
A Fast and Stand-alone HLS Methodology for Hardware
Accelerator Generation Under Resource Constraints

Adrien Prost-Boucle, Olivier Muller and Frédéric Rousseau
Laboratoire TIMA - Grenoble-INP/UJF/CNRS

46 avenue Félix Viallet, 38000 Grenoble, FRANCE
email: <firstname>.<lastname>@imag.fr

Abstract—Heterogeneous architectures are common in High-
Performance Computing (HPC). However, FPGA solutions are
still marginal, mainly because the usual design flow are not
appropriate. While preserving high speedups compared to CPU
or GPGPU solutions, faster and more autonomous High-Level
Synthesis (HLS) tools for FPGA are needed. In this paper, we
present a hardware accelerator generation methodology that
addresses these issues. It is completely autonomous and it respects
area and frequency constraints. Internally, iterative transforma-
tions are applied to the design. This approach makes the Design
Space Exploration (DSE) fast and scalable to complex designs.
The flow has been validated with a preliminary implementation
on the open-source tool UGH. The 2D IDCT algorithm has been
successfully synthesized on the Xilinx XUPV5 platform.

I. INTRODUCTION

The increasing computing capacity of Field Programmable
Gate Arrays (FPGA) is opening new trends in general-purpose
computing and HPC [1][2]. FPGAs exhibit a very high par-
allelism and allow great optimizations of the implemented
algorithms. Efficient solutions typically provide power con-
sumption gain and acceleration of one to three orders of
magnitude over CPU implementations.

The recent advances in modern HLS tools gradually place
HLS as the default design level, instead of RTL. For HPC, this
is a big leap in productivity. Indeed, HLS tools are exploited
to help Design Space Exploration (DSE) [3] and to generate
the final design description with the relevant precision. Usual
HLS tools generate an RTL architecture for a given target
technology. Special user performance goals (area, frequency,
throughput, power...) can be taken into account.

However, the current HLS flows are very iterative and the
tools need manual guidance. Consequently, the DSE is still a
trial-and-error process, that rests with the user knowledge and
expertise. It can still take a relatively long time.

The future of HLS is much closer to the compilation task
for CPUs or GPUs targets: given a hardware target (with area
and frequency constraints), the HLS tool rapidly produces one
unique solution. Altera has already taken this way [4]. Many
applications fields (HPC, simulation, prototyping) could use
FPGAs as generic hardware accelerators, but their users rarely
have extra knowledge about circuit design. So a new design
flow is needed, focused on automation and rapidity.

To tackle these challenges, we propose a fast, scalable
and standalone methodology, able to follow precise target
constraints (resources, frequency). This methodology can be
integrated into existing HLS tools.

The rest of the paper is organized as follows. The section
II presents the background and the related HLS works. The
proposed methodology is presented in section III. Preliminary
results with the IDCT design are presented in section IV.

II. BACKGROUND AND STATE OF THE ART

Currently, most HLS tools perform their internal tasks using
the following steps. First, the input design is compiled and

Figure 1. Proposed implementation flow

converted into a versatile internal representation, Then, some
transformations are applied according to user directives (e.g.
loop unrolling [5]). Finally, the full design is generated in
an RTL representation. A feedback about the quality of the
design (speed and area) is provided to the designer. He can
then impose other transformations to guide the tool towards a
better solution.

Some of the most known tools are presented in [3]. For all
of them and some others, the transformations are applied only
on user command. So the DSE follows the iterative user-driven
methodology described above.

Some HLS tools with automatic DSE features exist. Most of
them can only handle designs with specific structures, as in [5].
DSE with evolutionary algorithms have also been proposed
[6] [7], but their execution time is not deterministic, specially
for complex designs. As the search tree generally grows
exponentially with the design size, usual DSE techniques are
not scalable.

In [8], user annotations (branch probability, loop iteration
number) are used to give the tool knowledge about the actual
hot spots in the design. This work is very promising as it
does not require any additional user input, and the flow could
reliably explore pertinent solutions. However their method-
ology lacks of scalability, and their flow still involves user
interaction. The objectives of the present paper go beyond.

III. OVERVIEW

The proposed synthesis methodology is the combination of
several features: the DSE is completely autonomous, resource
and frequency constraints are strictly respected, and the flow
is intended to be fast and scalable to complex designs.

For these purposes, the tool applies transformations follow-
ing an iterative and greedy progression. The DSE is focused on
rapidity. Only the final design generation is granted a higher
optimization level.

The proposed HLS flow is illustrated in Figure 1. The main
idea is the integration of the iterative decision loop inside the
HLS tool in order to perform an autonomous DSE.



What is proposed is to start from a low-area circuit, obtained
with a high operator sharing. Then this circuit is iteratively
transformed, each time consuming parallelism opportunities
and generally increasing the circuit size. The target frequency
must be respected at each iteration. This elaboration process
stops when the area limit is reached.

This technique allows to follow all hot spots through the
entire process. Furthermore, the choices made by the tool rely
on much more data than what can be exposed to the user.
So potentially, an automatic process can make much more
appropriate choices than a user could.

To achieve this, several new steps (colored in grey in Figure
1) are added to the usual synthesis methodology. Just after
compilation, an initial synthesis step is introduced. It produces
the initial low-area circuit and is meant to be fast. The internal
representation is initialized with the execution time of all
sections of the design, which can be inferred from the design
itself or user annotations (branch probabilities, loop iterations).

Then, at each iteration of the elaboration process, the
possible transformations (called freedom degrees) are detected
and weighted, and the one appearing the best is applied. Each
freedom degree is weighted with an estimation of the design
speedup and the cost in hardware resources.

With the proposed methodology, the DSE steadily pro-
gresses towards the final solution, gradually increasing the
circuit size while speeding it up. The DSE follows a greedy
algorithm, which has a linear complexity in respect to the
number of freedom degrees in the input design. The iterations
are also very fast because the decisions and transformations
are simple. These characteristics makes it possible to relatively
quickly obtain a final solution even for complex designs. The
obtained solution can be sub-optimal, this is the trade-off made
by the proposed methodology.

IV. PRELIMINARY IMPLEMENTATION AND RESULTS

A. Implementation based on the UGH tool

To conduct preliminary experiments, the academic and
open-source tool UGH [3] is used. Its internal design represen-
tation is extended and some optimizations are performed. A
characterized operator library for the target technology (here,
Xilinx Virtex-5) and a preliminary elaboration core are added.
The target frequency is respected with a simple retiming pass
in the generated FSM. The modified tool is called AUGH,
which stands for Autonomous and User-Guided High-level
synthesis.

The elaboration core is able to perform three types of trans-
formations. The first is the insertion of additional operators to
the circuit. This enables to increase parallelism. The second
is the wiring of conditions, which can remove some branch
operations. The third type is the well-known loop unrolling.

B. Synthesis of the 2D IDCT algorithm

The 2D IDCT algorithm (original Loeffler version), with
serial I/O, is used as preliminary test case. Although it is
relatively small, it features freedom degrees of various types,
so it is representative of the proposed methodology.

The target platform is the Xilinx XUPV5 evaluation board
and the target frequency is set to 100MHz. As this circuit
always uses more LUTs than Flip-Flops, the resource usage
is displayed as the number of LUTs only. The embedded
memory banks and DSP cores are not used here for the sake
of simplicity.

Figure 2. Elaboration steps with 2D IDCT

The Figure 2 shows the elaboration steps reached by our
modified tool, when no area limit is given. It also shows the
generation time to reach relevant iterations. To respect any area
constraint, the DSE simply keeps the last compatible solution.
This reveals the high diversity of the obtainable solutions,
along with the pertinence of the proposed DSE methodology.

The result with the original UGH version is displayed for
comparison, along with an experiment with the Catapult com-
mercial tool [3]. Here Catapult is launched with no particular
user command. The generation time taken by Catapult is
much higher than with AUGH. Furthermore, manual trial and
error experiments are necessary to perform a DSE with this
commercial tool. This is highlighted with a resource constraint
limit as given in Figure 2. AUGH is able to produce a solution
when Catapult requires manual guidance and a much longer
global generation time.

V. CONCLUSION

In this paper, we present a novel DSE methodology for
autonomous HLS under resource constraints. The use of an
iterative and greedy progression ensures a fast process. The
proposed flow strictly respects user constraints about resource
usage and target frequency.

A preliminary tool, called AUGH, was built. It is already
able to transparently explore a wide variety of implementations
and to rapidly converge towards a satisfying solution. The
obtained results open up interesting perspectives to ease and
accelerate generation of hardware accelerators for FPGA.

REFERENCES

[1] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang,
“High-level synthesis for FPGAs: From prototyping to deployment,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE Trans-
actions on, vol. 30, no. 4, april 2011.

[2] A. George, H. Lam, and G. Stitt, “Novo-g: At the forefront of scal-
able reconfigurable supercomputing,” Computing in Science Engineering,
vol. 13, no. 1, jan.-feb. 2011.

[3] P. Coussy and A. Morawiec, High-Level Synthesis: from Algorithm to
Digital Circuit. Springer Publishing Company, Incorporated, 2008.

[4] Altera Corporation, “Implementing FPGA design with the OpenCL
standard,” White paper, nov. 2012.

[5] B. So, M. W. Hall, and P. C. Diniz, “A compiler approach to fast
hardware design space exploration in FPGA-based systems,” SIGPLAN
Not., vol. 37, May 2002.

[6] F. Ferrandi, P. Lanzi, D. Loiacono, C. Pilato, and D. Sciuto, “A multi-
objective genetic algorithm for design space exploration in high-level
synthesis,” in Symposium on VLSI, 2008. ISVLSI ’08. IEEE Computer
Society Annual, april 2008.

[7] B. Schafer, T. Takenaka, and K. Wakabayashi, “Adaptive simulated an-
nealer for high level synthesis design space exploration,” in VLSI Design,
Automation and Test, 2009. VLSI-DAT ’09. International Symposium on,
april 2009.

[8] S. Bilavarn, G. Gogniat, J.-L. Philippe, and L. Bossuet, “Design space
pruning through early estimations of area/delay tradeoffs for FPGA
implementations,” Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, vol. 25, no. 10, oct. 2006.


	Introduction
	Background and state of the art
	Overview
	Preliminary implementation and results
	Implementation based on the UGH tool
	Synthesis of the 2D IDCT algorithm

	Conclusion
	References

