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Outline

A simple HLS example

What are the missing links?
Part 1: Representing real numbers

Benefits
Number systems
Precision

Part 2: Dealing with external memory

The central role of SDRAM
Using the polyhedral model

Some open questions
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Example Code

#define N 1024

#define L 2

void main()

{

double x[ N ], y[ N - 1 ];

double k[ L ] = {0.12, 0.2};

for( int i = 0; i < N - 1; i++ ) {

y[ i ] = 0.0;

for( int j = 0; j < L; j++ )

y[ i ] += k[ j ] * x[ i - j + L - 1 ];

}

}
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Example Design

Structural concerns: parallelization, memory subsystem
design. External memory?

Numerical concerns: is double the right number
representation?
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Part I

Numerics
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Missing Link 1: Representing the Reals

Hardware represents numerical data as bit strings.

A bit string of length n can represent at most 2n distinct
values.

Representations vary in how these strings are mapped onto
reals: f : {0, 1}n → R.

Floating-point (s,m,e),
Fixed-point (s,m)/2c/1c,
LNS (s,e),
RNS (m,m,...), etc.

We have always cared about using ‘enough’ precision. Now we
should care about using ‘just enough’ precision.

Lower precision ⇒ smaller area units, less bandwidth ⇒ more
units, more transfer ⇒ faster.
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Hardware Implications

(from http://www.cise.ufl.edu/˜mssz/CompOrg/CDA-arith.html)
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Numerics Matter!

Area / Error Tradeoff for LMS Adaptive Filter
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Our Vision

The Central Problem

max
s,p

perf(s, p)

subject to : ∀i .Pre(i)→ Out(s, p, i) ∈ Accept(i).
(1)

Here s denotes circuit structural parameters, and p denotes
circuit precisions. Note plural - we are in a parallel
environment, so specialise!

i denotes inputs, Pre(i) denotes precondition predicate,
Out(s, p, i) denotes output, Accept(i) denotes acceptable
outputs.

For simplicity, let’s restrict ourselves to fixed s.
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The General Setting

A toy sample problem would be

Toy Problem

max
p∈Z++

perf(p)

subject to: ∀(a, b) ∈ R2.m ≤ a ≤ M ∧m ≤ b ≤ M →
∀δ ∈ R.|δ| ≤ 2−p → | δ

a+b | < ε.

(2)

This corresponds to a fixed-point addition of a and b with a
condition on the relative error of the result.

Reformulation of Toy Problem

max
p∈Z++

perf(p)

subject to: ¬∃(a, b, δ) ∈ R3.m ≤ a ≤ M ∧m ≤ b ≤ M∧
−2−p ≤ δ ≤ 2−p ∧ δ2 − ε2(a + b)2 ≥ 0.

(3)
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Quantifier Elimination

Notice that the feasibility condition defines a semi-algebraic set.
Applying a standard quantifier elimination gives the following
simplified problem, assuming m < M, ε > 0.

Simplified Problem

max
p∈Z++

perf(p)

subject to: p > −1− log2 ε|m|

}
if m > 0 and M > 0 (4)

max
p∈Z++

perf(p)

subject to: p > −1− log2 ε|M|

}
if M < 0 (5)

infeasible otherwise. (6)
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Objective Function

In general, 1/perf can be approximated as a (multi-variate)
polynomial.

For our toy example, if perf is monotonically decreasing in p,
then p∗ = b− log2 ε|m|c for m > 0 and M > 0 and
p∗ = b− log2 ε|M|c for M < 0.

One can imagine that with multivariate p (due to parallel
implementation) and more complex examples, things get
difficult!
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Our status

We have been focusing on:

The feasibility problem.

The algorithm is defined by fixed combinations of the four
basic operators *, +, /, -.

Accept(i) is defined by f (i) + [l , u].

Convex relaxations leading to computationally tractable
formulations.

Proof techniques resulting in simple machine checkable proofs.
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Part II

Numerics
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Missing Link 2: External Memory

Execution 
Pipeline

Dual Port Block 
RAM

Execution 
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RAM

Execution 
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RAM

Address 
Sequencer

SDRAM 
Interface

Parallel 
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row

burst
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SDRAM Memory Characteristics

Advantage : SDRAM is cheap, high capacity, commodity
memory

Disadvantage : Internal device architecture means high
latency (20-30 clock cycles in FPGA)

Physical device structure imposes timing constraints

Explicit ‘activation’ of a row before data is read from it
Explicit ‘precharge’ of a row before another row is ‘activated’

Significant bandwidth difference improvements possible when
reordering external memory transactions

Typically > 5× bandwidth difference between optimal and
worst-case performance
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Use the Polyhedral Model

Affine Loop Nests

char A[56];
for (x1 = 0 ; x1 <= 2 ; x1++) {

for (x2 = 2-x1 ; x2 <= 2 ; x2++) {
for (x3 = x1; x3 <= x2 ; x3++) {

A[7*x1+8*x2+9*x3] = x3;
}

}
}
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Augmented matrix captures each loop iteration and its
associated SDRAM row (r) and burst (u)




−1 0 0 0 0
1 0 0 0 0
−1 −1 0 0 0
0 1 0 0 0
1 0 −1 0 0
0 −1 1 0 0
7 8 9 −R 0
−7 −8 −9 R 0
7 8 9 −R −B
−7 −8 −9 R B







x1

x2

x3
r
u



≤




0
2
−2
2
0
0

15
0
3
0



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


−1 0 0 0 0
1 0 0 0 0

−1 −1 0 0 0
0 1 0 0 0
1 0 −1 0 0
0 −1 1 0 0
7 8 9 −R 0

−7 −8 −9 R 0
7 8 9 −R −B

−7 −8 −9 R B







−29 12 48
2 −4 −1

−1 2 0
−11 16 4
−1 0 0

1 0 0
1 −2 0







−1 0 0 0 0
1 0 0 0 0
0 −1 0 0 0

−1 1 0 0 0
1 1 −1 0 0
1 −2 1 0 0

−1 −1 9 −16 0
1 1 −9 16 0

−1 −1 9 −16 −4
1 1 −9 16 4




5 Variables 3 Variables

Using loop 
Transformation

Using safe 
variable 

elimination
conditions



What was the impact on bandwidth efficiency?
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Some Open Questions

Numerics

Natural and scalable methods to deal with iterative algorithms
where loop conditions depend on rounded variables.
Techniques to deal with other source of error, e.g.
overclocking.

Memory

Effective commercial tool integration
Optimizing SDRAM refresh for latency guarantees
Optimal bank partitioning
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