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1. High Performance 
Desktop

Combining CPUs + GPUs + FPGAs



Architecture:
CPU: Xeon E5506
GPU: Tesla C2050
FPGA: Pico Ex500 board with 2x Virtex6-LX240

Toolchain:
Languages: C/C++ and OpenCL
High-Level Synthesis tools: ROCCC and VivadoHLS.
APIs: Nvidia Libraries(GPU) and Pico Computing 
framework (FPGA)

HPC Desktop: CPU+FPGA+GPU



HPC Desktop: CPU+FPGA+GPU
Tesla C2050

Pico EX-500

2x
M501 Virtex6



CPU/FPGA/GPU Heterogeneous Architecture



Toolchain combining GPU/FPGA/CPU



Toolchain combining GPU/FPGA/CPU



Toolchain combining GPU/FPGA/CPU



Toolchain combining GPU/FPGA/CPU



2. Roofline 
Performance of 

GPU/FPGAs
Adapting the roofline model for hardware accelerators



Roofline model:

Performance = Min(I/O dependent Perf., HW Peak Perf.)
I/O dependent Perf. = Ops/Byte x Bytes/s = CI x BW

where CI    = Computational Intensity
BW  = I/O Bandwidth



Roofline model:

CI of algorithm results I/O or compute
bound



Superimposed GPU/FPGA roofline models
for integer 32bits additions



3. GPUs vs
FPGAs

Comparing an image processing algorithm



Basic morphological operation: Erosion 3x3

First implementation: handwritten code
Second implentation: HLS-compilers

Implementing a morphological operation



Roofline model of erosion:
Handwritten VHDL code



Why ROCCC?:
Open Source
Stream oriented
Optimization to decrease memory accesses:

Smart Buffers
Partial Loop Unrolling 

Implementing a morphological operation 
with ROCCC (Riverside Optimizing Configurable C Compiler)



Smart Buffers

The compiler analyses the array access looking
for possible reuse between loop iterations to
reduce the number of off-chip memory
accesses.



Partial loop unrolling

In ROCCC, an output stream channel must be 
defined and the outputs must be multiplexed in 
time.
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unrolling over the Computational Intensity



Improving performance 
by increasing the Computational Intensity



Roofline model of erosion:
Increasing the original Computational Intensity



Resource Consumption



Improving performance 
by increasing parallelism

1x Erosion blocks

4x Erosion blocks

8x Erosion blocks

16x Erosion blocks



Roofline Model:
Handwritten VHDL code vs ROCCC



GPU vs FPGA Performance

x 1.8



4. Combining 
GPUs and FPGAs

Exploiting the best of both technologies



Pedestrian detection: fastHOG

Detecting people in images using Histograms Oriented 
Gradients (HOG) and Support Vector Machines (SVM).

Different Steps
Some ideal for GPU
Others ideal for FPGA

Existing GPU version 
called fastHOG.



fastHOG: HOG + SVM

Up to 31 
iterations



Identifying the candidate to accelerate:
Histogram + SVM Computation

Geforce GTX 280



Identifying the candidate to accelerate:
Histogram + SVM Computation

Geforce GTX 280



Identifying the candidate to accelerate:
Histogram Computation and Normalization

26.997 ms

1.084 ms
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Geforce GTX 280



New dataflow computing HOG on the FPGA



Adapting the code for FPGAs

Mathematical types, functions and footprint: 
Floating point Fixed point
Adapt mod, floor, divisions and other computationally 
expensive operations
Adjust the data bit-width: performance vs accuracy

Memory use and reuse:
Rewrite the code to reduce memory accesses

VivadoHLS Directives:
Pipelining, Stream interface, Partial Loop Unrolling 
Impact of the clock definition over the design.



Adapting the code working @ 125MHz
Floating point

Latency: 
160,128,522 clock cycles

Resource consumption:

Fixed point
Latency: 

61,055,286 clock cycles

Resource consumption:
BRAM

18K
DSP48 FF LUT SLICE

Total 17 50 6048 6930 0

Available 832 768 301440 150720 37680

Utilization
(%)

2 6 2 4 0

BRAM
18K

DSP48 FF LUT SLICE

Total 16 62 6071 11821 0

Available 832 768 301440 150720 37680

Utilization
(%)

1 8 2 7 0



Adapting the code
Floating point

Operation Latency:
12 clock cycles

Fixed point

Operation Latency: 
5 clock cycles

It is important to avoid divisions, mod or floor operations due
to its high latency and resource consumption.



Adapting the data bit-width
Knowledge of the input data range.

The input gradients are composed of two 
parameters:

The resource consumption as well as the accuracy 
is decreased due to the fixed point conversion. 

However, it allows to place more blocks in parallel 
and to exploit the I/O bandwidth. 

Magnitude: between  [0, 17]     5 bits for the integer part
Orientation: between  [-179, 180]            9 bits  



Adapted HOG code: Main function

Memory 
Rearrangement



Impact of the directives: Pipelining the code

High Latency: 
   43,801,238 clock cycles

High Resource consumption

BRAM
18K

DSP48 FF LUT SLICE

Total 132 454 62654 146792 0

Available 832 768 301440 150720 37680

Utilization
(%)

15 59 20 97 0

Pipeline the full code is not always the best option.



Impact of the directives: Partial pipelining

Latency: 
   7,954,266 clock cycles

Resource consumption:

BRAM
18K

DSP48 FF LUT SLICE

Total 16 65 6078 11664 0

Available 832 768 301440 150720 37680

Utilization
(%)

1 8 2 7 0



Impact of the directives:
Partial Loop Unrolling

Latency: 
   8,069,910 clock cycles

Resource consumption:

BRAM
18K

DSP48 FF LUT SLICE

Total 16 65 6137 11735 0

Available 832 768 301440 150720 37680

Utilization
(%)

1 8 2 7 0



Once the clock of the system has been defined 
(mandatory to synthesize) the compiler would focus 
all the effort to achieve the expected frequency.

That means a high resource consumption and a 
extremely low latency.

Specially when several directives as pipelining are 
applied.

The best strategy is to define the operational 
frequency from the beginning.

Impact of the clock definition on VivadoHLS



HOG implementation

Pipeline solution including the normalization part

Latency drastically reduced (about x35):
Original design: 2,1s           Final design: 61ms 



Execution on the FPGA: Streaming + Pipelining



Improving performance by increasing the 
parallelism up to the maximum resources 
available on the FPGA

One HOG block consumes less than 7% of logic resources

1x HOG block

4x HOG block

8x HOG block

16x HOG block



Comparing FPGA/GPUs HOG computation

Speed Up of the FPGA(s) 
over the Tesla  C2050 GPU 

Speed Up of the FPGA(s)
over the Geforce GTX280 GPU 

Iterations 1xFPGA 2xFPGA 1xFPGA 2xFPGA  

92x69 37% 68% 85% 93%

… … … … …

20x15 17% 59% 77% 88%

Average x1.61 x3.22 x6.45 x13.69



Detailed GPU/FPGA combination including 
their communication

61% 36% 3%



Impact of the PCIe protocol overhead
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Impact of the PCIe protocol overhead



Performance combining GPU/FPGA

 GPU*  GPU* + FPGA 
16HOGs 

GPU* + 2xFPGA 
16HOGs 

92x69 6547 7260 5198
… … … …

20x15 467 1846 1653

Total 
Execution [ms]  73066 108738 86208

* Tesla C2050



So, when to combine?

In our case, when the FPGA implementation 
speed up the design more than 60% compared 
to the GPU.

And when the amount of data to transfer is 
higher enough to reach the maximum PCIe
bandwidth. 



Exploiting our modular Pico Board: HOG + SVM



5. Conclusions



Conclusions of our HLS experience
For algorithms with low CI, partial loop unrolling and other 
optimizations (smart buffers) are able to increase the CI have 
obtained higher performance.

For algorithms with high CI, the most important  is the 
resource consumption, which determinates the maximum 
realizable parallelism. 

In both cases, to exploit the FPGA’s features it is 
recommended to pipeline the stages and to stream the I/O.

HLS tools allow further and better tuning than handwritten 
code.

Still, the code must be rearranged to maximize performance.


