporary removed. They are taken
into account later, during system integration.

* CatapultC pragmas and directives are inserted. These pragmas and
directives control all HLS transformations, acting as either on-off
switches (the corresponding transformation is performed only if the
directive is present) or value holding elements (the corresponding
transformation is performed with respect to the given value).

Berlin, Jan. 23, 2013

o
—
o
(@]
@)
<
(NE]
=
T
®
O
o
T
<
(%}
|
T

—
[EEY
92

—

HLS optimizations

* Loops
* Pipelining
* Unrolling
* Merging
* Memories
* Register files
* On-chip memories
* Off-chip memories
* Single or dual port
* Interleaved blocks
* Synchronization
* Barriers changed into I/O ready/acknowledge signals

™
—
o
~
%)
N
c
©
i
£
res
[}
[aa]
™
i
(@]
~
Q
<
L
=
I
S
O
a
T
<
n
|
I

—
(Y
(©))]

—

System Integration

Processing Elements & [\ PRRlRFHY :
Interface Logic (YA / ;
S|l

\g =% '\ HOSt ;@3’

FPGA
3 S J

Compute Devices

[v7)

System Integration

FPGA
- Local Bus
[11] /
Processing nnn |
Element -
" Embedded
\ H H il H Processor
ol \ \
Host
/ Compute Device
Compute Unit

Experimental results

Parallel Matrix Multiplication

Berlin, Jan. 23, 2013

Performance

Solution (throughput ns) LUTs DFFs BRAMs
S1 1295 85(0.02%) 102(0.01%) 0(0.00%) 4(0.46%)
S2 640 84(0.02%) 102(0.01%) 0(0.00%) 4(0.46%)
S3 320 113(0.02%) 118(0.01%) 0(0.00%) 8(0.93%)
S4 160 213(0.04%) 191(0.02%) 0(0.00%) 16(1.85%)
S5 80 335(0.07%) 292(0.03%) 0(0.00%) 32(3.70%)
§1 corresponds to np optimizations selected. Sqution_SZ corresponds to initiatign { 19 J
interval set to 1, while solutions S3, S4 and S5 keep this value and add an unrolling

factor of 2, 4 and 8 respectively.

Experimental results

Parallel Discrete Cosine Transform

Performance

Berlin, Jan. 23, 2013

Solution (throughput ns) LUTs DFFs BRAMs

S1 455 4158(0.88%) 1702(0.18%) 1(0.14%) 37(4.28%)
S2 640 4194(0.88%) 2084(0.22%) 1(0.14%) 48(5.56%)
S3 110 3563(0.75%) 2354(0.25%) 1(0.14%) 23(2.66%)
S4 30 3602(0.76%) 2377(0.25%) 1(0.14%) 68(7.87%)
S5 30 3649(0.77%) 2261(0.24%) 0(0.00%) 46(5.32%)
S6 15 5273(1.11%) 4339(0.46%) 0(0.00%) 62(7.18%)
S7 10 5453(1.15%) 6292(0.66%) 0(0.00%) 64(7.41%)

20)

Experimental results

Parallel Inverse Discrete Cosine Transform

Berlin, Jan. 23, 2013

Performance

Solution (throughput ns) LUTs DFFs BRAMs
S1 450 3002(0.63%) 1688(0.18%) 1(0.14%) 38(4.40%)
S2 800 4703(0.99%) 2001(0.21%) 1(0.14%) 52(6.02%)
S3 70 3331(0.70%) 1859(0.20%) 1(0.14%) 34(3.94%)
S4 35 2499(0.53%) 1521(0.16%) 1(0.14%) 54(6.25%)
S5 35 2489(0.52%) 1519(0.16%) 0(0.00%) 54(6.25%)
S6 15 5329(1.12%) 4259(0.45%) 0(0.00%) 56(6.48%)

S7 10 5498(1.16%) 5491(0.58%) 0(0.00%) 56(6.48%) |

Experimental results

FPGA and GPU comparison
Xilinx Virtex-6 6VLX760 at 600MHz vs Radeon HD 6970 GPU at 850MHz

Berlin, Jan. 23, 2013

Execution time (ns)

Platform 256x256 512x512 1024x1024 2048x2048
Virtex-6 (S1) 662102 1216167 2324299 4540563
Virtex-6 (S6) 399822 772103 1510840 2988349
Radeon 755398 1225752 2958031 10160484

[22]
Speedup: 1.8 1.5 1.9 3.4

Conclusions and future work

* Methodology for the adoption of OpenCL as an FPGA
programming environment, based on the systematic
application of HLS transformations by a meta-engine.

* Even though HLS tools can produce hardware from C,
efficient hardware needs effort and some architectural

synthesis expertise.

* This expertise is captured in the meta-engine, which
iterates through different possible and feasible
directive applications, and generates optimal hardware
implementations.

* Use of both CUDA and OpenCL under the same environment

* Use of heuristics in the meta-engine iterations, to speed up
the process and produce better results

(99}
—
o
N
%)
N

c

(g%}
i
£
=

[}
@
o
—
o
(@]
@)
<
(NE]
=
T
®
o
[a 8
T
<
(%}
|
T

—
N
w

|

Thank you!
Questions?

More info:
Alex Bartzas
alexis@microlab.ntua.gr

