
23/01/2013

Study of combining
GPU/FPGA accelerators
for High-Performance
Computing

Bruno Da Silva, An Braeken, Erik D’Hollander,
Abdellah Touhafi, Jan G. Cornelis and Jan Lemeire

Overview

1. HPC Desktop: CPUs + GPUs + FPGAs

2. Roofline performance of GPU/FPGA

3. Comparing GPU/FPGA for an image processing
algorithm

4. GPU/FPGA collaboration: Pedestrian
recognition

5. Conclusions

1. High Performance
Desktop

Combining CPUs + GPUs + FPGAs

Architecture:
CPU: Xeon E5506
GPU: Tesla C2050
FPGA: Pico Ex500 board with 2x Virtex6-LX240

Toolchain:
Languages: C/C++ and OpenCL
High-Level Synthesis tools: ROCCC and VivadoHLS.
APIs: Nvidia Libraries(GPU) and Pico Computing
framework (FPGA)

HPC Desktop: CPU+FPGA+GPU

HPC Desktop: CPU+FPGA+GPU
Tesla C2050

Pico EX-500

2x
M501 Virtex6

CPU/FPGA/GPU Heterogeneous Architecture

Toolchain combining GPU/FPGA/CPU

Toolchain combining GPU/FPGA/CPU

Toolchain combining GPU/FPGA/CPU

Toolchain combining GPU/FPGA/CPU

2. Roofline
Performance of

GPU/FPGAs
Adapting the roofline model for hardware accelerators

Roofline model:

Performance = Min(I/O dependent Perf., HW Peak Perf.)
I/O dependent Perf. = Ops/Byte x Bytes/s = CI x BW

where CI = Computational Intensity
BW = I/O Bandwidth

Roofline model:

CI of algorithm results I/O or compute
bound

Superimposed GPU/FPGA roofline models
for integer 32bits additions

3. GPUs vs
FPGAs

Comparing an image processing algorithm

Basic morphological operation: Erosion 3x3

First implementation: handwritten code
Second implentation: HLS-compilers

Implementing a morphological operation

Roofline model of erosion:
Handwritten VHDL code

Why ROCCC?:
Open Source
Stream oriented
Optimization to decrease memory accesses:

Smart Buffers
Partial Loop Unrolling

Implementing a morphological operation
with ROCCC (Riverside Optimizing Configurable C Compiler)

Smart Buffers

The compiler analyses the array access looking
for possible reuse between loop iterations to
reduce the number of off-chip memory
accesses.

Partial loop unrolling

In ROCCC, an output stream channel must be
defined and the outputs must be multiplexed in
time.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

No Partial loop Unrolling Partial loop Unrolling x2 Partial loop Unrolling x4 Partial loop Unrolling x8 Partial loop Unrolling x16

C
om

pu
ta

tio
na

l I
nt

en
si

ty

32x32

64x64

128x128

256x256

Impact of the smart buffers and the partial loop
unrolling over the Computational Intensity

Improving performance
by increasing the Computational Intensity

Roofline model of erosion:
Increasing the original Computational Intensity

Resource Consumption

Improving performance
by increasing parallelism

1x Erosion blocks

4x Erosion blocks

8x Erosion blocks

16x Erosion blocks

Roofline Model:
Handwritten VHDL code vs ROCCC

GPU vs FPGA Performance

x 1.8

4. Combining
GPUs and FPGAs

Exploiting the best of both technologies

Pedestrian detection: fastHOG

Detecting people in images using Histograms Oriented
Gradients (HOG) and Support Vector Machines (SVM).

Different Steps
Some ideal for GPU
Others ideal for FPGA

Existing GPU version
called fastHOG.

fastHOG: HOG + SVM

Up to 31
iterations

Identifying the candidate to accelerate:
Histogram + SVM Computation

Geforce GTX 280

Identifying the candidate to accelerate:
Histogram + SVM Computation

Geforce GTX 280

Identifying the candidate to accelerate:
Histogram Computation and Normalization

26.997 ms

1.084 ms
H

O
G

H
O

G

Geforce GTX 280

New dataflow computing HOG on the FPGA

Adapting the code for FPGAs

Mathematical types, functions and footprint:
Floating point Fixed point
Adapt mod, floor, divisions and other computationally
expensive operations
Adjust the data bit-width: performance vs accuracy

Memory use and reuse:
Rewrite the code to reduce memory accesses

VivadoHLS Directives:
Pipelining, Stream interface, Partial Loop Unrolling
Impact of the clock definition over the design.

Adapting the code working @ 125MHz
Floating point

Latency:
160,128,522 clock cycles

Resource consumption:

Fixed point
Latency:

61,055,286 clock cycles

Resource consumption:
BRAM

18K
DSP48 FF LUT SLICE

Total 17 50 6048 6930 0

Available 832 768 301440 150720 37680

Utilization
(%)

2 6 2 4 0

BRAM
18K

DSP48 FF LUT SLICE

Total 16 62 6071 11821 0

Available 832 768 301440 150720 37680

Utilization
(%)

1 8 2 7 0

Adapting the code
Floating point

Operation Latency:
12 clock cycles

Fixed point

Operation Latency:
5 clock cycles

It is important to avoid divisions, mod or floor operations due
to its high latency and resource consumption.

Adapting the data bit-width
Knowledge of the input data range.

The input gradients are composed of two
parameters:

The resource consumption as well as the accuracy
is decreased due to the fixed point conversion.

However, it allows to place more blocks in parallel
and to exploit the I/O bandwidth.

Magnitude: between [0, 17] 5 bits for the integer part
Orientation: between [-179, 180] 9 bits

Adapted HOG code: Main function

Memory
Rearrangement

Impact of the directives: Pipelining the code

High Latency:
 43,801,238 clock cycles

High Resource consumption

BRAM
18K

DSP48 FF LUT SLICE

Total 132 454 62654 146792 0

Available 832 768 301440 150720 37680

Utilization
(%)

15 59 20 97 0

Pipeline the full code is not always the best option.

Impact of the directives: Partial pipelining

Latency:
 7,954,266 clock cycles

Resource consumption:

BRAM
18K

DSP48 FF LUT SLICE

Total 16 65 6078 11664 0

Available 832 768 301440 150720 37680

Utilization
(%)

1 8 2 7 0

Impact of the directives:
Partial Loop Unrolling

Latency:
 8,069,910 clock cycles

Resource consumption:

BRAM
18K

DSP48 FF LUT SLICE

Total 16 65 6137 11735 0

Available 832 768 301440 150720 37680

Utilization
(%)

1 8 2 7 0

Once the clock of the system has been defined
(mandatory to synthesize) the compiler would focus
all the effort to achieve the expected frequency.

That means a high resource consumption and a
extremely low latency.

Specially when several directives as pipelining are
applied.

The best strategy is to define the operational
frequency from the beginning.

Impact of the clock definition on VivadoHLS

HOG implementation

Pipeline solution including the normalization part

Latency drastically reduced (about x35):
Original design: 2,1s Final design: 61ms

Execution on the FPGA: Streaming + Pipelining

Improving performance by increasing the
parallelism up to the maximum resources
available on the FPGA

One HOG block consumes less than 7% of logic resources

1x HOG block

4x HOG block

8x HOG block

16x HOG block

Comparing FPGA/GPUs HOG computation

Speed Up of the FPGA(s)
over the Tesla C2050 GPU

Speed Up of the FPGA(s)
over the Geforce GTX280 GPU

Iterations 1xFPGA 2xFPGA 1xFPGA 2xFPGA

92x69 37% 68% 85% 93%

… … … … …

20x15 17% 59% 77% 88%

Average x1.61 x3.22 x6.45 x13.69

Detailed GPU/FPGA combination including
their communication

61% 36% 3%

Impact of the PCIe protocol overhead

16384
32768

65536
131072

262144
524288

1048576
2097152

4194304
8388608

16777216
33554432

67108864
134217728

268435456
536870912

1073741824

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 Full-Duplex Stream (Pipeline)
2 Full-Duplex Stream (Pipeline)
4 Full-Duplex Stream (Pipeline)

Size of data [Bytes]

B
id

ir
ec

tio
na

l
B

an
dw

id
th

 [
M

B
/s]

16384
32768

65536
131072

262144
524288

1048576
2097152

4194304
8388608

16777216
33554432

67108864
134217728

268435456
536870912

1073741824

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 Full-Duplex Stream (Pipeline)
2 Full-Duplex Stream (Pipeline)
4 Full-Duplex Stream (Pipeline)

Size of data [Bytes]

B
id

ir
ec

tio
na

l
B

an
dw

id
th

 [
M

B
/s]

Impact of the PCIe protocol overhead

Min.
20x15 Blocks

Max.
92x69 Blocks

Impact of the PCIe protocol overhead

Performance combining GPU/FPGA

 GPU* GPU* + FPGA
16HOGs

GPU* + 2xFPGA
16HOGs

92x69 6547 7260 5198
… … … …

20x15 467 1846 1653

Total
Execution [ms] 73066 108738 86208

* Tesla C2050

So, when to combine?

In our case, when the FPGA implementation
speed up the design more than 60% compared
to the GPU.

And when the amount of data to transfer is
higher enough to reach the maximum PCIe
bandwidth.

Exploiting our modular Pico Board: HOG + SVM

5. Conclusions

Conclusions of our HLS experience
For algorithms with low CI, partial loop unrolling and other
optimizations (smart buffers) are able to increase the CI have
obtained higher performance.

For algorithms with high CI, the most important is the
resource consumption, which determinates the maximum
realizable parallelism.

In both cases, to exploit the FPGA’s features it is
recommended to pipeline the stages and to stream the I/O.

HLS tools allow further and better tuning than handwritten
code.

Still, the code must be rearranged to maximize performance.

