
Advantages of High-Level Synthesis
in an OpenCL Based FPGA Programming Methodology

ALEXANDROS BARTZAS, GEORGE E. ECONOMAKOS and DIMITRIOS J. SOUDRIS
National Technical University of Athens

1. EXTENDED ABSTRACT

OpenCL (Open Computing Language) is an open standard for the
development of parallel applications on a variety of heterogeneous
multi-core architectures. Its execution model consists of ahost ma-
chineconnected and controlling acompute device, which performs
calculations with a number of parallel computational intensiveker-
nels. Since its introduction, it has been reported to support different
CPUs, DSPs and GPUs, in a variety of heterogeneous configura-
tions. Recently, the technological advances inField Programmable
Gate Array(FPGA) devices, with hundreds of GFLOPs, maximum
power efficiency and low cost, has turned the parallel processing
community towards them, with a number of publications proposing
OpenCL as a programming language for FPGAs also. FPGAs, par-
allel processing and GPUs co-existed for many years, however they
were considered isolated and disjoint fields, offering optimizations
at different levels in system design. While indeed parallel process-
ing is aiming at a higher optimization level than FPGAs, the main
reason for this isolation has been the different programming models
and languages used in each case, with FPGA programming consid-
ered a difficult and delicate job. This is starting to change how-
ever. As FPGAs made hardware design wider accepted (compared
to ASICs), a new generation of FPGA programming tools based
on High-Level Synthesis(HLS) [Coussy and Morawiec 2008], like
Calypto’s CatapultC, Xilinx’s Vivado HLS, Cadence’s C-to-Silicon
and Synopsys’ Synphony (to name just a few), is promising to bring
hardware closer to software.

This paper presents a methodology for the adoption of OpenCL
as an FPGA programming environment, based on CatapultC. Cata-
pultC accepts C/C++/SystemC behavioral untimed system descrip-
tions that should follow specific coding guidelines, and through a
number of directives (or GUI commands) applies HLS transfor-
mations to produce optimized bit-accurateRegister Transfer Level
(RTL) architectural descriptions. The methodology of this paper is
a systematic application of each HLS transformation, by a meta-
engine placing and tuning CatapultC directives into OpenCL code.
The main concern in this process is that even though CatapultC can
produce hardware from C, efficient hardware needs effort and ar-
chitectural synthesis expertise. This expertise is coded in the meta-
engine, which iterates through different possible and feasible HLS
directive applications to generate optimal hardware implementa-
tions of OpenCL kernels. With this approach, the opportunities as
well as the obstacles imposed to the application developer by the
FPGA computing platform and the adoption of C/C++ as input lan-
guage are investigated, and a systematic way to explore instruction-
level, data-level and thread-level parallelism is given. Furthermore,
HLS offers deep design space exploration opportunities and is not
used as a special purpose, one phase compiler, passing from soft-
ware to hardware.

The advantages offered with the proposed methodology cover
both fields of parallel processing and hardware design. First, by
using OpenCL, a programmer can fine tune its algorithm for par-
allel processing, take simulation results and make critical deci-

sions about data-level and thread-level parallelism. Second, a hard-
ware designer can take kernels and produce optimized implemen-
tations through HLS, making critical decisions about instruction-
level parallelism and FPGA device limitations. Finally, the pro-
posed methodology uses a common input language for the whole
development cycle, which can improve collaboration, ease integra-
tion of CPUs, DSPs, GPUs and FPGAs into a common platform
and reduce application development time and cost (which was one
of the main goals of the recent DARPA HPCS [Dongarra et al.
2008] program).

Compared to recent publications that are considering using par-
allel programming models (OpenCL and CUDA) as a programming
language for FPGAs also, our work takes full advantage of HLS.
In [Mingjie et al. 2010] and [Owaida et al. 2011] two method-
ologies are given for mapping OpenCL kernels to reconfigurable
hardware. The methodologies involve compiler optimizations that
map kernel code into fixed hardware templates, which are then writ-
ten in hardware description languages. While both methodologies
are complete and cover many different issues (computations, mem-
ory hierarchies and interfacing), the resulting hardware cores are
template-based and do not cover in detail lower level design is-
sues. In [Jaaskelainen et al. 2010], the authors present another simi-
lar methodology, targetingApplication-Specific Processors(ASPs).
They use a custom design environment and map OpenCL kernels
into either common or custom ASP instructions. Another approach,
closer to this paper is reported in [Papakonstantinou et al. 2009],
where CUDA code is passed though another HLS tool. Directives
and pragmas are used to control the tool but no systematic and iter-
ative application is reported, as in the proposed methodology. HLS
is rather considered as a single pass procedure. From the industrial
point of view, FPGA vendors have been actively involved in the
use of OpenCL for FPGA programming (Altera SDK for OpenCL
[Czajkowski et al. 2012]), offering a specific framework that takes
advantage of the parallelism expressed in OpenCL code and utilize
a custom HLS step. As in [Papakonstantinou et al. 2009] however,
no systematic HLS design space exploration is performed. On the
contrary, HLS is considered a time consuming task in the whole
design process so, HLS iterations are avoided. On the contrary, our
work is based on HLS iterations for better design space exploration
and improved instruction-level parallelism opportunities.

The main idea of this paper is the proposal of a semi-automated
methodology to translate OpenCL code into a form suitable for
CatapultC, with which hardware is synthesized using HLS. Since
OpenCL is based on C99, which is also recognized by CatapultC,
this translation does not bring major changes to the input code. The
whole process is performed by a custom source-to-source translator
(at this time implemented as a preliminary version through script
files), that either infers (if possible) or accepts by the user (this jus-
tifies the term semi-automated) details to OpenCL code like pointer
sizes, loop boundaries, input parameters and expected return val-
ues. The basic steps are the following.

HiPEAC 2013 HLS4HPC Workshop, Berlin, January 2013.



2 • A. Bartzas, G. Economakos and D. Soudris

—Each kernel is isolated and HLS synthesizes a hardware compo-
nents for it.

—Pointers used as formal parameters in functions are converted to
arrays with specific dimensions, for correct memory allocation.

—Return values are inserted as formal pointer parameters in the
kernel function. This coding technique generates output registers
for them.

—Barrier OpenCL instructions are converted into CatapultC I/O
transactions with ready/acknowledge interfaces.

—Array sizes are enlarged to reach powers of 2, when feasible.
This simplifies synthesis of memory access related hardware.

—Data types are changed into bit accurate and simulation efficient
types supported by CatapultC.

—Conditional statements are supplemented so that all mutually ex-
clusive paths are clearly defined. This helps CatapultC schedule
them correctly.

—OpenCL specific directives are temporary removed. They are
taken into account later, during system integration.

—CatapultC pragmas and directives are inserted. These pragmas
and directives control all HLS transformations.

After translation, an iterative procedure is initiated, which works
as a meta-engine modifying CatapultC pragmas and directives. At
each iteration, which is performed with a predefined scenario (i.e. a
loop’s initiation interval is decreased by one in each meta-engine
iteration), a new solution is produced. The meta-engine finishes
when no new solutions can be produced (further modification of
pragmas and directives produces invalid solutions) and the best so-
lution with respect to performance and resource usage is selected
for FPGA implementation.

In order to prove the efficiency of our methodology and support
our main differentiating characteristic (HLS based design space
exploration), a number of OpenCL kernels found in the NVIDIA
OpenCL SDK version 4.1 have been synthesized, the parallel ma-
trix multiplication, parallel 2D discrete cosine transform (DCT) and
parallel 2D inverse discrete cosine transform (IDCT). Table I shows
different solutions achieved (through different HLS optimizations)
for the parallel 2D DCT in terms of maximum performance (as
throughput period in ns, the time required before a new input set
can be processed by the resulting pipeline architecture) and re-
quired FPGA resources (Look-Up Table (LUT) function genera-
tors, D-type Flip-Flops (DFF), Block RAM (BRAM) and special
purpose DSP blocks). For all solutions, the largest FPGA of the Xil-
inx Virtex-6 family was used, the 6VLX760 (with 758784 LUTs,
948480 DFFs, 720x36KB BRAM and 864 DSPs) at 200MHz. So-
lutions S1, S2 and S3 work directly with global memory and uti-
lize fast BRAMs (nonzero in BRAM column), which is a com-
mon block for all kernels. This offers advantages at the circuit level
(smaller memory controllers, less DFFs) but performance is low
because of the large number of global memory accesses (barrier
commands blocks every kernel before writing its result). Further-
more, solution S1 corresponds to no HLS optimizations selected,
solution S2 corresponds to main loop initiation interval set to 4
(the minimum achieved) and solution S3 corresponds to minimum
initiation interval and full loop unrolling. Solutions S4 and S5 are
use the same HLS optimizations with S2 and S3 but utilize double
width local memories (64 bit I/O ports with 32 bit operands) and
solution S6 is like S5 with subfunctions implemented as hardware
components and not as inlined code. As it can be seen, each so-
lution offers specific advantages and disadvantages and the differ-
ent HLS optimizations performed can greatly improve performance
and area requirements. Solutions S1 or S2 are the slowest. All other

Table I. Parallel discrete cosine transform
Sol. Perf. (ns) LUTs DFFs BRAMs DSPs

S1 455 4158 1702 1 37
S2 640 4194 2084 1 48
S3 110 3563 2354 1 23
S4 30 3649 2261 0 46
S5 15 5273 4339 0 62
S6 10 5453 6292 0 64

solutions are sorted so that each one is better than the previous with
respect to performance. Looking at resources, in many solutions
less than 1% of the available hardware is used, so there is room to
implement large number of kernels. The only resources that limit
the number of kernels are the DSP blocks, which increase up to
a significant percentage as more parallelization is attempted. Fur-
thermore, preliminary comparisons between a system composed of
the above fastest kernel (solution S6) at 600MHz clock speed and
a system based on the Radeon HD 6970 GPU at 850MHz, show
a system level speedup ranging from 1.8x (256x256 image size)
to 3.4x (2048x2048 image size) [Bartzas and Economakos 2012].
Also, a system with S6 kernels (larger and thus fewer, but opti-
mized) is found to be faster than one with S1 (more but not opti-
mized), which is a justification of our approach.

REFERENCES

BARTZAS, A. AND ECONOMAKOS, G. 2012. Methodology for Efficient
Use of OpenCL, ESL and FPGAs in Multi-Core Architectures. In5th
Workshop on UnConventional High Performance Computing.

COUSSY, P. AND MORAWIEC, A. 2008.High-level Synthesis: From Algo-
rithm to Digital Circuit. Springer-Verlag.

CZAJKOWSKI, T. S., AYDONAT, U., DENISENKO, D., FREEMAN, J., KIN-
SNER, M., NETO, D., WONG, J., YIANNACOURAS, P., AND SINGH,
D. P. 2012. From OpenCL to High-Performance Hardware on FPGAs.
In 22nd International Conference on Field Programmable Logic and Ap-
plications. IEEE, 531–534.

DONGARRA, J., GRAYBILL , R., HARROD, W., LUCAS, R., LUSK, E.,
LUSZCZEK, P., MCMAHON, J., SNAVELY, A., VETTER, J., YELICK , K.,
ALAM , S., CAMPBELL , R., CARRINGTON, L., CHEN, T. Y., KHALILI ,
O., MEREDITH, J., AND TIKIR , M. 2008. DARPA’s HPCS Program:
History, Models, Tools, Languages.Advances in Computers 72, 1–100.

JAASKELAINEN , P. O.,DE LA LAMA , C. S., HUERTA, P.,AND TAKALA ,
J. H. 2010. OpenCL-based Design Methodology for Application-
Specific Processors. In10th International Conference on Embedded
Computer Systems: Architectures, Modeling and Simulation. IEEE, 223–
230.

M INGJIE, L., LEBEDEV, I., AND WAWRZYNEK , J. 2010. OpenRCL: Low-
Power High-Performance Computing with Reconfigurable Devices. In
20th International Conference on Field Programmable Logic and Appli-
cations. IEEE, 458–463.

OWAIDA , M., BELLAS, N., ANTONOPOULOS, C. D., DALOUKAS , K.,
AND ANTONIADIS, C. 2011. Massively Parallel Programming Models
Used as Hardware Description Languages: The OpenCL Case. InInter-
national Conference on Computer-Aided Design. IEEE/ACM, 326–333.

PAPAKONSTANTINOU, A., GURURAJ, K., STRATTON, J. A., CHEN, D.,
CONG, J., AND HWU, W.-M. W. 2009. FCUDA: Enabling Efficient
Compilation of CUDA Kernels onto FPGAs. In7th Symposium on Ap-
plication Specific Processors. IEEE, 35–42.

HiPEAC 2013 HLS4HPC Workshop, Berlin, January 2013.


