HLS 4 HPC: Some Missing Links

George A. Constantinides¹

Imperial College London

January 22, 2013

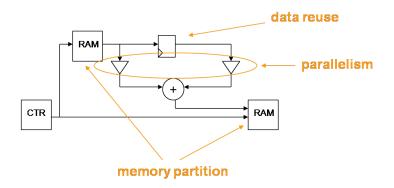
1Thanks to: Dr Sam Bayliss, Dr David Boland

George A. Constantinides HLS 4 HPC: Some Missing Links

Outline

- A simple HLS example
- What are the missing links?
 - Part 1: Representing real numbers
 - Benefits
 - Number systems
 - Precision
 - Part 2: Dealing with external memory
 - The central role of SDRAM
 - Using the polyhedral model
- Some open questions

```
#define N 1024
#define L 2
void main()
{
  double x[ N ], y[ N - 1 ];
  double k[L] = \{0.12, 0.2\};
  for( int i = 0; i < N - 1; i++ ) {</pre>
    y[i] = 0.0;
    for( int j = 0; j < L; j++ )</pre>
      v[i] += k[j] * x[i - j + L - 1];
  }
}
```



- Structural concerns: parallelization, memory subsystem design. External memory?
- Numerical concerns: is double the right number representation?

Part I

Numerics

George A. Constantinides HLS 4 HPC: Some Missing Links

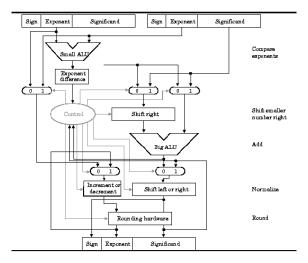
・ロト ・日下・ ・日下

문 🛌 문

Missing Link 1: Representing the Reals

- Hardware represents numerical data as bit strings.
- A bit string of length *n* can represent at most 2^{*n*} distinct values.
- Representations vary in how these strings are mapped onto reals: $f : \{0,1\}^n \to \mathbb{R}$.
 - Floating-point (s,m,e),
 - Fixed-point (s,m)/2c/1c,
 - LNS (s,e),
 - RNS (m,m,...), etc.
- We have always cared about using 'enough' precision. Now we should care about using 'just enough' precision.
 - Lower precision \Rightarrow smaller area units, less bandwidth \Rightarrow more units, more transfer \Rightarrow faster.

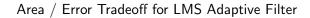
Hardware Implications

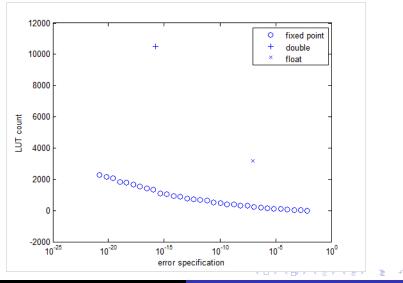


(from http://www.cise.ufl.edu/~mssz/CompOrg/CDA-arith.html)

・ロト ・回ト ・ヨト ・ヨト

Numerics Matter!





George A. Constantinides HLS 4 HPC: Some Missing Links

The Central Problem

 $\max_{\substack{s,p\\ subject to : \forall i. Pre(i) \rightarrow Out(s, p, i) \in Accept(i).}$

(1)

- Here *s* denotes circuit structural parameters, and *p* denotes circuit precisions. Note plural we are in a parallel environment, so specialise!
- *i* denotes inputs, *Pre(i)* denotes precondition predicate, *Out(s, p, i)* denotes output, *Accept(i)* denotes acceptable outputs.
- For simplicity, let's restrict ourselves to fixed *s*.

The General Setting

Toy Problem

A toy sample problem would be

$$\begin{array}{l} \max_{p \in \mathbb{Z}_{++}} \operatorname{perf}(p) \\ \text{subject to:} \quad \forall (a, b) \in \mathbb{R}^2. m \le a \le M \land m \le b \le M \rightarrow \quad (2) \\ \forall \delta \in \mathbb{R}. |\delta| \le 2^{-p} \rightarrow |\frac{\delta}{a+b}| < \epsilon. \end{array}$$

This corresponds to a fixed-point addition of a and b with a condition on the relative error of the result.

Reformulation of Toy Problem

$$\max_{p \in \mathbb{Z}_{++}} \operatorname{perf}(p)$$

subject to: $\neg \exists (a, b, \delta) \in \mathbb{R}^3 . m \le a \le M \land m \le b \le M \land$
$$-2^{-p} \le \delta \le 2^{-p} \land \delta^2 - \epsilon^2 (a+b)^2 \ge 0.$$
(3)

Notice that the feasibility condition defines a semi-algebraic set. Applying a standard quantifier elimination gives the following simplified problem, assuming m < M, $\epsilon > 0$.

Simplified Problem

Objective Function

- In general, 1/*perf* can be approximated as a (multi-variate) polynomial.
- For our toy example, if perf is monotonically decreasing in p, then $p^* = \lfloor -\log_2 \epsilon |m| \rfloor$ for m > 0 and M > 0 and $p^* = \lfloor -\log_2 \epsilon |M| \rfloor$ for M < 0.
- One can imagine that with multivariate *p* (due to parallel implementation) and more complex examples, things get difficult!

We have been focusing on:

- The feasibility problem.
- The algorithm is defined by fixed combinations of the four basic operators *, +, /, -.
- Accept(i) is defined by f(i) + [I, u].
- Convex relaxations leading to computationally tractable formulations.
- Proof techniques resulting in simple machine checkable proofs.

Part II

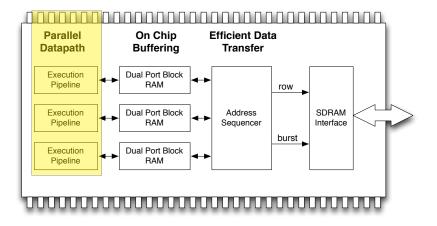
Numerics

George A. Constantinides HLS 4 HPC: Some Missing Links

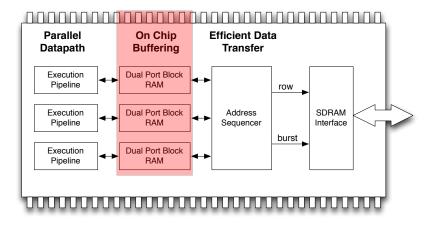
æ

≣ ।•

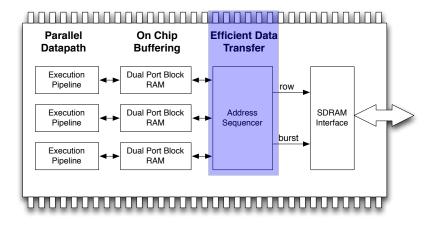
・ロト ・日下 ・ 日下



イロト イポト イヨト イヨト



イロト イポト イヨト イヨト



George A. Constantinides HLS 4 HPC: Some Missing Links

Image: Image:

< ∃ >

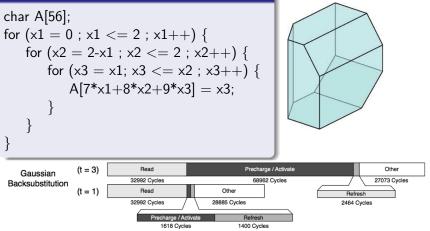
- ₹ 🖬 🕨

SDRAM Memory Characteristics

- Advantage : SDRAM is **cheap**, high capacity, commodity memory
- Disadvantage : Internal device architecture means high latency (20-30 clock cycles in FPGA)
- Physical device structure imposes timing constraints
 - Explicit 'activation' of a row before data is read from it
 - Explicit 'precharge' of a row before another row is 'activated'
- Significant bandwidth difference improvements possible when reordering external memory transactions
 - Typically $> 5 \times$ bandwidth difference between optimal and worst-case performance

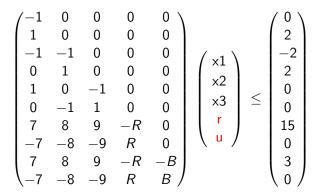
Use the Polyhedral Model

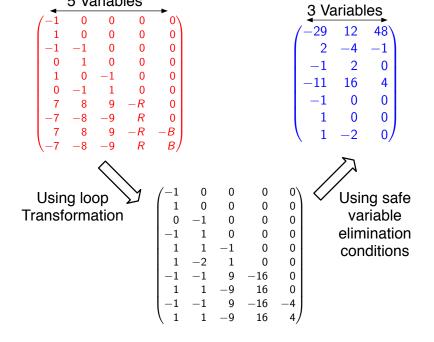
Affine Loop Nests



イロト イポト イヨト イヨト

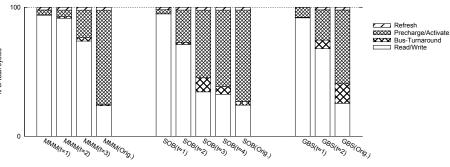
 Augmented matrix captures each loop iteration and its associated SDRAM row (r) and burst (u)





What was the impact on bandwidth efficiency?

Bus Utilization



Numerics

- Natural and scalable methods to deal with iterative algorithms where loop conditions depend on rounded variables.
- Techniques to deal with other source of error, *e.g.* overclocking.
- Memory
 - Effective commercial tool integration
 - Optimizing SDRAM refresh for latency guarantees
 - Optimal bank partitioning